

Riyaziyyat və informatikanın aktual problemləri Heydər Əliyevin anadan olmasının 90 illik yubileyinə həsr olunmuş Beynəlxalq konfransın

TEZİSLƏRİ

On actual problems of mathematics and informatics

ABSTRACTS

of the International conference dedicated to the 90-th anniversary of Haydar Aliyev

Актуальные проблемы математики и информатики

ТЕЗИСЫ

Международной конференции, посвященной 90-летию со дня рождения Гейдара Алиева

Azərbaycan Riyaziyyat Cəmiyyəti

AMEA Riyaziyyat və Mexanika İnstitutu

Rusiya Elmlər Akademiyasının Kabardin-Balkar Filialı

May 29-31 2013, Baku, Azerbaijan

CONTENTS

MATHEMATICS

Abedi E., Ilmakchi M. SUBMERSION AND IMMERSION SUBMANIFOLDS OF A QP^n 1
Abedi E., Ilmakchi M. WEAKLY CONSTANT HOLOMORPHIC SECTIONAL CURVATURE
HOPF HYPERSURFACES IN SASAKIAN SPACE FORM1
Aghazadeh N. SOLVING VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS BY USING AN
EXPANSION METHOD
Ahmedov T.M., Sadigova S.R. ON EXPONENTIAL BASES IN $L_{p,\mu}(R)$ 4
Aisagaliev S.A., Shangitova M.E. ABSOLUTE STABILITY OF ADJUSTABLE SYSTEMS WITH
LIMITED RESOURCES IN A SIMPLE CRITICAL CASE5
$\textbf{Akbulut A.} \ \textbf{ON THE BOUNDEDNESS OF PARAMETRIC MARCINKIEWICZ OPERATORS IN}$
GENERALIZED MORREY SPACES
Akhundov A.Ya., Gasanova A.I. ON AN INVERSE PROBLEM FOR A SEMILINEAR PARABOLIC EQUATION
Aliev A.R., Eyvazov E.H. ESSENTIAL SELF-ADJOINTNESS OF THE ELECTROMAGNETIC
SCHRÖODINGER OPERATOR IN DIVERGENCE FORM8
Aliev A.R., Gasymova S.G., Ahmadzadeh N.D. ON APPROXIMATE CONSTRUCTION OF THE
JOST FUNCTION FOR STURM-LIOUVILLE BOUNDARY VALUE PROBLEM9
Aliev N.A., Asadova O.H. MIXED PROBLEMS FOR SYSTEMS OF FIRST ORDER PDE9
Aliev N.A., Mustafayeva Y.Y. NUMERICAL SOLUTION OF A BOUNDARY-VALUE
PROBLEM FOR A HYPERBOLIC EQUATION IN A DOMAIN OF COMPLEX PLAIN11
Aliyev S., Agayev E. ONE APPLICATION OF DIRAC FUNCTION TO THEORY OF
DIFFERENTIAL FUNCTIONS
Almali S. E. APPROXIMATION OF FUNCTIONS OF SEVERAL VARIABLES BY SINGULAR
INTEGRALS 14
Amangaliyeva M.M., Jenaliyev M.T., Kosmakova M.T., Ramazanov M.I. ON UNIQUENESS
CLASSES IN HEAT CONDUCTION PROBLEMS IN NON CYLINDRICAL DOMAINS15
Arshava E.A. APPLICATION OF A METHOD OF OPERATIONAL IDENTITIES FOR THE
SOLVING OF THE INTEGRO-DIFFERENTIAL EQUATION
Atakishiyev N.M., Jafarov E.I., Jafarova A.M., Van der Jeugt J. ON A PAIR OF DIFFERENCE
EQUATIONS FOR THE WILSON POLYNOMIALS
EQUATION
Badalova K.G. THE THIRD REQULARIZED TRACE FORMULA FOR SECOND ORDER
DIFFERENTIAL EQUATIONS WITH SELF-ADJOINT NUCLEAR CLASS OPERATOR
COEFFICIENTS 20
Balakishiyev A., Guliyev V.S. ON THE BOUNDEDNESS OF PARABOLIC FRACTIONAL
INTEGRAL OPERATORS WITH ROUGH KERNEL IN PARABOLIC GENERALIZED MORREY
SPACES 21
Bandaliev R.A. ON COMPACTNESS CRITERION FOR MULTIDIMENSIONAL HARDY TYPE
OPERATOR IN WEIGHTED P –CONVEX BANACH FUNCTION SPACES
Beshimov R.B., Mukhamadiev F.G. SOME CARDINAL PROPERTIES OF ABSOLUTE
REGULAR SPACES 23
Bilalov B.T., Sadigova S.R. FRAME PROPERTIES OF DEGENERATE SYSTEM OF
EXPONENTS IN HARDY CLASSES
Bilalov B.T., Safarova A.R. FRAMES FROM COSINES WITH DEGENERATE
COEFFICIENTS
Bogatyreva F.T. BOUNDARY VALUE PROBLEM WITH SHIFT FOR ORDINARY
DIFFERENTIAL EQUATION OF FRACTIONAL ORDER
Damirova H. E., Mehtiyeva N.I., Huseynova G. R. SOME THEOREMS FOR THE TYPE OF
ENTIRE FUNCTIONS
Dalauv D. DUSHELL-UKKASHISKIS LIFE INEUUALILI FUK PESUDU-
INTEGRALS

ABSOLUTE STABILITY OF ADJUSTABLE SYSTEMS WITH LIMITED RESOURCES IN A SIMPLE CRITICAL CASE

Aisagaliev S.A.¹, Shangitova M.E.²

¹Institute of Mathematics and Mechanics of Al-Farabi Kazakh National University

 $serikbai.\,ais agaliev@kaznu.\,kz$

 2 Master student of Al-Farabi Kazakh National University, Kazakhstan malikashan qitova@mail.ru

A new effective algebraic criterion of absolute stability of the equilibrium position of nonlinear adjustable systems in a simple critical case is developed on the basis of the evaluation of improper integrals along the solution of the system.

Statement of problem: The equation of the motion of a nonlinear system of automatic control in a simple critical case has the form:

$$\dot{x} = Ax + B\varphi(\sigma), \ \dot{\eta} = \varphi(\sigma), \ \sigma = Dx + E\eta, x(0) = x_0, \ \eta(0) = \eta_0, \ t \in I = [0, \infty),$$
(1)

where A, B, D, E- permanent matrix, the order of the matrix is $n \times n, n \times 1, 1 \times n, 1 \times 1$ appropriately, matrix A- Hurwitz matrix, that is to say $Re\lambda_j(A) < 0, j = \overline{1, n}, \lambda_j(A)$ - eigenvalues of the matrix A.

$$\varphi(\sigma) \in \Phi_0 = \{ \varphi(\sigma) \in C(R^1, R^1) \mid \varphi(\sigma) = \varepsilon \sigma + \bar{\varphi}(\sigma), \ 0 \le \bar{\varphi}(\sigma) \sigma \le \mu_0 \sigma^2,$$
$$\bar{\varphi}(0) = 0, \ |\bar{\varphi}(\sigma)| \le \bar{\varphi}_*, \ 0 < \bar{\varphi}_* < \infty, \ \forall \sigma, \ \sigma \in R^1 \},$$
(2)

where $\varepsilon > 0$ - an arbitrarily small number.

Equilibrium of the system (1), (2) is determined by solving algebraic equations

$$Ax_* + B\varphi(\sigma_*) = 0, \ \varphi(\sigma_*) = 0, \ \sigma_* = Dx_* + E\eta_*.$$

As A - Hurwitz matrix, $\varphi(\sigma_*) = 0$ when $\sigma_* = 0$, so system (1), (2) has unique equilibrium state $(x_* = 0, \eta_* = 0)$ for $E \neq 0$.

The equilibrium state $(x_* = 0, \eta_* = 0)$ of the system (1), (2) is called absolutely stable if the matrix $A, A_1(\mu) = \begin{pmatrix} A + B\mu D & B\mu E \\ \mu D & \mu E \end{pmatrix}, 0 < \varepsilon \leq \mu < \bar{\mu}_0$, $\mu_0 \leq \bar{\mu}_0$. Hurwitz matrix, and for all $\varphi(\sigma) \in \Phi_0$ solution off differential equation (1) has property $\lim_{t\to\infty} x(t;0,x_0,\eta_0,\varphi) = x_* = 0$, $\lim_{t\to\infty} \eta(t;0,x_0,\eta_0,\varphi) = \eta_* = 0$ for any $x_0,\eta_0,|x_0| < \infty$, $|\eta_0| < \infty$.

Criterion of absolute stability for the system (1), (2) is called the algebraic relations, linking matrix (A, B, D, E, μ_0) under which the equilibrium state $(x_* = 0, \eta_* = 0)$ is absolutely stable.

References

- [1] Gelig A.Kh., Leonov G.A., Yakubovich V.A. Stability of Nonlinear Systems with Non-unique Equilibrium State. Nauka, Moskva, 1978, p. 400.
- [2] Aizerman M.A., Gantmacher F.R. Absolute Stability of Regulator Systems. USSR Academy of Sciences, 1963.

- [3] Aisagaliev S.A. The theory of absolute stability of control systems. Differential Equations, Minsk-Moscow. 1994. v.30, No 5. pp.748-757.
- [4] Aisagaliev S.A. The theory of control systems. Almaty, Kazakh university, 2000, p. 234.

ON THE BOUNDEDNESS OF PARAMETRIC MARCINKIEWICZ OPERATORS IN GENERALIZED MORREY SPACES

Akbulut A.

Ahi Evran University, Department of Mathematics, Kirsehir, Turkey

We study the boundedness of the parametric Marcinkiewicz operators μ_{Ω}^{ρ} on generalized Morrey spaces $M_{p,\varphi}$. We find the sufficient conditions on the pair (φ_1, φ_2) which ensures the boundedness of the operators μ_{Ω}^{ρ} from one generalized Morrey space M_{p,φ_1} to another M_{p,φ_2} , $1 and from the space <math>M_{1,\varphi_1}$ to the weak space WM_{1,φ_2} .

In 1960, Hörmander considered the L_p boundedness for a class of parametric Marcinkiewicz integral $\mu_{\Omega} f(x)$, which is defined by

$$\mu_{\Omega}^{\rho}(f)(x) = \left(\int_0^{\infty} \left| \frac{1}{t^{\rho}} \int_{|x-y| \le t} \frac{\Omega(x-y)}{|x-y|^{n-\rho}} f(y) dy \right|^2 \frac{dt}{t} \right)^{1/2},$$

where $0 < \rho < n$. It is easy to see that when $\rho = 1$, μ_{Ω}^{ρ} is just μ_{Ω} introduced by Stein in 1958.

Let $1 \leq p < \infty$ and B(x,r) denotes the open ball centered at x with radius r. We denote by $M_{p,\varphi}(\mathbb{R}^n)$ the generalized Morrey space, the space of all functions $f \in L_p^{\mathrm{loc}}(\mathbb{R}^n)$ with finite quasinorm $\|f\|_{M_{p,\varphi,P}} =$

 $\sup_{x\in\mathbb{R}^n,r>0}\varphi(x,r)^{-1}\,r^{-\frac{n}{p}}\,\|f\|_{L_p(B(x,r))}.$ Also by $WM_{p,\varphi}(\mathbb{R}^n)$ we denote the weak

generalized Morrey space of all functions $f \in WL_p^{\mathrm{loc}}(\mathbb{R}^n)$ for which $||f||_{WM_{p,\varphi}} =$

 $\sup_{x \in \mathbb{R}^n, r > 0} \varphi(x, r)^{-1} r^{-\frac{n}{p}} \|f\|_{WL_p(B(x, r))} < \infty. \text{ Here } \varphi(x, r) \text{ be a positive measurable function on } \mathbb{R}^n \times (0, \infty).$

We proved the following theorem is valid.

Theorem. Let $0 < \rho < n$, $1 \le p < \infty$ and (φ_1, φ_2) satisfies the condition

$$\int_{r}^{\infty} \frac{\varphi_1(x,t)}{t} dt \le C \, \varphi_2(x,r),$$

where C does not depend on x and r. Let also Ω is a homogeneous function of degree zero on \mathbb{R}^n , has mean zero on S^{n-1} , and $\Omega \in \operatorname{Lip}_{\alpha}(S^{n-1})$, $0 < \alpha \leq 1$. Then the operator μ_{Ω}^{ρ} is bounded from M_{p,φ_1} to M_{p,φ_2} for p > 1 and from M_{1,φ_1} to WM_{1,φ_2} .

Note that, the boundedness of the Marcinkiewicz operator μ_{Ω} on generalized Morrey spaces $M_{p,\varphi}$ was study in [1].

Acknowledgement

This research was supported by the grant of Ahi Evran University Scientific Research Projects (PYO.FEN.4010.13.002).