A pplications of Computer Algebra

ACA 2016 Kassel (Germany) August 1st – 4th

Chairs Wolfram Koepf and Werner Seiler (general) Georg Regensburger Winfried Neun Michael Wester (program)

> Advisory Committee: Eugenio Roanes-Lozano Stanly Steinberg Michael Wester

Contact: aca2016@mathematik.uni-kassel.de

Deadline for submissions: March 31st, 2016 submission of session proposals May 29th, 2016 submission of talks

ni-kosel de/ACA2016

Notification of acceptance: July 13th, 2016

	Secular Perturbations in the Two-Planetary Three-Body Problem with the Masses Vary-	
	ing Anisotropically with Different Rates	
	M. Zh. Minglibayev, A. N. Prokopenya, G. M. Mayemerova and Zh. U. Imanova .	46
S 2	Computer Algebra in Education	51
	Developing Competences in Higher Mathematics in a CAS Supported Learning Environ-	51
	ment	
	E. Varbanova and M. Durcheva	52
	Improving mathematical competences by using modern technology	02
	J. Weitendorf	55
	Applications of CAS in the Teaching and Learning of Discrete Mathematics	
	M. Durcheva and E. Varbanova	59
	A Transparent Rule Based CAS to support Formalization of Knowledge	
	R. Oldenburg	61
	The GUI CATO - how natural usage of CAS with CATO modified the mathematical	
	lectures and the interface itself	
	HD. Janetzko	64
	Collaborative Use of KeTCindy and Free CASs for Making Materials	
	S. Takato, A. McAndrew and M. Kaneko	69
	Visualization of simplex method with Mathematica	
	W. Wojas and J. Krupa	74
	Real-time animated dynamic geometry in the classrooms by using fast Gröbner basis	
	computations	
	Z. Kovács	82
	Familiarizing students with definition of Lebesgue integral - examples of calculation di-	
	rectly from its definition using Mathematica	
	W. Wojas and J. Krupa	86
	A framework for an ICT-based study of parametric integrals	
	Th. Dana-Picard and D. Zeitoun	91
S 2	Human-Computer Algebra Interaction	93
00	MATHCHECK2: Combining SAT and CAS	30
	C. Bright, V. Ganesh, A. Heinle, I. Kotsireas, S. Nejati and K. Czarnecki	94
	Conservative conversion between IAT_{EX} and T_{EX}_{MACS}	01
	J. van der Hoeven and F. Poulain	96
	Math Web Search Interfaces and the Generation Gap of Mathematicians	
	A. Kohlhase	114
	Collaborative Computer Algebra Shell	
	M. Minimair	115
S 4	Applied and Computational Algebraic Topology	116
	Computing Betti numbers of Veronese subrings with Pommaret bases	
	M. Fetzer	117
	Some computational elements of fractal topology based on HSF structures	
	C. Alemán, F. Cappelli and P. Real	118
	An implementation of effective homotopy of fibrations	110
	A. Romero, J. Rubio and F. Sergeraert	119
	Motion planning of robot arms with combinatorial restrictions J. González, B. Gutiérrez and S. Yuzvinsky	125
	Computing a new topological feature for grey-level 2D digital images: the topological	125
	hole tree	
	F. Díaz del Río, D. Onchis and P. Real	126
	a . areas and alloy, 27. Criticitio tanta a . allow	120
$\mathbf{S5}$	Difference Computer Algebra and its Applications	127
	Bases for Modules of Difference-Operators by Gröbner Reduction	
	C. Fürst and G. Landsmann	128

Secular Perturbations in the Two-Planetary Three-Body Problem with the Masses Varying Anisotropically with Different Rates

M.Zh. Minglibayev^{1,2}, A.N. Prokopenya³, G.M. Mayemerova¹, Zh.U. Imanova¹

¹ al-Farabi Kazakh National University, Almaty, Kazakhstan, mayemerova@gmail.com

² Fessenkov Astrophysical Institute, Almaty, Kazakhstan, minglibayev@mail.ru

³ Warsaw University of Life Sciences, Warsaw, Poland, alexander_prokopen@sggw.pl

1 Statement of the problem

Let us consider a system of three mutually attracting spherical celestial bodies T_0 , T_1 and T_2 of masses

$$m_0 = m_0(t), \quad m_1 = m_1(t), \quad m_2 = m_2(t)$$
 (1)

varying anisotropically with different rates (law of masses variation is arbitrary) (Refs. [1])

$$\frac{m_0}{m_0} \neq \frac{m_1}{m_1} \neq \frac{m_2}{m_2}$$
. (2)

On the basis of Meshcherskiy equation (Refs. [2]), we can write the equations of motion of three-body problem with variable masses in the presence of reactive forces in the absolute coordinate system in the form

$$m_j \vec{R}_j = grad_{\vec{R}_j} U + m_j \vec{V}_j, \quad U = f\left(\frac{m_0 m_1}{R_{01}^*} + \frac{m_0 m_2}{R_{02}^*} + \frac{m_1 m_2}{R_{12}^*}\right),$$

where \vec{u}_i are the absolute velocities of the separating particles,

$$\vec{V}_j = \vec{u}_j - \vec{R}_j \neq 0, \quad j = 0, 1, 2,$$
 (3)

are the relative velocities of the separating particles, \vec{R}_j are the radius vectors of the center of the spherical bodies, \vec{R}_{ij} are the distances between the centers of the spherical bodies, f is the gravitational constant. Following L.G. Lukyanov (Refs. [3]), we assume that the reactive forces are applied to the center of the respective spherical bodies. Usually in the observational astronomy the laws of the mass change (see Eqs. (1, 2)) and the relative velocities of the separating particles (see Eqs. (3)) can be determined experimentally for specific celestial bodies. Therefore, we assume that the values of $m_i(t)$, \vec{V}_i , j = 0, 1, 2, are known (see Eqs. (1, 3)).

It should be noted that in general case of the three-body problem with variable masses changing anisotropically in the different rates there is no any integral of motion. Therefore, the problem under consideration is investigated by methods of the perturbation theory (Refs. [1], [4, 5, 6]), and with the use of analytical calculations system Mathematica (Refs. [7]).

2 Equations of Motion in Terms of the Delaunay Elements

Using the Jacobi coordinates, we can rewrite the equations of motion in the form

$$\mu_1 \vec{r}_1 = grad_{\vec{r}_1} U + \vec{F}_1, \quad \mu_2 \vec{r}_2 = grad_{\vec{r}_2} U - (2\dot{v}_1 \vec{r}_1 + \ddot{v}_1 \vec{r}_1) + \vec{F}_2.$$

where reduced masses are given by

$$\mu_1 = \frac{m_1 m_0}{m_0 + m_1} \neq const, \quad \mu_2 = \frac{m_2 (m_0 + m_1)}{m_0 + m_1 + m_2} \neq const, \quad \nu_1 = \frac{m_1}{m_0 + m_1} \neq const.$$

The functions

$$\vec{F}_1 = \vec{F}_1(F_{1x}, F_{1y}, F_{1z}) = \vec{F}_1(t) = \frac{m_1}{m_1} \vec{V}_1 - \frac{m_0}{m_0} \vec{V}_0 \neq 0,$$
$$\vec{F}_2 = \vec{F}_2(F_{2x}, F_{2y}, F_{2z}) = \vec{F}_2(t) = \left(\frac{m_2}{m_2} \vec{V}_2 - \frac{m_0}{m_0} \vec{V}_0\right) - \mathbf{v}_1 \left(\frac{m_1}{m_1} \vec{V}_1 - \frac{m_0}{m_0} \vec{V}_0\right) \neq 0,$$

are considered known and given.

To apply the perturbation theory it is convenient to rewrite the equations of motion in terms of the analogues of the second system of the Poincare elements. The first step in such transformation is to write the equations of motion in terms of the osculating elements of the aperiodic motion on the quasi-conic section using the Delaunay coordinates (see Refs. [4]). Then investigation of the secular perturbations of the Delanay elements is reduced to solving the following system of non-autonomous differential equations

$$\begin{aligned} \xi_i &= \frac{\partial R_{isec}^*}{\partial \eta_i}, \qquad p_i = \frac{\partial R_{isec}^*}{\partial q_i}, \\ \dot{\eta}_i &= -\frac{\partial R_{isec}^*}{\partial \xi_i}, \qquad q_i = -\frac{\partial R_{isec}^*}{\partial p_i}. \end{aligned}$$
(4)

where R_{isec}^* are perturbation functions (Refs. [4, 5, 6]), ξ_i , η_i , p_i , q_i are analogues of the second system of the Poincaré elements (Refs. [1]). In the present paper we consider the expansion of the perturbing function in terms of small quantities $m_1, m_2, e_1, e_2, i_1, i_2$ up to the second order inclusively (Refs. [4, 5, 6]). Then the secular expressions for R^*_{1SeC} , R^*_{2SeC} in the analogues of the second system of the Poincaré elements take the form (Refs. [5, 6])

$$R_{1sec}^{*} = \frac{1}{\gamma_{1}^{2}} \cdot \frac{\tilde{\beta}_{1}^{4}}{2\mu_{10}\Lambda_{1}^{2}} + F_{01} + F_{12sec1} + F_{\rho 1sec} + \Phi_{1sec},$$

$$R_{2sec}^{*} = \frac{1}{\gamma_{2}^{2}} \cdot \frac{\tilde{\beta}_{2}^{4}}{2\mu_{20}\Lambda_{2}^{2}} + F_{02} + F_{12sec2} + F_{\rho 2sec} + V_{sec} + \Phi_{2sec},$$
(5)

$$\begin{split} F_{01} &= -\frac{b_1 \gamma_1^2 a_1^2}{2\psi_1} - f \frac{m_1 m_2}{\gamma_2 \psi_1 a_2}, \quad F_{12sec1} = \frac{f}{\psi_1} \left[\frac{m_1 m_2}{r_{12}} \right]_{sec}, \quad F_{\rho \, 1sec} = -\frac{3b_1 \gamma_1^2 a_1^2}{4\Lambda_1 \psi_1} (\xi_1^2 + \eta_1^2), \\ F_{02} &= -\frac{b_2 \gamma_2^2 a_2^2}{2\psi_2} - f \frac{m_1 m_2}{\gamma_2 \psi_2 a_2}, \quad F_{12sec2} = \frac{f}{\psi_2} \left[\frac{m_1 m_2}{r_{12}} \right]_{sec}, \quad F_{\rho \, 2sec} = -\frac{3b_2 \gamma_2^2 a_2^2}{4\Lambda_2 \psi_2} (\xi_2^2 + \eta_2^2), \\ V_{sec} &= -\frac{9a_1 a_2 \mu_2 \gamma_2 (2\dot{\gamma}_1 \dot{\nu}_1 + \gamma_1 \ddot{\nu}_1)}{14\sqrt{\Lambda_1}\sqrt{\Lambda_2}\psi_2} (\xi_1 \xi_2 + \eta_1 \eta_2), \\ \Phi_{1sec} &= \frac{3a_1 \gamma_1(t)}{2\psi_1 \sqrt{\Lambda_1}} \left\{ -F_{1x}(t)\xi_1 + F_{1y}(t)\eta_1 + \frac{F_{1z}(t)}{\sqrt{\Lambda_1}} \left[(-\xi_1 q_1 + \eta_1 p_1) \right] \right\}, \\ \Phi_{2sec} &= \frac{3a_2 \gamma_2(t)}{2\psi_2 \sqrt{\Lambda_2}} \left\{ -F_{2x}(t)\xi_2 + F_{2y}(t)\eta_2 + \frac{F_{2z}(t)}{\sqrt{\Lambda_2}} \left[(-\xi_2 q_2 + \eta_2 p_2) \right] \right\}. \end{split}$$

Analysis of the expressions obtained (see Eqs. (4, 5)) shows that the equations of the secular perturbations in the presence of reactive forces (in the case when masses changing anisotropically) are not splitted into two systems with respect to the elements ξ_i , η_i and p_i , q_i .

The main purpose of this paper is to identify the explicit form of the equations (see Eqs. (4)) and to find their approximate analytical solutions using by Picard method. On the basis of these solutions we can obtain an explicit form of the equations of the analogues of the orbital elements.

3 Approximate Analytical Solutions

Using expressions (5), we can write the equations of motion in explicit form (see Eqs. (4))

$$\dot{\xi}_1 = K_5 + K_6 p_1 + 2K_1 \eta_1 + K_3 \eta_2, \quad \dot{\eta}_1 = K_4 - K_6 q_1 + 2K_1 \xi_1 + K_3 \xi_2, \\
\dot{\xi}_2 = K_5' + K_6' p_2 + 2K_2' \eta_2 + K_3' \eta_1, \quad \dot{\eta}_2 = K_4' - K_6' q_2 + 2K_2' \xi_2 + K_3' \xi_1,$$
(6)

$$\dot{p}_1 = -K_6 \xi_1 + 2\psi_1^*(t) \left(\frac{q_1}{\Lambda_1} - \frac{q_2}{\sqrt{\Lambda_1 \Lambda_2}} \right), \quad \dot{q}_1 = K_6 \eta_1 + 2\psi_1^*(t) \left(\frac{p_1}{\Lambda_1} - \frac{p_2}{\sqrt{\Lambda_1 \Lambda_2}} \right),$$

$$\dot{p}_2 = -K_6' \xi_2 + 2\psi_2^*(t) \left(\frac{q_2}{\Lambda_2} - \frac{q_1}{\sqrt{\Lambda_1 \Lambda_2}} \right), \quad \dot{q}_2 = K_6' \eta_2 + 2\psi_2^*(t) \left(\frac{p_2}{\Lambda_2} - \frac{p_1}{\sqrt{\Lambda_1 \Lambda_2}} \right).$$

$$(7)$$

In this formulation due to the anisotropical change of the masses and therefore adding of the reactive force new terms appear which have the form

$$\begin{split} & K_4 = -\frac{3a_1F_{1x}(t)\gamma_1(t)}{2\psi_1\sqrt{\Lambda_1}}, \quad K_5 = \frac{3a_1F_{1y}(t)\gamma_1(t)}{2\psi_1\sqrt{\Lambda_1}} \quad K_6 = \frac{3a_1F_{1z}(t)\gamma_1(t)}{2\psi_1\Lambda_1}, \\ & K_4' = -\frac{3a_2F_{2x}(t)\gamma_2(t)}{2\psi_2\sqrt{\Lambda_2}}, \quad K_5' = \frac{3a_2F_{2y}(t)\gamma_2(t)}{2\psi_2\sqrt{\Lambda_2}} \quad K_6' = \frac{3a_2F_{2z}(t)\gamma_2(t)}{2\psi_2\Lambda_2}, \end{split}$$

and the values K1, K2, K3, K1, K2, K3 were obtained in (Refs. [6]).

Using the method of Picard we can write the solutions of the equations (see Eqs. (6,7)) as follows

$$\exists_{k}(t) = \exists_{k}(t_{0}) + \int_{t_{0}}^{t} \Pi_{i}^{**}(t, \exists_{k}(t_{0}))dt, \qquad (8)$$

where $\Pi_i^{**}(t, \ni_k)$ are the right-hand sides of the equations (see Eqs. (6, 7)), \ni_k are the elements ξ_i , η_i , p_i , q_i , and $\ni_{k0} = \ni_k (t_0)$ are their values at the initial time.

The solutions (see Eqs. (8)) allow to analyze the evolution of the analogues of eccentricities e_i , inclinations i_i , argument of pericenters ω_i and motions of the longitude of the ascending nodes Ω_i , the longitude of pericenters π_i given by

$$e_i^2 = \frac{\exists_{\xi_i}^2 + \exists_{\eta_i}^2}{\Lambda_i}, \quad \sin^2 i_i = \frac{\exists_{p_i}^2 + \exists_{q_i}^2}{\Lambda_i},$$
$$\Omega_i = -\operatorname{arct} g \frac{\exists_{q_i}}{\exists_{p_i}}, \quad \pi_i = -\operatorname{arct} g \frac{\exists_{\eta_i}}{\exists_{\xi_i}}, \quad \omega_i = \pi_i - \Omega_i, \quad i = 1, 2.$$

It should be noted that all of the analytical calculations have been done with the use of the system Wolfram Mathematica (Refs. [7]).

4 Conclusion

In the paper a general problem of three mutually attracting spherical celestial bodies with variable masses changing anisotropically in different rates is considered. A system of eight differential equations of the first order describing the secular perturbations of the orbital elements is obtained in terms of the analogues of the second system of the Poincaré elements in the presence of reactive forces. Approximate analytical solutions of these equations are found by the method of Picard. On the basis of these solutions it is possible to analyze the evolution of the analogues of orbital elements of the bodies that will be done if the next paper.

References

- M. Minglibayev, Dinamika gravitiruyushchikh tel s peremennymi massami i razmerami. Postupatel'noye i postupatel'no-wrashchatel'noye dvizheniye, LAP LAMBERT Academic Publishing, 229 p. (2012).
- [2] I.V. Meshcherskiy, Raboty po mekhanike tel peremennoy massy, Moskva-Leningrad, Gostekhizdat, 276 p. (1949).
- [3] L.G. Luk'yanov, Dynamical evolution of stellar orbits in close binary systems with conservative mass transfer, Astronomy reports, 85, 8, pp. 755-768 (2008).
- [4] M.Dzh. Minglibayev, G.M. Mayemerova, Zh.U. Imanova, Uravneniya dvizheniya zadachi trekh tel s peremennymi massami pri nalichii reaktivnykh sil, Vestnik ENU im. L.N. Gumileva, 111, 2, pp. 19-25 (2016).
- [5] A.N. Prokopenya, M.Zh. Minglibayev, G.M. Mayemerova, Symbolic calculations in studying the problem of three bodies with variable masses, Programming and Computer Software, 40, 2, pp. 79-85 (2014).
- [6] M.Zh. Minglibayev, G.M. Mayemerova, Evolution of the orbital-plane orientations in the twoprotoplanet three-body problem with variable masses, Astronomy Reports, 58, 9, pp. 667-677 (2014).
- [7] A.N. Prokopenya, Resheniye fizicheskikh zadach s ispol'zovaniyem sistemy Mathematica, Brest, BSTU Publishing, 260 p. (2005).