Third International Conference on Analysis and Applied Mathematics ICAAM 2016

THE ABSTRACT BOOK

ICAAM 2016

THIRD INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS Institute of Mathematics and Mathematical Modelling

September 7-10, 2016, Almaty, Kazakhstan

07-10 September 2016

Institute of Mathematics and Mathematical Modelling Almaty, Kazakhstan

Iskander A. TAIMANOV The Moutard transformation of two-dimensional Dirac operators and the Mobius geometry	216
Marat TLEUBERGENOV, Gulmira VASSILINA On stochastic stability of the integral manifold under permanently acting random perturbations.	217
Automorphisms of differential polynomial algebras	218
Vassilly VOINOV, Natalya PYA, Rashid MAKAROV, Yevgeniy VOINOV, Roza RAKHIMOVA Combining goodness of fit tests for multivariate normality	219
Aibat YESHKEYEV, Olga ULBRIKHT The stability of forcing companion for center of Jonsson set's fragment	220
ory	221
Aibat YESHKEYEV, Maira KASSYMETOVA Strongly minimal fragments in existentially prime convex Jonsson theory.	
5 MS1:MATHEMATICAL MODELLING	G 223
Numerical solution to inverse source problems for hyperbolic of	224
Aidyn AITZHAN, Medet INKARBEKOV, Asetzhan KOLDAS, Aidar-	
khan KALTAYEV Implementation of scalar filtered density function for large eddy simula- tion of turbulent reacting flow using a high-order discontinuous Galerkin method	225
Lyudmila ALEXEYEVA, Makpal AHMETZHANOVA, Gulnar KAYSHI- BAYEVA Dynamics of the massif in the vicinity of the tunnel any profile of section under action of transport loadings.	226
F.A. ALIEV, N.S. HAJIEVA, N.A. SAFAROVA, M.F. RAJABOV An asymptotical method for determining hydraulic resistance coefficient of gas-lift process	227
Tulegen AMANBAEV, Gamidulla TILLEUOV, Bibigul TULEGENOVA Modeling and calculation of flotation process in one-dimensional formula- tion	228
Mersaid ARIPOV The Fujita type a critical exponent for a double nonlinear parabolic equa- tion and system	229
Nurgali ASHIRBAYEV, Zhansaya ASHIRBAYEVA, Azimkhan ABZHAP- BAROV, Manat SHOMANBAYEVA The features of a non-stationary state of stress in the elastic multisupport construction	230
Nurgali ASHIRBAYEV, Zhansaya ASHIRBAYEVA, Turlybek SULTAN- BEK, Raina BEKMOLDAYEVA Modeling and solving the two-dimensional non-stationary problem in an elastic body with a rectangular hole	231
Galitdin B. BAKANOV On the stability estimation of differential-difference analogue of the inte- gral geometry problem with a weight function	
Arzu ERDEM COSKUN, Cigdem GUNDUZ ARAS, Ayse SONMEZ, Husey CAKALLI Soft matrices on soft multisets in an optimal decision process	

Implementation of scalar filtered density function for large eddy simulation of turbulent reacting flow using a high-order discontinuous Galerkin method

Aidyn AITZHAN¹, Medet INKARBEKOV¹, Asetzhan KOLDAS¹, Aidarkhan KALTAYEV¹

¹ Department of Mechanics, Al-Farabi Kazakh National University, Almaty, Kazakhstan

E-mail: aitzhan.aidyn.b@gmail.com

Abstract: Turbulence is interesting and useful flow phenomena of nature. In case of reacting flows, turbulence promotes effective mixing of reactants. Due to fine mixing a chemical reaction is going to be highly productive. Hence, turbulent reactive flows are especially needed in industry. Nowadays engineering problems require highly accurate simulation of turbulent reacting flow. Therefore mathematical models and numerical methods must be sufficiently accurate.

In present work, a Filtered Density Function methodology (FDF) coupled with high-order Discontinuous Galerkin (DG) method is applied for Large Eddy Simulation (LES) of turbulent reacting flow. The FDF method has proven to be very effective for LES of turbulent reactive flows [1, 2] from the other side DG method is highly accurate and useful method, and at the same time is compact and relative easy [3]. In order to compare results there are provided results of computations of discontinuous Galerkin LES/FDF and finite difference direct numerical and large eddy simulations. In addition a DG-LES/FDF numerical code is parallelized with CUDA technology, which accelerated computations more that 10 times.

Keywords: filtered density function, high-order method

2010 Mathematics Subject Classification: 76F25, 76F65

References:

- Colucci P.J., Jaberi F.A., Givi P., Pope S.B., "Filtered density function for large eddy simulation of turbulent reacting flows", *Phys. Fluids*, Vol.10, No.2, pp. 499-515, 1998.
- [2] Jaberi F.A., Colucci P.J., James S., Givi P., Pope S.B., "Filtered mass density function for large-eddy simulation of turbulent reacting flows", J. Fluid Mech., Vol.401, pp. 85-121, 1999.
- [3] Schaal K., Bauer A., Chandrashekar P., Pakmor R., Klingenberg C., Springel V., "Astrophysical hydrodynamics with a high-order discontinuous Galerkin scheme and adaptive mesh refinement", MNRAS, Vol.453, No.4, pp. 4278-4300, 2015.