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Regularization of the continuation problem
for elliptic equations

5.1 Kabanikhin, Y. 5. Gasimov, D. B. Nurseitov, M. A, Shishlenin,
B.B. Sholpanbaev and 5. Kasenov

Abstract. We investigate the continuation problem for the elliptic equition. The continu-
ation problem is formulated in operator form Ag = . The singuler values of the opera-
tos A are presented and analyzed for the continuation problem for the Helmbioltz equation.
Results of numerical experiments are presented.

Kt'y\mrds. Helmhaoltz equation, imverse problem, singular values, degree of
ill-posedness.

2018 Mathematics Subject Classification, 65520, 65N21, 35105, 35043,

1 Introduction

The Cauchy problem for the elliptic equation is a well-known example of an ill-
posed problem. The solution is unique, but does not depend cominuously on the
Cauchy data in standard norms [1.6.7].

The Cauchy problem for the Helmholtz equation was investigated theoretically
by F. John in [6]. He showed that the conditional stability estimate for k is the best
logarithmic estimate. It was demonstrated in [4,5] that ill-posedness of the Cauchy
problem for the Helmholtz equation depends on the wave number & and incresses
as k increases. There is a subspace of the dara space on which the Cauchy problem
is well-posed, and this subspace grows with larger & (a subspace of stahility). For
more general geometries, authors studied the ill-posedness by computing the sin-
gular values of some operators associated with corresponding well-posed (direct)
boundary value problems.

The work was supparted by the Russian Foundation for Bosic Research grana |1-00 -00005, by the
Minisry of Education and Sciemce of the Russian Federation prant 14.418.21 201 4, by 5B RAS
mterdisciplinary grant 14 “Inverse Problems and Applications: Theory, Algorithms, Software™, by
Collaboration project number 12—2013 between 3B RAS and NAS of Ukraing and by Azerbaijan
Science Development Foundation CGrang M, EIF-2001 1-103-82w25/1-M-29,
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Figure 1. Domuin £ = (0,h) x 8.

Mumerical calculations using various regularization methods are presented, e.g.,
in the following papers: quasi-reversibility method [3, 11], frequency space cut-
off [18], iterative methods [2, 12, 15], regularization methods [3, 10,16, 17.19].

Tt was shown [19] that the Cauchy problem for the Helmholtz equation depends
on different smoothness situations, the best possible accuracy muy be of Hilder
type, of logarithmic type, or of some other type.

First we consider the continuation problem for the elliptic eguation in the cylin-
der (see Figure 1)

g+ Livu=10, [(x ¥ €L, (1.1}
u{lL vy = fiv), yed. (1.2
U0, v) =10, y e ), (1.3)
tlapn =0 x € (0, k), (1.4)
with the condition
Fag=0. x={0.k), (1.5}

Here 02 = (0, 4) x D, where D < E" is a connected bounded domain with
Lipschitz boundary 8. The operator L(v) has the form

il it
L= Y o (aut)ge ) e,

foimy
with the coefficients a;;{¥) and (¥ satisfying the relations
(] in-} = t gy i¥iwyy, forallu, € B,
j=l fi=1
aip =y, bj=L.... m, oy ECl{ﬁJ.
0<c(¥) <Ca c€CID).
Here €y and C; are positive constants.
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In Section 2 we describe and justify a gradient type algorithm for the continua-
tion prohlem (1.1)—(1.5).

In Section 3 we investigate the continuation problem for the Helmhaltz equation
for simple geometry and homogeneous media.

In Section 4 we introduce and analvze a complex-valued cost functional such
thiat the adjoint problem has exactly the same form as the direct problem.

In Section 5 the numerical results are presented and analvzed.

2 Optimization approach

Let us consider the ill-posed continuation problem (1.1)-(1.5) as an inverse prob-
lem Lo the following direct well-posed problem:

Uer +Liviw =0, {x.y)ef, {21y
(0. ) =0, ¥y e 4, (2.2}
ulth.y) =gy}, red (2.3)
ilapn = 0. x e (0 A (2.4)
with the condition
glap =10, xe&(0A), (2.5

In the direct problem (2.13—(2.5) it s required 1o find w(x, ¥) in 2 from the
function g( v} given on a part of the boundary x = % of the domain 2.

The inverse problem consists of finding (v} from (2. 1)-(2.5) and the additional
information

wi vy = fivh (2.6)

The inverse problem (2.11-42.6) and the continuation problem (1, 13-(1.5) are
equivalent to each other in the follewing sense: if we solve the inverse problem,
we find the solution of the cominuation problem uix, v} and vice versa,

Let us remind several results from the direct [14] and inverse [7] problems

theory.

Definition 2.1. A function & € L3(£2) is called a generalized solution to the direct
problem (2.1342.5) if for any & & H2(2) such that
well¥)=0. yedy
wih. yi=0, ved,
whp =0 x<(0kh)
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u satisfies the equality
f uligy + Ly wldx dy —f glyiwglh, y)dy =10
a o

Theorem 2.2 (on the well-posedness of the direct problem and existence of the
trace #(0, ¥ If ¢ € Lz (D), then the direct problem (2.1)=(2.5) has a wnigue
generalized soluzion w € La(Q) which has the trace u(0)., y) € La(D) and the
following estimates hold rrue:
Bl e = Millglea .
@, ¥ MLty = l19llezc-
Here My is a positive constant,
Theorem 2.3 (Condidonal stability estimate). Ler g, [ £ La(D ) If the continag-

tion problem (1.1)-(1.5) has a solution u € C*(€0), then it satiyfies the inequaliry
[7.13]

2xih =x)fk
|, Py < halig 1 S gy - x € @R

Togesher with the direct problem (2.1)~(2.5) we consider the adjoint problem

ey + Ly =1, {x.v)E Q. (2.7
(0. ¥) = piy), ¥ed, {2.8)

wih p) =0, v e D, (2.9

lap =0, x = (0h), (2,100

The problem is to find Wix, v} by given uiy).

Theorem 2.4 (on the well-posedness of the adjoint problem and existence of the
trace Wiy (h v 00 0F o & La(D), then problem (273210} fas a wnigie peneral-
ized solution W € La(2) which has the trace Wiy (h, v) € La(dD) and the follow-
ing estipates hold true:

Wl = MzlpllLaim-
bl W) llLa gy = lellLacon.
Here M iy a positive comstant,
We introduce the operator
A gy} — u(l. y).
where wix, ¥) is a solution to the direct problem (2.1142.5].
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Then the adjoint operator A* has the form
A% ) == e ih, ¥},

where ¥ (x. ¥) is a solution to the adjoint problem (2. T}-(2.10).

It follows from Theorems 2.2 and 2.4 that the operators 4 and A® map La ()
into La( D). Therefore, the inverse problem (2.1)—2.6) can be written in the oper-
ator form

Ag = T (2,11}

We will find the solution of (2.11) by minimizing the cost functional
Jig)= ||4g — f||i.:|;a:r]-
Let us consider the method of Landweber iteration
gni1=gn—ad'ge. n=0,12,..,

where o is the descent parameter

1
ﬂ__
5 ( 2IIAIF)

and J gy is the gradient of the functional Figs ),
Jg=24%Aq— ).
Mote that J'g is caleulated by
(F'g)y) = el v
where r(x, ¥) 1% a solution to the adjoint problem (2,712,100 with
wlyh = 2[l0, ¥) = fF(¥)]-

Theorem 2.5 (The rate of convergence with respect (o the functional). Let fhe
problem Ag = [ have the exact solution §g € Lai}). Then there exists a con-
start My = 0 such that the following estimate holds fewe!

M
n — T e ey
Jign) = = n=1

Theorem 2.6, Let the problem Ag = [ have the exact selution g € La(ID). Then
there exists a constant My = O such that the sequence {ua} of solutions to the
direct problem (2.1—2.5) for the corresponding ilerations gy, converges o the
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exact solufion i, € L3(53) to problem (1.1)={ 1.5} and the following estimare holds
[8):
f (Mg x, 7)) = g {x, yitdy = M,_rr‘fn, x & {0, k).
I

Theorem 2.7. Let the problem Ag = [ have the exact solution gg € L2(D). Ler
| F— _.I"Il | = & Then there exist constants Mz = 0 and Mg = 0 such that the se-
quence (g} of solutions to the divect problem (21)—(2.5) for the corresponding
iterations u® converges o the exact sofusion 1. € La(€2) to problem (1.1H(1.5)
and the following estimare fodds |8]:

f (g5, ¥) —uglx, 1)) dy = Msﬂ{niﬁ+Msn"‘H"‘. e, (213
oD

Here o
{14 ZafAfS) T =1
Ay = AT

The same results were obtained for the steepest descent method and conjugate-
gradient method [7, 8],

The estimate (2.12) shows that the sequence uﬁ is a repularizing sequence with
n a5 the regularization parameter. Since the first term monotonically tends o in-
finity and the second term monotonically tends to zero as # — o, the stopping
number . can be chasen as follows. Differentiating the rght-hand side of (2.12)
with respect to #, we then can find the root n, of the equation

WU + 2a|lAf? ! + Mg ’l‘n“-:a“‘ =0 (2.1%

MSS 13

and choose the stopping number #i; as the natural number which is the nearest i@
the root #e of equation (2.13).
3 SVD analysis of continuation problem

Let us consider the continuation problem for the Helmholiz equation for simple
geometry and homogeneous media:

Au + kw =10, x€(0h), ye(ldm) (3.1)
w0, v) = fiy), y e (D m), 3.
ueld o y) =10, y €{0m), (3.3

wix. ) =wx.oyi=0 x<{0h) (34)
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Here

2

k = gw” —igw,

e i% o frequency, £ and o are positive consLants.
The continuation problem (3.1)=(3.4) consists of finding a function u(x, ¥} in
the domain x € (0,4, ¥ £ (0.7 by the given boundary conditions (3.2)-(3.4),
Let us formulate the continuation problem in the form of inverse problem. We
imtroduce the direct problem:

Au + ku =1, xe(0h), ye(d x), (3.5)
wel0.p)y =0, wihy)=gqly) yeldmx) (3.6)
wiax, 0 = wix, or) = O, x e {0, ). (3.7}

Inverse problem. Find a function i v) using the additional information
w0, vy = fiy), yeilm. {38)

The operator statement of the inverse problem (3,51-(3.8) can be written in the
form Ag = f,where A : H2(0.7) = H %{:}, w), see [7,12].

Let us find the solution to the direct problem {3.5)-(3.7). We suppose that 4{y)
has the form

o0
gly) = z: q"“"” sin{my )

and find the direct problem solution as a Fourier series

o
uix, yl= E W™y sintmy)

m=1

solving the sequence of direct problems:
wl™ 4 k™ =0, x e (0.h), (3.9)
IiF:'}m} =0, ”llnf]{_h:l - q.[m]_ (3.10)

Here

2

Fry = gw® —m® —iow.

The general selution of equation (3.9) has the following form:

W™y} = Cre*m® 4 Cpe~hm®,

o -k = In’tm

m =
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and
j—m e um + fﬁm

with

JIME — e + 2wl +m? — gw?

[
wm=1'|' 3 ;

JJ{mI —aw?) + 0% —m? + ew?
5 .

fim =

Therefore the solution of problem ¢ 3.90=(3.10) is given by the formula

(il p.e =cnsh{).,.,,.r} ()

i o ey

Then the solution of the direct problem (3.5)+3.7) is given by the following
Fourier series:

oo

. cosh{AmX) ypmy . ;
uix, y) = E m{} sim{my).

m=1

Therefore the solution of inverse problem (3. 5)—(3.8) is given by the Fourier seres

expansion
=]

gly) = z £ cosh(h ) sinfmy). (3.11)

m=]

Thus the singular values of the operator 4 have the form

1 V2

= ; (3.1
|coshlhmh)| | /cosh(2amh) + cos(2Bmb)

Tm(A) =

Remark. Formulas (3.11) and (3.12) show how one can choose the number m o
use the cut-5VD regularization. Namely, if || /™ — 7| < §, then iy, should not
be greater than |In &|/ f.

Let us consider several particular cases of singular values of the operator 4.

Example 3.1. Laplace equation: £ = 0, o0 = (,
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Example 3.2, Parabolic equation: ¢ = 0, o # 0,
V1
Eosh 2o h) = cos(2fmh)

| i+ 0%t + m?
e BTN

T (A) =

I i
B = | vm¥ +0iw? —m?
m—)’f -

Examphe 3.3, Helmhnltz equation [5]: £ £ 0.0 = 0.

2 2
am(A) = e =

1 2

3 2
prorvy s U < m*,

Example 3.4. In the general case of singular values (3.12) when o — 0 we arrive
#t Exampie 3.3,

The singular values depend on the number k. see [5]. In the low frequency
domain m?* < sw® the singular values of A are hounded from below by 1. while
for the high frequency domain the singular values decay exponentially. The most
important fact i that in the low frequency domain the operator A is continuausly
invertible and this domain increases with k.

4 Complex-valued cost functional

Let us deseribe the numerical method for the continuation problem (3.1-3.4) in
the case when the direct problem and adjoint problem have the same form.
We introduce 2 new cost functional

o
Ji{g) = (Ag— )P =f el y) = £()]* dy.
o

Note that the functions u{x, v} and f{y) are complex-valued functions. The func-
tional Jy(g) maps H (D, 7) into the set of complex numbers C. We construct
a sequence {gn jpen such that |Jyige )| — 0 when n — oo

Note that the traditional functional

Hgy=|dq=F13. J: H#{ﬂ._fr}—r K.

is connected o f{g) = |Ji{g).
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If the exact solution of Ag = f exists, then J(g) vanishes J(ge) = 0. If the
solution of Ag = f is unigue, then Jig) does not have more than one zero. It fol-
lovars From the definition that J{g) — 0 when § — g, is equivalent to Fig) — 0
when g = ge.

Therefore we can consider the complex-valued cost functional Jy (g) and mini-
mize it by the following procedure:

i1) Let gg{v) be the initial guess.
(2) Suppose that gy (v} Is known.,
(31 Solve the direct problem
Aty + kity =
tnl0. %) =0, wplh. y)=gnlyh
Hplx, 1) = kalx.m) =0,
(4) Solve the adjoint problem
Ay + ki = 0,
W0, 3) = 2ua 0, ) = Fl¥)]. Yulh, y) =0
Wnlx,0) = Ppix, 7} = 0
i5) Find an approximate solaticn on the next step o 4+ 1:
Gn+1(3) = gulr) — et T (gn (3. (4.1

Here J'{gq) is the complex conjugate of the gradient J'{g, ), oty € C isacom-
plex descent parameter and |ay/| is small enough,

tty = ) - sgn Re J{gn) 4 iz sgnlm Sgn ), “4:2)
where oin) and @ez are positive real numbers and

I, ax>0
sgna =40, a=0,
=1, @<=l

Remark. Using this minimizing procedure, we obrain that |f{gg )| — Oasn —+ o,
Tt follows from (4.1} that
Fa+] —gn = _ﬂnm- (4.3)
From the definition of the Fréchet derivative we have

Jgn1) = Hgnl = -f’{l?n}[lil'n-}-] = gn) + 0llgn+1 — Gnl) (4.4)
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and substituting (4.3) into equation (4.4), we obtain

Jigns1) = Fign) = —ttad'(gn) T (gn) + 0| (gn)])
—atn | (gn)* + 0(] 4" (gn)]).

Therefore, using minimizing procedure (4.1) with choosing the appropriate de-
scent pararneter (4.2), we obtain that J{(gq ) — 0 when n — o0,

5 Numerical experiments

In this section we demonstrate that continuation of the solution up to the depth
x = h helps detect two inclusions located beneath the line x = Ji.

Indeed, let us consider the homogeneous domain (@, iy ) = (0, L) (see Figure 2)
with fixed e = 1 and @ = 0 in the medium. First we solve the direct problem (see
the trace u(0. ¥)) in Figure 2) with the source function

)
1: — —
Il 2
in the domain (0, A1) = (0, L),

Second we solve the continuation problem in (0, &) x (0, £) with Cauchy data

w0, p) = 2y} = 25- ]USH(D.UUZ -

u(0, ¥) = fiy), w0 v) =gy

The result of the continuation is demonstrated in Figure 2.

0 Ly 0 Ly
e I
—] L] B3
jh. .I’JL
x x

Figure 2. Domain with one inclusion in the center (left figure) and two inclusions
{right figure) beneath the boundary x = .

Wi apply the method of steepest descent for minimizing the cost functional and
finite element methad for the direct and the adjoint problem solution. There are
427.336 triangles and 214,767 vertexes in the domain. We fixed h =1, by =3,
i = 6. We consider two cases with one inclusion (see Figure 2 (left)) and with two
inclusions (see Figure 2 {right)) beneath the boundary with & = 40. Initial guess
in all numerical experiments is zero.
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First case: one inclusion in the center which is located inx € [1, 2] and y € [2. 4]
(Figure 2 {left}). Second case: two inclusions which are located in x  [1.5,2.5],
v 4,55 and x € [1.5.2.5], ¥ £ [4, 5.5] (Figure 2 (right)).

. Il ’

\VAV

Figure 3. Omn the left-hand side figure: w(0, v} in 2 mediuvm with cne inclusion. On
the right-hand side figure: a(f, ¥} in a medium with two inclusions,

O the left-hand side of Figure 3 there is measured the function w(0. y) on the
surface x = 0 in a medium with one inclusion in the center beneath the boundary
x = fr. On the right-hand side of Figure 3 there is measured the function u(0, y) on
the surface ¥ = (in a medium with two inclusions beneath the boundary x = h.

On the lefi-hand side of Figure 4 there are the function g{y) = wih, y} (solid
curve) and the reconstructed qm’“}{y] (dashed curve) in a medium with one in-
clusion in the center beneath the boundary x = A,

E

| {
: JI|.' |II
" W
¥ B Illll_ ,-\" -.IIII :
it |'|I Il,"lllr 4 .'I +
. X~ |
X / |
A\ / *
e E) ; ' ¥ ] e

Figure 4. On the lefi-hand side: gy} = wih, v (solid curve) and the reconstrected
g 50 v} (dashed curve) in o medium with one inclusion in the center beneath the
moundary. On the right-hand side: g(v) = wih, ) (selid curve) and the reconstruc-
ted g5 v {dashed curve) in a medium with two inclusions bencath the houndary.
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On the right-hand side of Figure 4 there are the function g{y» = u(h, ¥) (solid
curve) and the reconstructed 25" (v} (dashed curve) in a medium with two in-
clusions beneath the boundary x = A,

We see that the boundary condition g v) depends on the inclusion outside the
domain and the continuation procedure makes more clear if there are inclusions
heneath the boundary.
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