

PROGRAMME AND BOOK OF ABSTRACTS

45 - The capture cross sections at the electron collisions with hydrogen atom and proton in the dense semiclassical plasma

Poster Session - Monday 11 July 2016 16:51 Primary author: SEISEMBAYEVA, Madina (IETP, al Farabi KazNU) Co-authors: DZHUMAGULOVA, Karlygash (IETP, al Farabi Kazakh National University); RAMAZANOV, Tlekkabul (IETP, al Farabi KazNU)

Investigation of the interaction between particles and plasma properties is of great interest in many areas of physics such as atomic and plasma physics. It is important for the development of the plasma technologies. One of the elementary processes in plasma is the electron capture process. In this work the electron capture processes by the hydrogen atom and proton were investigated. The motion of the electron in the field of the the motionless atom or proton was considered on the basis of the perturbation theory and the solving of the equation of motion. The interaction potentials between the electron and the hydrogen atom and also proton were These effective potentials, taking into account the presented in works [1,2]. quantum-mechanical effects of diffraction of particles and plasma screening effects, have finite values at the distances close to zero. In this work the electron capture radius, which was determined by equating the kinetic energy of impacting electron and the interaction energy between the electron and the hydrogen atom or proton, was presented. The trajectories of the electron in the field of the atom and proton were simulated. Obtained results of the electron capture by the atom and proton were compared. Using the electron capture probability, the electron capture cross section was calculated. References[1] T.S. Ramazanov, K.N. Dzhumagulova, Effective screened potentials of strongly coupled semiclassical plasma, Phys.Plasm. 9 (2002) 3758-3761[2] T.S. Ramazanov, K.N. Dzhumagulova, Y.A. Omarbakiyeva, Effective polarization interaction potential "charge-atom" for partially ionized dense plasma, Phys. Plasm. 12 (2005) 092702

46 - Multiscale simulations of structure and thermomechanical properties of phthalonitrile heat-resistance resins

Poster Session - Monday 11 July 2016 17:12

Primary author: RUDYAK, Vladimir (Lomonosov Moscow State University, Faculty of Physics) Co-authors: GUSEVA, Daria (Lomonosov Moscow State University, Faculty of Physics); KOMAROV, Pavel (Institute of Organoelement Compounds, Russian Academy of Science; Tver State University, Department of Theoretical Physics); CHERTOVICH, Alexander (Lomonosov Moscow State University, Faculty of Physics)

Phtalonitrile-based matrixes are thermostable resins used for durable reinforcement materials. The resins are typically produced by two-stage curing of phthalonitrile monomers in presence of initiator. During the first low temperature stage (~200°C), nitrile groups transform into inter-monomer bonds between isoindoline groups, which is the typical polymerization path. The second curing stage is aimed to reach higher conversion rate and produced at elevated temperatures (300 - 350°C), at which triazine can be formed by three monomers. Effectively, triazine is a triple link between monomers, making the topology of the polymer network even more complex. The effect of triazine crosslinks in the structure and physical properties of the material is important but unclear up to now.We have developed a multiscale simulations scheme of phthalonitrile thermosetting resins. The scheme contains a set of consecutive phases from dissipative particle dynamics (DPD) level to molecular dynamics. On the first step, we simulate two-stage curing process with DPD technique. The length of low-temperature and high-temperature stages is controlled by the aim conversion rates known from experimental study. On the next step, a reverse mapping procedure is used to convert coarse-grained structures onto atomistic ones. The obtained atomistic structures are then refined by a Monte Carlo procedure with soft repulsive potentials to avoid insufficient structural motifs such as the short cycle spearing. Then we run short relaxation within molecular dynamics (MD). The prepared material samples are used for the following MD simulations to estimate thermophysical and mechanical properties of the material. In this report, we present and discuss thermophysical and mechanical properties for the phthalonitrile matrixes obtained with using different comonomers and polymerization protocols.

- 57 -

Dr. ABEBE, Amare	026
Mr. ABEDIGAMBA, Patrick Oyirwoth	020
Dr. ADLER, Joan	041
Mr. ALEMAYEHU, Cherkos	P1
Mr. ALYABEV, Danila	P7
Mr. AMBLER, Michael	079
Prof. AN, Xizhong	022
ANDREW, Myers	0107
Dr. ANDREW, Richard	040
Mr. ANEJA, Sahil	06
Dr. ATAMAS, Nataliia	P19
Prof. BANERJEE, Varsha	O59
Mr. BELHADJ, Abd-Elmouneïm	P23
Dr. BENECHA, Evans	0106
Prof. BHATTACHARYA, Rupayan	071
Mr. BUYADZHI, Vasily	P111
Mr. BUYADZHI, Vasily	P110
Mr. BUYADZHI, Vasily	P112
Dr. CHIKATAMARLA, Shyam	D69
Mr. CHIRWA, Robert	094
Prof. CHOUDHARY, Kamal Kumar	0105
Dr. COOPER, Valentino	047
Prof. CVITANOVIC, Predrag	0108
Dr. DAS, Tanmoy	O38
Dr. DECYK, Viktor	04
Dr. DERAFA, Achour	074
Dr. DESPOTULI, Alexandr	P83
Prof. DI MATTEO, Tiziana	0126
Dr. DIETEL, Thomas	0125
Mr. DIMA, Ratshilumela Steve	P84
Dr. DONGHO NGUIMDO, G.M.	086
Mr. DORSCHNER, Benedikt	068
Mr. DRAGOWSKI, Michal	064
Prof. DZHUMAGULOVA, Karlygash	P44, P45
Dr. EINKEMMER, Lukas	021
Ms. ELMARDI, Maye	030
Mr. ENSTONE, Gwilym	095
Prof. FENG, Shiping	016
Prof. FURUKAWA, Nobuo	P119
Mr. GELETO, Seid Mohammed	052
GIACHETTI, Riccardo	090
Prof. GLUSHKOV, Alexander	P113, P114, P115
Dr. GOVENDER, Nicolin	097
Mr. HERZING, Christian	P103
Mrs. JAIN, Poonam	P87
Mr. JULE, LETA	P55
Mr. KABEYA, Francois	09
Dr. KARGARIAN, Ameneh	O48
Prof. KATZGRABER, Helmut G.	027
Dr. KAURAV, Netram	P99, P100

Dr. KILIAN, Patrick	035
Dr. KIRAN, Zubia	02
Prof. KLEIN, Barry	013
Ms. KODANOVA, Sandugash	P61
Dr. KUMAR, Yogesh	058
Dr. LAJKO, Peter	P63
Prof. LANDAU, David	012
Dr. LETSOALO, Thabo	0101
Mr. MAHLANGU, Daniel	034
Dr. MALIPATIL, Anil Shantappa	D118
Dr. MALUTA, Nnditshedzeni Eric	0128
Dr. MAPASHA, Edwin	P81
Mr. MBULI, Lifa Nicholas	043
Dr. MEDEIROS, Paulo V C	096
Prof. MOHAMED SALEH, Ashraf Elsayed	P10, O11
Dr. MOHAMED SALEH, Asinal Lisayed	053
Dr. MOHARANA, Reetanjali	032
Mr. MOHLOLO, Timothy	078
	D66
Mr. MOLDABEKOV, Zhandos	P104
Dr. MOLEPO, Mahlaga	
Dr. MONCEAU, Pascal	025
Mr. MOSCHUERING, Nils	092
Dr. MOSUANG, Thuto	098
Mr. NAJAFI, Amin	P60
Prof. NARASIMHAN, Shobhana	0129
Mr. NEMUDZIVHADI, Hulisani	088
Mr. NGCEZU, Sonwabile	093
Prof. NGOEPE, Phuti	0124
OCAYA, Richard	05, 024
Dr. ORJUBIN, Gérard	070
Mr. PARADZAH, Alexander	P37
Prof. PARK, Hyunggyu	08
Ms. PATEL, Meena	073
PEREPELKINA, Anastasia	P80
Prof. POTAPOV, Alexander	P91
Prof. POTGIETER, Marius	050
Ms. PRUGGER, Martina	062
Prof. PURI, Sanjay	039
Prof. RAMAZANOV, Tlekkabul	065
Mr. RAMKILOWAN, Ari	051
Mr. RAMNATH, Vishal	P3, P28
Prof. RAMPHO, Gaotsiwe Joel	0116, 0117
Dr. ROSA, Reinaldo	014
Dr. RUDYAK, Vladimir	P46
Prof. RYBAKIN, Boris	036
Mr. SACKS, Marc	P67
Dr. SALAGARAM, Trisha	042
Prof. SANTRA, Sitangshu Bikas	0102
Prof. SASTRY, Srikanth	057
Prof. SATO, Mitsuhisa	0130