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Abstract. The work is devoted to defining ranges of distribution of a numerical solution in a well to a 

zone of a layer using mathematical model. The mathematical model is obtained on the basis of the 

laws of conservation of mass. To solve a problem of concerning pressure it is applied limiting 

method. The received results can be applied at drawing up of effective computing algorithms. 

Introduction 

The problem of isothermal filtration theory of fluid in a porous medium was considered, allowing 

self-similar solution in two dimensions and built an efficient computational algorithm with relation to 

the pressure in the presence of a free surface between immiscible fluids. The study design consists of: 

deriving the equations using the velocity potential, composite type system of equations is given a 

more convenient form with relation to the pressure and saturation, with relative saturation shows the 

use of similar variables and bringing to the problem of the Stefan type, then built a computational 

algorithm for the numerical implementation on a computer.  
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where h – the height of a point above the fixed level, g – acceleration of gravity. The generalized 

Darcy law for each of the phases under these assumptions takes the form [1]: 
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  - filtration coefficient. In the case of accounting capillary pressure, 
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 are linked each other by the relation of Laplace 

   tyxptyxp
вн

,,,, 
 =

 sp
k ,                                                                                                       (3) 

where  sp
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- capillary pressure, and for the hydrophilic layer 0
ds
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k

. Regarding the saturation of 

each phase based on the continuity equation, we have: 
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and the relation 
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By introducing of function of current , as in [1]: 
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and differentiation (3) with (4) we obtain the following system of equations 
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To determine functions  tyxs ,,  and 
 tyx ,,

 on the boundary Г considered that the following 

conditions are met: 
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where   - parameter of Г. 

In addition to the boundary conditions (9) it is also known initial distribution of water saturation 

 tyxs ,,  in the reservoir: 
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Theorem. Under certain values of pressure and 0),(~lim 
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We show that for each 0D  there is at least one function  V , that satisfies the equation (11) 

and the boundary conditions (12). Further, calculating the derivative 
d

dV  at the point D  and 

putting it into the left side of (13), we obtain an equation which solution 
*
D  determines the solution 

of the problem (12) - (13). To determine the function  V  consider the linear boundary value 

problem: 
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The right side of the written out expression is a continuous operator  g , defined on the set   

of functions g  with the previously described properties, and displays this set in itself. Furthermore, 

since the derivatives   V
~

 of functions are uniformly bounded:  
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 the operator  g  is completely continuous on the set  . By the 

theorem of Schauder there is at least one fixed point V of the operator  VV  : . The function 
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Uniqueness found self-similar solution follows from the fact that the function  txU ,
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solution of the Stefan problem with the data in Theorem 3. The continuity  
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  follows from the theorem on the continuous dependence of the solutions of ordinary differential 

equations on a parameter. The proof of the last statement of the theorem follows from the equality  
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which is obtained after multiplying the equation (11) by   and integrating over   from 0 to 
*D  using 

the conditions (12) and (13). 

To construct a computational algorithm used the following approach. The mathematical 

formulation of the problem. Consider a two-dimensional rectangular grid nodes, wherein p  nodes 

horizontally, vertically q  nodes. Data points are of the form  Myxtij ,, , where  yx,  – its 

coordinates, M  – magnitude.  

This method does not require to determine the grid from the manifold and divides all the data on set 

of qp  subsets of K – taxons within each subset’s points will be closer to a node in the mesh 
ijy , 

than to any other node.  

Let this fact as follows:  
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This grid can be deformed in two ways - stretch it along and bend across. In one case, it seeks to 

maintain its length, and in the other - a flat shape. Considered grid has the following properties: tensile 

property, this property provides a uniform grid; property of smoothness; property close to the data 

points. To mesh has both these properties, it is necessary to add to the minimized criterion the 

measure of the total grid stretching, measure of bending and measure total aggregate measure of 

proximity. Adding together all three of these measures, we obtain a general criterion by which the 

grid, on the one hand, will be attracted to data points, the other - to strive to minimize their tension and 

take the most smooth shape (become more regular). 

Summary  

We received the following quality features: 
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where kP
 – a number of points X ; ,   – elasticity coefficients responsible for the tension and 

curvature of the grid respectively;  – the number of executed iterations, 321 ,, DDD
 – terms are 

responsible for the properties of the grid (Figure 1). 



 

Figure 1. Overlay points on the grid. 

As a measure of the grid closeness to the data point, select the value of the square of the distance 

from the point to the nearest grid point. The property measures the grid closeness to the data points 

represented as: 
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The higher the average length of an edge, the stronger net "stretched." Thus, in the minimizing 

functional must enter the difference between the positions of neighboring nodes: 
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Measure Stretching of the Mesh 

Note that the summation boundaries are chosen so that the edge was not included in the amount twice 

in the functional D2. The degree of curvature is determined by evaluating the magnitude of the second 

derivative, by using the second difference. As a result, we get the following functional: 
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Measure of Grid Smoothness 

The resulting method allows you to restore the division border between water and oil. 
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