ХШ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК» 310

СПЕКТРЫ ЛЮМИНЕСЦЕНЦИИ ЛЮМИНОФОРОВ ДЛЯ БЕЛЫХ СВЕТОДИОДОВ

<u>Цзюй Янян</u>, А.Т.Тулегенова, А.А.Мархабаева Научный руководитель: профессор, д.ф.-м.н. В.М. Лисицын Национальный исследовательский Томский политехнический университет, Россия, г.Томск, пр. Ленина, 30, 634050 E-mail: <u>1374586947@qq.com</u>

THE PHOTOLUMINESCENCE SPECTRA OF PHOSPHORS FOR WHITE LED

Ju Yangyang, A.T. Tulegenova, A.A. Marhabaeva, Scientific Supervisor: Prof., Dr. V.M. Lisitsyn Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail:1374586947@qq.com

Abstract.Silicate-based converter phosphors have become a research focus for white-light-emitting diode (LED), due to their rich source of raw materials, convenient preparation techniques and high stability of the crystal structure. This paper reports on the results of studying with a group of similar phosphors in composition, explained that the emission spectra is depending on the type of light emission.

В светодиодах для видимой области спектра («белых» СД) синефиолетовое или УФ излучение преобразуется в видимое люминофором. Эффективность и качественные характеристики преобразования в основном определяют световую отдачу и цветовые координаты СД. Поэтому большое внимание уделяется разработке новых и повышению излучательных характеристик существующих люминофоров. К настоящему времени разработано множество различных люминофоров, обеспечивающих световую отдачу светодиодов до 160 лм/Вт и излучение с различными координатами цвета [1]. Однако процессы возбуждения и люминесценции и природа центров свечения изучены недостаточно, что сдерживает совершенствование люминофоров.

В настоящей работе приведены результаты исследования группы близких по составу люминофоров с целью выявления зависимости спектральных характеристик излучения от вида оптического возбуждения.

Элементный состав выбранных люминофоров был определен с использованием сканирующего электронного микроскопа Quanta3D 200i с системой энергодисперсионного рентгеновского анализа (EDAX). Диапазон определяемых элементов - В÷U. Результаты определения состава приведены в таблице 1. Все люминофоры представляют собою порошки из микрокристаллов или микроплавней с размерами менее 30 мкм, что показано прямыми микроскопическими измерениями с помощью оптического микроскопа «Leica DM 6000 М».

Таблица 1

наименование	Y	Al	Ga	0	Gd	Ba	Ce
СДЛ5000	17,36	24	9,14	48,75			
СДЛ4100	13,74	31		54,73			
СДЛ 3000	15,91	21	11,78	51,04			
СДЛ3300	8,87	27		53,31	10,2		

Элементный состав выбранных люминофоров

ХІІІ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

СДЛ3400	9,10	27	57,57	5,06		0,56
СДЛ4000	13,74	26	59,66			
MG633 1W s800	12,98	27	56,69		0,67	1,90
AWS 5 90818-1	12,32	25	61,09			

Результаты измерений спектров возбуждения исследованных люминофоров представлены на рис. 1.В спектрах возбуждения наблюдаются две полосы. Основная полоса возбуждения находится в области 455-470 нм. Эффективность возбуждения в этой полосе в разных люминофорах различна. В спектре возбуждения люминесценции есть полоса на 340 нм.Эффективность возбуждения в полосе на 340 нм в разных люминофорах мало различается. Полуширины полос возбуждения излучением в области λ =340 нм имеют величину около 0,29 эВ, в области λ =460 нм, в разных люминофорах в пределах 0,39 – 0,47 эВ.

Рис.1. Интегральные спектры люминесценции при возбуждении излучением с λ₆₀₃₆460 нм(чип) и 340нм(ксеноновая лампа)

Рис.2. Спектров люминесценции при возбуждении излучением с д_{возб} 460 И 340 нм люминофоров СДЛ4100 и gd-257w

Были измерены интегральные спектры люминесценции люминофоров при возбуждении излучением чипа с λ_{возб} =460 и ксеноновой лампы с λ_{возб} =340 нм. Регистрация интегральных спектров свечения ИКЛ осуществлялась оптоволоконным спектрометром AvaSpec-2048 в спектральном диапазоне 200 – 1100 нм. Время интегрирования составляло 100 мс. Примеры спектров люминесценции люминофоров приведены на рис.2.

Возбуждение в области 340 нм приводит к люминесценции в основной полосе во всех исследованных люминофорах. В измеренном в видимом диапазоне спектра излучении при возбуждении в области 460 нм проявляется часть отраженного от люминофора возбуждающего излучения. Результаты измерений спектров люминесценции исследованных люминофоров при возбуждении излучением чипа с $\lambda_{воз6}$ =460 и ксеноновой лампы с $\lambda_{воз6}$ =340 нм приведены в табл.2.

Таблица 2

Таблица 2. Результаты измерений спектров люминесценции исследованных люминофоров при возбуждении излучением с $\lambda_{возб}$ 460 нм (ЧИП) И 340 нм (ксеноновая лампа)

Наименование	Возбужление 460 нм		Возбуждение 340 нм		
люминофоров	$\lambda_{m({\rm HM})}$	ΔΕ,∍Β	$\lambda_{m({\rm HM})}$	ΔЕ,эВ	
AWS 5 90818-1.	539	0,466	536	0,441	
gd-257 2w.	550	0,454	550	0,444	
1-2082-1+aws5-90821-3	542	0.463	543	0.443	
L-2083-2+L-2085-1	551	0,450	553	0,449	
1-2086 2w s1000	548	0,460	554	0,451	

Россия, Томск, 26-29 апреля 2016 г.

ХІІІ МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ СТУДЕНТОВ, АСПИРАНТОВ И МОЛОДЫХ УЧЕНЫХ «ПЕРСПЕКТИВЫ РАЗВИТИЯ ФУНДАМЕНТАЛЬНЫХ НАУК»

mg-397 2w s800	545	0,438	548	0,435
mg531w s 800	533	0,444	535	0,429
mg-558-2w s800	535	0,439	540	0,430
mg-571-1w s 800	535	0.447	543	0.438
mg-633 1w s800	532	0,447	543	0,450
сд-3300	558	0,454	553.3	0,415
сдл3000	560	0,439	564	0,446
сдл3400	551	0,456	551	0,452
слл4000	537	0.456	533	0.435
сдл4100	531	0,485	537	0,435
сдл5000	510	0.456	514	0.440

Возбуждение с λ =340 и 460 нм приводит к появлению одинаковых полос люминесценции, характерных для данного люминофора. Полуширины полос возбуждения излучением в области λ =340 нм имеют величину около 0,434 эВ, в области λ =460 нм в разных люминофорах в пределах 0,438 – 0,485 эВ. Анализ представленных результатов позволяет сделать следующие выводы. Спектры возбуждения всех исследованных люминофоров имеют две полосы в области 340 и 460 нм. Положение длинноволновой полосы слабо, но зависит от состава люминофора. Возможной причиной наблюдаемых эффектов представляется следующее. Все люминофоры представляют собою кристаллы, содержащие большие концентрации дефектов: активаторов и собственных. В таких кристаллах возможно формирование нанодефектов, представляющих собою комплексы, включающие активаторы и собственные дефекты: вакансии, междоузельные ионы, как и в сцинтилляционных материалах[2]. Нанодефекты являются эффективными центрами захвата энергии возбуждения и передачи этой энергии центрам свечения. Это заключение соответствует результатам исследования люминофоров FL-6040 bFL-5049 [3].

СПИСОК ЛИТЕРАТУРЫ

- 1. Брискина Ч.М., Румянцев С.И., Рыжков М.В., Сощин Н.П., Спасский Д.А.. Поиск оптимальных составов гранатовых люминофоров с Се3+ для белых светодиодов // Светотехника 2012.-№ 5.-С.37-39.
- Lisitsyna L. A., Lisitsyn V. M. Composition nanodefects in doped lithium fluoride crystals // Physics of the Solid State. – 2013 – T. 55 – №. 11. – P. 2297-2303
- 3. V.M.Lisitsyn, S.A. Stepanov, D.T.Valiev, E.A.Vishnyakova, H.A.Abdullin, A.A.Marhabaeva,
- A.T.Tulegenova. Kinetic characteristics of the luminescence decay for industrial yttrium-gadoliniumaluminiumgarnet based phosphors. //Materials Science and Engineering. – 2016.

312