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Abstract: The article considers the problem of people evacuation of from the school, as well as mathematical models
and methods for solving the problem of evacuation. To find the optimal solution of the problem of maximum flow in a
network using game-theoretic approach and the various methods of optimization 
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1. INTRODUCTION

Evacuation is one of population protection means. It is taking out or withdrawal of people from hazardous areas. It
could take place both in peacetime and wartime. Evacuation as a means of population protection used long time ago. 

Actuality of evacuation as the means of population protection in wartime and peacetime during recent years not only
decreased but also increased. Contemporary life experience says that the population increasingly runs into danger in the
result of natural calamities, accidents and disasters in industry and transport. Think for instance of natural calamities,
earthquakes, floods, snow slides, mud streams and earth falls, wild scale forest fires. In such cases, evacuation is usually
unavoidable. Evacuation measures are taken at accidents at atomic power stations, emissions and flood of hazardous
chemicals and biologically damaging substances, at vast fires at petrochemical and oil refineries.

In the posted task, we consider people evacuation from educational institution in the emergency situation. The main
peculiarity of educational institution’s buildings is instability of people distribution along internal premises connected
with the lectures timetable. It requires assessing the lessons schedule with regard to organizing unobstructed movement
of people. As announced earlier the topic herein is and will be acute as, unfortunately, emergencies happen increasingly
frequently. To solve the given problem there used mathematical methods and model of people flows motion inside the
building.

2. MATHEMATICAL STATEMENT OF THE PROBLEM
2.1 Algorithm of solving the task on evacuation

Let us suppose that an emergency has happened in an educational institution bringing to the necessity to evacuate
people. There are 24 classrooms with 30 students in each, and 8 stair wells and 2 exits. It is necessary to calculate the
time, speed and direction of students’ evacuation from the educational institution. Let us specify a graph G=<E, V, H>,
in  which  direction  of  every  arc  vϵV identifies  direction  of  flow motion,  flow capacity of  each  arc  equals  to  dv.
Auditoriums are in E vertexes multiple. There identified two vertexes “start” and ‘end’ in E vertexes multiple. Vertex 0
is the stream source, 35 flowing. For  i from Е there given 2 numbers: amount of people sitting there and amount of
people rushing out of there per time unit. Arcs are corridors and stir wells between the nodes.  

As every arc has limited flowing capacity, the check of existing permissible flows along with their search can be
fulfilled by means of the task on maximum flow and solving it with Ford-Fulkerson algorithm [1]. 

In the task on maximum flow, the flow is passed from one initial vertex to one final. All arcs have prescribed flowing
capacity. To arrange that type of the task let us add two dummy vertexes ii and kk. Let us connect ii with stream source
i0.  Its  flowing  capacity  equals  to  Flowing  с   is  connected  with  arcs  to  the  vertex  kk.  Capacity  of  those  arcs  is
accordingly. We obtain the task on standard maximum flow and apply any known algorithm for its solving. If it turned
out that maximum flow is less than   then initial task of one layer and accordingly the whole task has no solution. In that
case, the minimal cut is beyond additional arcs [2].  

If  it  turned  out  that  maximum flow equals  to   we obtain permissible flow,  which is  transferred to  the state  of
equilibrium by invariant transformations. 

Let us describe people’s flow movement along a corridor and staircase by means of Grindshiels formula. Let us
introduce following designations:  L – network section length,  T – time of moving along the section, x – flow having
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passed the road section for time unit, P – flow density, S
–  number  of  lanes,  W –  speed  of  flow,  λ –  average
corridor length.

As  defined,  the  density  is  =1/.  Assume  W –
student’s speed,  Wmax – maximum speed. Time, which
gets a man to travel a route section of  length equals to
=/v. Amount of students per time unit will be equal to
ĸ=1/.  Therefore,   We’ll consider that the flow speed
and density are interconnected due to linear dependence
(Grindshiels formula) [3]. 

Therefrom  or  Let us insert it, and obtain  Obtained
function is a parabola with branches downward directed,
maximum is achieved at  and accordingly 

Thus, we obtained the magnitude of maximum flow,
which can be passed through.  

Let us insert instead of   the expression and receive
the following formula 

According to Viete formula we obtain   taking into
account  that  every  member  strives  to  maximize  own
speed.

From here we receive that the time of travelling along
the  network  section  is  expressed  with  following
dependence:  where Tmin – minimal travelling time along
the section in case the flow along it equals to zero. Let
us  consider  evacuation  movement  route.  Based  on
investigation data the width can be accepted as 0,6 м,
with  supposition  of  its  small  reduction  for  the  roads
with the width in several flows. Apart from that, in view
of necessity,  irrespective of the road width, in case of
possibility of occasional opposing traffic or overdrive at
traffic delay, the path with width of one flow should be
accepted with some width reserve. Considering this and
the necessity of flow number at existing and adaptable
evacuation routes, we can give a table for defining flow
number  per  width  both  of  horizontal  route  and  of
staircases. 

Table 1. Determination of flows number

Number of
elementary

flows

Width of evacuation route
Normal Minimal Maximum

1 0,9 0,9 1,2
2 1,2 1,2 1,7
3 1, 8 1,7 2,3
4 2,4 2,3 3

In practice, mass movement speed fluctuates from 5
to 75 m per minute. At sustained motion, density cannot
reach  physically  maximum  amount,  therefore  it  is
rational to accept the length of the route as calculation
basis.  At  that,  speed  specified  values  are  defined  for
horizontal  path  as  16  meters  per  minute,  for  descent
down staircase as 10 meters and for ascent 20% less,
that is as 8 meters per minute [4].

Flowing capacity of elementary stream per minute is
defined as fraction of speed division by flow density.
Total capability is defined by multiplying the obtained
value by flows number at route width and by number
per minute, making up evacuation duration. It is evident

hereof,  that  such  product,  depending  on  evacuation
motion factors total, cannot be constant  value, as it  is
recommended  by  existing  norms,  but  it  is,  to  a
significant extent,  a variable value, depending on local
conditions and increasing proportionally to increase of
evacuation  permissible  duration.  Time  allowance
directly influences at permissible route length. 

For  the  first  stage,  the  route  length  characterizes
ultimate  moving  away  from  the  exits  and  has
importance mainly for big buildings. For the sum of the
first  and  second  stages  the  norms  herein  determine
laying  out  of  separate  floors  in  ratio  of  number  and
location of exits to outside or to the staircases. For the
sum of three stages, the same norms influence at laying
out in whole limiting number of floors, and prescribing
premises grouping per floors in such a way, that the first
and second stages could  decrease in proportion to the
increase of the third one [5].  

2.2 Problem on maximum flow in the network
In many  network  problems,  it  is  meaningful  to

consider  the  arcs  as  certain  communication  having
definite flowing capacity.  In this case, as a rule, there
considered the task of some flow maximization, directed
from the selected vertex (source) to some other vertex
(outflow).  Such type  of  task is  called the problem of
maximum flow.  

Let  us  assume  that  there  is  an  orient  graph
G=E,V,H, in which direction of every arc vV denotes
the flow motion direction, flowing capacity of each arc
equals to dv. 

At  vertexes  of  multiple  E there  distinguished  two
vertexes: start and end. 

Vertex н is the source of the flow, к – is the outflow.
It requires maximum flow, which can pass from vertex
н to к.

Let us denote as xv flow level passing along the arc v.
It is obvious, that
0 xv  dv , vV                             (1) In every vertex
the incoming flow level equals to outgoing flow level.
That is, following congruence is true
                             (2)
or

  
                       (3)

Accordingly to vertexes н and к there  executed

                
       (4)

    
                     (5)

Magnitude  Q is  value  of  the  flow,  outgoing  from
vertex н and incoming into vertex к.

Problem. Define:
Q  max                                   (6)

at delimitations (1) – (5).
Values (Q, xv , vV) satisfying delimitations (1) – (5)

will  be  named  as  flow  in  the  network,  and  if  they
maximize the magnitude Q, then as maximum flow. It is
easy to see that values  Q=0,  xv=0,  vV, is the flow in
the  network.  Problem  (1) – (5)  is  the  task  of  linear



programming  and  can  be  solved  applying  simplex
algorithm. 

Let  us  break  multiple  of  vertex  E into  two
nonintersecting  parts  E1 and  E2 in  such  a  way,  that
нE1, кE2. Crosscut R(E1,E2), separating н and к we
will name such multiple R(E1,E2)V, that for every arc
vR(E1,E2) or  h1(v)E1 and  h2(v)E2,  or  h1(v)E2
and h2(v)E1. 

Fig. 1. Search for crosscut

There is multiple E1={1,4,7} on Fig.1, these vertexes
have dark filling.  E2={2,3,5,6,8,9}. Crosscut  R(E1,E2)
represent arcs, which dotted line went through. 

Let  us  break  multiple  R(E1,E2) into  two  parts  as
follows:

R+(E1,E2)={vR(E1,E2)| h1(v)E1 and h2(v)E2},
R–(E1,E2)={vR(E1,E2)| h2(v)E1 and h1(v)E2}.
Elements  of  the  multiple  R+(E1,E2) we will  name

straight  arcs,  they  lead  from  multiple  E1 to  E2.
Elements of the multiple R–(E1,E2)  are backward arcs,
they lead from multiple  E2 to  E1.  Flow through the
crosscut we will name the value 

Crosscut flowing capacity we will name the value 

It  is  obvious  that  0X(E1,E2)D(E1,E2).  Next
theorem is true.

Theorem 1. On maximum flow and minimal crosscut.
In any network the magnitude of maximum flow  Q

from  the  source  н to  overflow  к equals  the  minimal
flowing  capacity  D(E1,E2) amongst  all  crosscuts
R(E1,E2), separating vertexes н and к.

Crosscut  R(Ē1,  Ē2),  with  Q=D(Ē1,Ē2) we will  name
constraining. At constraining crosscut, there is  executed

Let  us  assume,  that  (Q, xv, vV) is  a  flow  in  the
network,  and  succession  н=i0, v1, i1 , v2, i2,,vK, iK=к
is a circuit connecting vertexes  н and к. Define on that
circuit motion direction from vertex н to к. Arc vj from
that circuit  is  called straight,  if  its  direction coincides
with motion direction from н to к, and backward, if not.
Circuit  will  be  called  flow  increasing  circuit,  if  for
straight  arcs  of  the  circuit  v (dv–  xv)>0 and  for
backward  xv>0.  Through  the  circuit  thereof  it  is
possible to pass additional flow q from н to к with value
q=min(q1,q2), where q1=min(dv – xv), minimum is taken
from  all  straight  arcs  of  the  circuit,  q2=min(xv),
minimum is taken from all backward arcs of the circuit. 

Theorem 2. Flow (Q, xv, vV), is maximum, then and
only then, there is no way to increase the flow. Offered
algorithm for solving the problem of maximum flow in
the network is based on searching an increasing flow in
the circuit from н to к. The search, in its turn, is based
on the process of vertexes marks disposition similar to
Dejkstra algorithm. 

Let us add mark Pi=[gi,vi,] to every vertex i, where
gi – value of additional flow entered the vertex i, vi – arc
through which the flow entered,   –  sign «+»,  if  the

flow  entered  along  the  arc  vi ,  directed  to  i (along
straight arc);  – sign «–», if the flow entered along the
arc vi , directed from i (along backward arc),

Let us say that vertex i:
- is not labelled, if the additional flow does not reach

it, the label will have the form Pi=[0,–,],
- is labelled, but not viewed, if the flow has reached

it, but has not been allowed to go further, the label will
have the form Pi=[gi,vi,], where gi>0,

-  labelled  and  viewed,  if  the  flow  reached  it  and
allowed  to  go  further,  label  will  have  the  form
Pi=[gi,vi,].

Let us consider solution algorithm. 
0. For all vV assume that xv=0, assume that Q=0.
1. All vertexes are unlabeled. Vertex н is labelled, but

not viewed with a label  Pн=[,–,–]. It  means that the
unlimited  volume  flow  enters  that  vertex.  2.  Search
labelled but not viewed vertex. If it is not available, then
the found flow  Q, xv, vV is  maximum and algorithm
completes its function. If such vertex is found, i – is its
number, then pass on to 3.

3. View vertex i:
- for all assume  j=h2(v). If vertex  j is unlabeled and

(dv–xv)>0,  then mark  it  with label  Pj=[q,v,+],  where
q=min(qi, (dv–xv)), if j=к, then pass on to point 4.

- for all  assume j=h1(v). If vertex j is unlabeled and
xv>0,  then  mark  it  with  a  label  Pj=[q,v,–],  where
q=min(qi,  xv), if  j=к, then pass on to point 4.

- label vertex i as viewed and pass on to point 2.
4. Pass additional flow. Let us assume that j=к, q=gк

and v=vj.
-  if  =«+»,  then  it  is  necessary  to  fulfill:  Let  us

assume that  xv=xv+q,  i=h1(v), if  i=н, then pass on to
point 1, otherwise put j=i and pass on to v=vj), 

-  if  =«–»,  then  it  is  necessary  to  fulfill:  Let  us
assume that  xv=xv–q, i=h2(v), if i=н, then pass to point
1, otherwise put j=i and pass on to v=vj). 

Because  of  the  algorithm  execution  there  will  be
obtained the flow  (Q, xv, vV).  To search the crosscut
with minimal flowing capacity part of vertexes should
be labelled and viewed at  the final stage of algorithm
operation  in  point  2,  we  include  these  vertexes  into
multiple  Ē1,  Ē2=Ē\ Ē1. Cross cut  R(Ē1,  Ē2) will be the
sought for [7].

2.3 Method of potentials and criterion of 
optimality

Method of potentials for solving the problem thereof
supposes,  that  at  initial  graph,  in  some  way,  there
defined initial radix tree G=E,V',H, (lets name its arcs
as basic ),  along which transportation is performed in
such a way that: 

We  can  use  the  following  algorithm  for  defining
values xvV'.

0 – step. E: =E.
K –step. If  E, find the vertex for which  (|V'+i|+|

V' –
i|=1), that is, the vertex i is final at G=E',V',H. 

If |V'+i|=1, then for the arc vV'+i  perform: xv:=bi,  



If |V' –
i|=1, then for the arc vV' –

i  perform: xv:=–bi,  
Move to the next step. We can obtain an infeasible

solution in the result of algorithm operation, that is, for
some vV xv<0. In that case, initial radix tree shall be
changed.  However,  it  does not guarantee that  we will
obtain  feasible  solution  for  it.   Further  there  will  be
described  the  algorithm  allowing  either  define  basic
solution or demonstrate that it does not exist. 

Let us consider that initial radix tree G’ is found and
for  vV'  defined  xv>0. In  order  to determine whether
the obtained solution is optimal, we will make use of
optimality criterion.

Let  xv,  vV is such solution of the problem that for
vV\V' xv=0 and for  vV' xv0. The solution herein is
optimal, then and only then, when there exists numbers
ui, iE, called potentials, such, that

           
(7)

 

           
(8)

                                  
For  potentials  calculation  there  applied  next

algorithm.
0–step. For certain (only one) vertex iE we assume

ui:=0.
k–step. Find arc vV', for which potential is known,

of only one of its vertexes. If there is no such arc, it is
the end of operation, otherwise,  using dependence we
define potential in the vertex, in which it is unknown,
and pass on to step(k+1).

Let us consider next algorithm.
1. Amongst all arcs vV\V' we search an arc v0 such

that ;
2.  If  there  is  no  such  arc,  then  initial  problem  is

solved, otherwise it is needed to accomplish algorithm
of transfer to a new radix tree. 

V':=V'{v0}, where  v0 the  arc,  found  in  previous
algorithm. Now graph G'=E,V',H contains exactly one
cycle G''=E'',V'',H, at that,  v0V'. At subgraph G'' we
define girdle direction coinciding with direction of arc
v0, and pass along subgraph  G'' an additional  flow in
girdle direction of value . Every arc vV'' is  ascribed a
symbol «+», if direction of arc v coincides with girdle
direction, and a symbol «–», if not. Assume that =min
xv amongst vV”, which are ascribed a symbol «–».

Assume that  , for all v  V"\{v0}:
xv:= xv+  , if an arc v is ascribed a sign +,
xv:= xv–  , if an arc v is ascribed a sign –.
From multiple V’\{v0} we exclude the arc, for which

xv=0.  If  there are several  such arcs (degenerate case),
we  remove  only  one,  in  such  a  way,  that  graph
connectivity G'=E,V’,H was not broken.

For  obtained  solution  we  over  again  calculate
potentials  with  the  second  algorithm  and  study  it,
concerning  optimality  with  the  third  algorithm,  while
optimal solution is found. 

Let  us  consider  the  algorithm  of  initial  radix  tree
search.  Upon initial  radix  tree  search there is  applied
described above method for the next “toy” problem.  

Construct  graph  G=E,V,H, in  which  E=E{i0},
where  i0 –  additional  value,  V=VV1V2, где  V1 –

multiple  of  additional  arcs,  directed  from  vertexes  –
points  of  production  to  additional  vertex  i0,  and V2 –
multiple of additional arcs, directed from i0 intermediate
vertexes and vertexes–points of consumption:

- for vV assume cv=0,
- for vV1 assume cv=1,
- for vV2 assume cv=1.
 Assume .  Initial  radix  tree  is  subgraph

G=E,V1V2, H. If in the result of solving this problem
it turned out, that optimal value of a functional strictly
greater  than  zero,  then  the  initial  problem  has  no
solution, otherwise, there will be obtained radix tree of
the initial problem[8].

2.4Ford and Fulkerson algorithm
Let us assume that some permissible flow has been

already found. Let  us ask two questions: how, having
permissible flow, to define, whether it  is optimal, and
how to obtain permissible flow greater by value if the
permissible flow thereof is not optimal. 

For that purpose, it is necessary to identify, what of
given below properties owns every arc in the circuit. For
the first, the flow along an arc (i, j) is less than flowing
capacity of an arc, (i, j), which naturally means that the
flow  along  the  arc  can  be  increased.  Let  us  denote
multiple of such arcs in the circuit as i. For the second
the flow along an arc (i, j) is positive, which means that
it  can be reduced. Let us denote the multiple of such
arcs  as  R.  Let  us  describe the procedure of  Ford and
Fulkerson method for labels disposition to construct the
greater flow. 

Step 1. Assign label to the source (vertex 1).
Step 2. Assign other labels to the vertexes and arcs

proceeding from the next rules. If vertex  x has a label,
and vertex y has no mark and the arc (x ,y)ϵI, then label
the arc (x ,y) and vertex y. In this case, the arc (x, y) is
the straight  direction arc.  If  vertex  x has  a  label,  and
vertex y is unmarked and the arc (y, x) ϵR, then label the
arc(y,  x) and  vertex  y.  In  this  case,  the  arc(y,  x) is  a
backward direction one.

Step 3. Continue procedure of labels disposition until
the outflow is  labeled,  or  there are no unlabeled arcs
left.

If in case of the given procedure implementation the
outflow turned out to be labelled, we can say that there
exists sequence of labelled arcs  (name it  С) from the
source to outflow. Changing arcs flows entering  С, we
can  construct  the  flow of  greater  value  comparing to
initial.  In  order  to be sure,  let  us consider two cases:
succession С contains only arcs of straight direction and
succession  С contains  both  straight  and  backward
direction arcs.

In every case we can say how to obtain the flow of
greater value comparing to the given one.  

Let  us  consider  case  1.  Let  i  (x,  y) –  a  maximum
value, the flow along the arc can be increased without
violation of  delimitation on flowing capacity.  Assume
that



Then k˃0. In order to modify the flow upwards, let us
increase values of flows on all arcs from С per value k.
In  this  case,  not  a  single  delimitation  of  flowing
capacity will  be violated.  It  is  easy to  note,  the flow
preservation conditions for all vertexes will be satisfied.
It  follows  that  a  new  flow,  on  the  one  hand  is
permissible, and on the other hand, it has the value for k
greater than the initial one. 

Let  us  consider  case 2.  In  this  case,  succession  С
contains both straight direction and backwards direction
arcs.  Let  r  (x,  y) – maximum value,  the flow can be
decreased along the arc (x, y). Assume that 

 Both  values  k1 and  k2,  and,  accordingly,  min  (k1,
k2)>0.  In  order  to  modify  the  flow  upwards,  let  us
increase  flows  values  along all  straight  direction  arcs
from  С for the value  min (k1,  k2), and at all backward
directions arcs from С decrease for the same value min
(k1, k2). In this case, not a single delimitation of flowing
capacity will  be violated.  It  is  easy to  note,  the flow
preservation conditions for all vertexes will be satisfied
as well. Accordingly, a new flow, on the one hand, is
permissible; on the other hand, it has the value less for
min (k1, k2) comparing to initial one.

If outflow cannot be labeled, it means that the flow is
maximum. To ground this consideration, let us study the
crosscut notion. 

Let us select any multiple  V, containing an outflow,
but without the source. Then multiple of arcs (x, y), for
which  x does  not  belong to  V,  and  y  ϵ  V is  called  a
circuit crosscut. In other words, crosscut is multiple of
arcs,  excluding  which  out  of  the  circuit  we  would
separate the source from the outflow. Crosscut value is
the sum of flowing capacities of the arcs entering the
crosscut.  Crosscut  is  multiple  of  arcs  removal,  which
brings to impossibility to pass from the source to the
outflow  along  the  remained  arcs.  There  are  several
crosscuts in the circuit. Lemma 1 and lemma 2 establish
connection  between  crosscuts  and  maximum  flow.
Lemma 1 concludes, that the value of any permissible
flow from the source to the overflow is not greater than
the value of any crosscut. Let us consider any crosscut,
defined  by  multiple  V.  Assume  W –  all  other  circuit
vertexes, not included into the multiple V. Let xij – value
of flow for the arc (i, j), and z – overall value of the flow
from the source to outflow. If to summarize conditions
of flow preservation for all vertexes from the multiple
W, then values of flows for arcs (i, j), for which vertex i
and vertex j belong to the multiple W, will reduce, then
in the result remains

Taking into account that the first sum from the given
ratio  is  not  bigger  than  the  crosscut  value,  it  can  be
concluded that Lemma 1 is true [8].  

Lemma 2 lies in the fact that if the outflow cannot be
labelled,  then  value  of  some  crosscut  equals  to  the
flow’s value.  Let  V is  multiple of unmarked vertexes,
and  W is multiple of labelled vertexes. Let us consider
arcs  (i,  j),  for which  iϵW,  jϵV,  then for them  xij=cij   is

true. It follows because, in the contrary case we could
mark vertex j from the multiple V (as the arc (i, j) is the
straight  direction  arc),  which  would  contradict  to
determination of the multiple V.

Let us consider arcs  (i, j), for which  iϵV, а  jϵW, then
for them xij=0 is true. It follows because in the contrary
case we could label vertex i from the multiple V (as the
arc(i,  j) is  the  backward  direction  arc),  which  would
contradict to determination of the multiple V. Thus, it is
seen  from the  ratio,  that  crosscut  value  equals  to  the
flow value.

2.5Nash equilibrium
Nash equilibrium is the situation, upon which none of

the  players  can  increase  own  bending  of  the  game,
changing, on a unilateral basis, own decision. In other
ways, it is the situation, at which the strategy of both
players is the best reaction at opponent’s actions. 

Rational  approach  to  finding  the  game  solution
supposes, that any player  i forms an opinion on other
players  actions  and  selects  as   own  best  answer.
Situation  in the game is called Nash equilibrium, if for
any player  i and for his any strategy there is fulfilled
inequation  Put it otherwise,  is the best reply for every
player  i.  The  given  situation  is  such,  that  it  is  not
beneficial  for  anybody  to  deviate  from  it.  If  others
confine themselves to it. 

Nash equilibrium is the main concept for solving in
no cooperative case. Notion of equilibrium connects two
hypotheses  on  players’  behavior.  The  first  –  if  the
situation   is  unbalanced,  it  cannot  be  considered  as
stable state. That is, if a player sees that deviation from
will bring the bigger bending game, then he/she, most
likely, will deviate. It matches to rationality hypothesis.
However,  the  player  surely  understands  that  his
deviation can arouse unpredictable chain of responses
from  other  players,  final  consequences  of  which  is
difficult to overestimate. Such deviation is justified only
in  case  if  there  is  confidence  that  other  players  keep
unchanged their strategies. 

The  second  hypothesis–  if  every  player  sees  that
deviations from  bring no improvement, he will maintain
that strategy. Equilibrium bending of the game cannot
be less than guaranteed level αi. 

Lemma 1 lies in the fact that if   - Nash equilibrium,
then  for any player- i. 

Lemma  2  supposes  that  for  every  player  there
prescribed subtotals . Suppose, that   - equilibrium in the
game, and  for any i. Then  is equilibrium in the game.

If   is a game, obtained after iterated elimination of
strongly dominated strategies, then  We can show that
any equilibrium in the game  is equilibrium in the initial
game ,  that  is,  we can record  The given congruence
explains the sense of elimination of heavily dominated
strategies.  If  after  sequential  exclusion  there  is  one
profile remained, it is in equilibrium in the initial game,
but  if  there  several  profiles  remained,  then  it  is
necessary to find the balanced one among them.

Nash theorem. Let us assume that  in the game  all
multiples       are convex, and functions of bending of the



game   are persistent and hill-shaped per variable, then
there exists at least one Nash equilibrium.

2.6 Analysis of flow mption along the arc 
It is obvious, that in order the movement along total

length  was  minimal,  it  is  necessary,  that  the  motion
speed  of  every participant  on  the  arc  was  maximum.
However,  other  participants  involuntarily affect  at  the
speed of a certain participant.   They as well strive to
speed maximization, selecting own motion parameters.
Flow  increase  leads  to  motion  speed  decrease  of  a
considered driver, which results in time increase. 

Let us consider motion only along one arc, and omit
all  indices  concerning  the  arcs.  Let  us  introduce
following designations: L – length of circuit section, T –
time  of  movement  along  the  section,  x –  the  flow,
having passed through a road section per time unit,  -
flow density,  s – number of lanes in the corridor,  w –
speed of the flow,  - average length of the corridor. 

According to determination the density is =1/. Let
w – speed of a student,  wmax – maximum speed. Time,
spent by a person to travel a section of length  equals
to =/v. Amount of students per time unit will equal to
ĸ=1/.   Therefore,   We’ll  consider  that  speed  and
density  of  flow  are  interconnected  with  linear
dependence   (Grindshils  formula),  here  from  or
Substituting  it  into  the  flow,  we  obtain  Obtained
function is parabola with branches downward directed,
maximum is  reached  at   and  accordingly   Thus,  we
received  the  value  of  maximum  flow,  which  can  be
passed through the road.

Let  us  substitute  instead  of   its  expression,  we’ll
obtain Using Viete formula we obtain  with account that
every  participant  strives  to  maximize  own  speed.
Herefrom,  we receive  that  motion time along circuit
section is expressed with following dependence:  where
min –  minimal  motion time along the  section in  case
when the flow along it equals to zero. For descriptive
reasons of that function we provide the function graph 

Fig. 2. Diagram of function for time calculation 
2.7 Balance ratio of the layer

Let G=<E, V, H> is an oriented graph, Е and V - final
multiples, 

Н  mapping H:V Е  Е. Let us name elements of
multiple  E the graph vertexes,  elements of multiple  V
-arcs.  For every arc  vV mapping  H(v)=(h1(v), h2(v)),
h1(v)  start of the arc v, h2(v)  end. Denote  - multiple
arcs, entering the vertex i,  - multiple of arcs, outgoing
from vertex i.

For  every  pair  (i, j) of  vertexes  there  prescribed
numbers  Qij,  defining the  value  of  the  flow from the
vertex - source  i to the vertex - outflow j. These flows
split up into separate currents and distributed along the
circuit, in the result for every arc vV we receive  - flow
along the arc v, moving from the source i to outflow j.

Let us take the vertex  i0, which is the source of the
flow to other vertexes.  Flows entering vertexes iE we

denote as qi(i0), for vertex i0E it will be . Total  we will
name a layer i0. For every vertex 

               

is true.
For vertex i0 

is true
Ratio is the First Kirchhoff rule for the circuit. Let us

denote through  
 
the total flow moving along the arc  v.

Accordingly, 

Without restricting the generality we will assume that
every vertex forms a layer, if for some vertex  i0 it is not
available, then it means [9]. 

Single-layer  systems,  in  themselves,  have  big
practical  significance.  The simplest  examples  of  such
tasks  are  problems  of  entering  some  institution,
evacuation from the buildings, stadiums, etc. 

As we consider one layer, then index of layer i0 we’ll
omit. Idea of equilibrium search algorithm consists in
searching permissible initial flows and their subsequent
transformation  into  balanced  state.  As  every  arc  has
limited  flowing  capacity,  the  check  of  existing
permissible flows along with search can be fulfilled by
means of the task on maximum flow and solving it by
means of Ford-Fulkerson algorithm. 

In the task of maximum flow, the latter passes from
initial  vertex  to  one  final.   All  arcs  have  prescribed
flowing capacity.  In  order  to  deduce the  task to  such
form we will add two fictitious vertexes ii and kk.  Let
us connect  ii to the source of the flow  i0.  We connect
outflows with vertex  kk by arcs.  Flowing capacity of
those arcs equals accordingly qi  (i). We obtain the task
on maximum flow in standard form, for its solution, we
apply any of the known algorithms. If it turned out that
maximum flow is  less  than  ,  then  initial  task  of  one
layer, and accordingly, the whole task has no solution.
In that case, minimal crosscut is out of additional arcs.  

If it turned out that maximum flow equals , then we
obtain permissible flow, which we transfer into balance
state  by  means  of  invariant  transformations.  Let  us
consider any cycle C. Let us define any direction of by-
pass, coinciding with some arc direction from cycle  u.
Let us construct generic function :

Let xv, v V  satisfy ratio. Let us take any number ,
for all  v V  suppose , that is for cycle arcs, direction
of which coincides with by-pass direction, the value of
flow xv is added , for cycle arcs, direction of which is
contrarily to by-pass direction, the value of the flow xv
is deduced . Then satisfies the ratio.

Conclusion

In  the  work  herein  we  studied  models  of  flows
distribution  along  the  circuit  using  game-theoretical
approach.  We executed following tasks:



- given descriptive setting of the problem, with
consideration  of  emergencies  classification,  norms,
stages and principles of evacuation rating;  

-  given  mathematical  setting  of  the  problem,  with
consideration  of  problem  solving  algorithm,  task  on
maximum flow,  method of  potentials  and criterion  of
optimality, Ford-Fulkerson algorithm, second Kirchhoff
convention,  Nash  equilibrium  and  contour
interrelationship;

-fulfilled search of permissible solutions of the task
based on the problem on maximum flow; 

-search of minimal evacuation time based on game-
theoretical approach to people’s flow motion modeling; 

-search  of  the  shortest  path  using the  algorithm of
finding  balanced  state  in  describing  of  people’s  flow
motion model.
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