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Abstract: The paper describes applying of mobile computational tools to numerical solving of full value industrial 
problems. As an example, we used surfactant/polymer flooding problem with thermal effects. The problem 
solved by using different graphics processing units including the GPUs of mobile devices. Parallel 
implementation of numerical algorithm was launched on the following devices: NVidia GeForce 770, NVidia 
Tesla K20 and mobile GPU NVidia Tegra K1. We developed mobile application implementing the algorithm. 
The application was tested and compared with desktop GPUs of same microarchitecture. Results of the tests 
shows that calculation on the mobile devices gives the same computation efficiency as desktop GPU with 
average characteristics.  

1 INTRODUCTION 

Using mobile devices in computation of physical 
simulations are not yet common. However, the large 
number of hardware demanding applications on 
mobile devices proves that these devices have 
sufficient computing power.  

Implementation of some grid systems’ nodes as 
mobile devices, for example, considered in (Ketan, 
2013; Phan, 2002). A clear example of such system 
developed up to industrial scales is BOINC 
(boinc.berkeley.edu). Nevertheless, such systems do 
not consider heterogeneity of mobile processors. In 
such applications only CPU kernel of the processor is 
used. 

However, GPUs of mobile devices are quite 
suitable for resource intensive computations. They 
are widely used for image recognition problems 
(Singhal, 2010; Wang, 2013). Also, (Cheng, 2011) 
gives an idea of general-purpose computation on 
mobile graphics processors. 

High performance parallel computing using 
CUDA has been attracting many researchers in 
various disciplines, including computational fluid 
dynamics (Tolke,2008; Micikevicius; Thibault, 2009; 
Kelly, 2013). This work presents applying and testing 
mobile GPU for simulation of surfactant/polymer 
flooding (SPF) process, which is taken as an example 
of complex industrial problem. Polymer/surfactant 
flooding is one of the effective chemical enhanced oil 
recovery (EOR) methods. Polymer increases 

viscosity of a water thereby improving the mobility 
ratio and increasing the recovery efficiency. Primary 
benefit of polymer flooding is to improve sweep 
efficiency and acceleration of oil production (Lake, 
1983; Sorbie, 1991). Surfactant flooding method 
involves addition of surface-active agents or 
surfactants to the injected water. Surfactants reduces 
the interfacial tension between oil and water within 
reservoir, reduce the residual oil saturation and 
improve displacement efficiency (Babalyan, 1983). 

For test analysis results of mobile GPU 
computation were compared with two PC NVidia 
GPUs on Kepler microarchitecture. The reason of the 
technology selection is that available at the moment 
computational mobile GPU NVidia Tegra K1 is also 
has this microarchitecture. First GPU used for 
comparison is one of the most forward computational 
processors NVidia Tesla K20 and the second one is 
common GPU NVidia GeForce 770 with average 
features and performance. 

Mobile application implementing described 
simulation is presented at the end of the paper after 
tests and analysis. Further, it may be developed for 
computing any continuous media simulations and 
also using the mobile GPU as nodes of large 
heterogeneous distributed systems. 

This paper is structured as follows. In section 2, 
we consider the mathematical model of SPF problem 
and implementation of numerical solution. In section 
3, we discuss parallel algorithm for solving SPF 
problem using CUDA and calculation time tests on 
different devices.  
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2 MATHEMATICAL MODEL OF 
SPF AND ITS NUMERICAL 
SOLUTION  

The mathematical model of two-phase flow in porous 
media has following assumptions: 

- incompressible flow; 
- gravitational forces and capillary effects is 

neglected;  
- two-phase flow (water, oil) obeys Darcy’s law. 
Mass conservation equations and velocities for 

each phase can be written as follows: ݉డௌೢడ௧ + (࢝࢜)ݒ݅݀ = ଵ  (1)ݍ
 ݉డௌ೚డ௧ + (࢕࢜)ݒ݅݀ = ଶ  (2)ܵ௪ݍ +	ܵ௢ = 1 

࢏࢜  = ଴ܭ− ௙೔(௦)ఓ೔ ∇ܲ,			݅ = ,ݓ (3)  ݋

where ݉ – porosity,	ܵ௪, ܵ௢–water and oil saturations, ݍଵ, ݍଵ  - source or sink, ݒԦ௪,  Ԧ௢ – velocity of the waterݒ
and oil phases, ௜݂(ݏ),  ௜ – relative permeability andߤ
viscosity for phase i, ܭ଴ –permeability tensor. 

Polymer, surfactant, salt and heat transport 
equations are given by (Babalyan, 1983): ݉ డడ௧ ൫ܿ௣ݏ௪൯ + డ௔೛డ௧ + ௣൯ܿ࢝࢜൫ݒ݅݀ ௪∇ܿ௣൯  (4)ݏ௣௪ܦ൫݉ݒ݅݀=

 ݉ డడ௧ (ܿ௦௪ݏ௪ + ܿ௦௢ݏ௢) + డ௔ೞೠೝ೑డ௧ + ௦௪ܿ࢝࢜)ݒ݅݀ (௦௢ܿ࢕࢜+ = ௪∇ܿ௦௪ݏ௦௪ܦ݉)ݒ݅݀ (௢∇ܿ௦௢ݏ௦௢ܦ݉+ (5)

 ݉ డడ௧ (ܿ௦ݏ௪) + (௦ܿ࢝࢜)ݒ݅݀ = 0  (6)
 డడ௧ ሾ(1 − ௥ߩ௥ܥ(݉ + ௪ߩ௪ݏ௪ܥ)݉ + ௢)ܶሿߩ௢ݏ௢ܥ (࢝࢜௪ܥ௪ߩ)ݒ݅݀+ + (࢕࢜௢ܥ௢ߩ)ݒ݅݀ = ൫(1ൣݒ݅݀ ଴ߣ(݉− + ௪ݏଵߣ)݉ + ௢)൯∇ܶ൧  (7)ݏଶߣ

where	ܿ௣, ܿ௦ – polymer and salt concentrations in 
aqueous phase, ܿ௦௪,	ܿ௦௢	–	surfactant concentration in 
water and oleic phases,  ܽ௣, ܽ௦௨௥௙   – polymer and 
surfactant adsorption functions, ܦ௣௪,ܦ௦௪,  – ௦௢ܦ
polymer and surfactant diffusion coefficients,  ܥ௪, ,௢ܥ ,௪ߩ ,௥ – specific heat of water, oil and rockܥ ,௢ߩ ,଴ߣ ,௥ – density of water, oil and rockߩ ,ଵߣ  – ଶߣ
coefficients of thermal conductivity. 

Initial conditions: 
௪|௧ୀ଴ݏ  = ௪଴, ܿ௣௪ห௧ୀ଴ݏ = ܿ௣଴,	    ܿ௦|௧ୀ଴ = ܿ௦଴, ܿ௦௪|௧ୀ଴ = ܿ௦௪଴, ܿ௦௢|௧ୀ଴ = ܿ௦௢଴, (8)ܶ|௧ୀ଴ = ௣ܶ ܽ௦௨௥௙଴ห௧ୀ଴ = ܽ௦௨௥௙଴, 		ܽ௣ห௧ୀ଴ = ܽ௣଴, 
Boundary conditions: డ௦ೢడ௡ ቚడఆ = 0;						 				డ௉డ௡ቚడఆ = 0; 									డ்డ௡ቚడఆ = 0;  డ௖೛ೢడ௡ ቚడఆ = 0;      డ௖ೞೢడ௡ ቚడఆ = 0;      డ௖ೞడ௡ ቚడఆ = 0; (9)

We used the following viscosity dependence on 
injected reagent concentrations and temperature: 
(Flory-Huggins, 1953): ߤ௔ = ௪ൣ1ߤ + ଵܿ௣ߛ) + ଶܿ௣ଶߛ + ଷܿ௦௪ߛ ସܿ௦௪ଶߛ+ )ܿ௦ఊఱ − ܶ)଺ߛ − ௣ܶ)൧  (10)

௢ߤ  = ௢ൣ1݋ߤ − ܶ)଻ߛ − ௣ܶ)൧ (11)

where	ߛଵ, ,ଶߛ ,ଷߛ ,ସߛ ,ହߛ ,଺ߛ ௢݋ߤ.଻  – constantsߛ −	initial viscosity of oelic phase, ௣ܶ −	reservoir 
temperature. The imbibition relative permeability 
curve for water/oil flow is given by 

௪݂(ܵ௪) = ܵ௪ଷ.ହ;		 ௢݂(ܵ௪) = (1 − ܵ௪)ଷ.ହ 

The adsorbed concentration of polymer is a 
function of polymer concentration, given by: ܽ = ܾܿ௣1 + ܾܿ௣ 

where	ܾ −	Langmuir constant. 
The numerical formulation of equations (1)-(9) 

based on finite difference method and explicit 
scheme. The explicit schemes are naturally 
parallelizable using the GPUs. Numerical realization 
and results of numerical experiments was proposed 
by the authors in (Danaev, 2015; Ahmed-Zaki, 2015).  

3 TESTING RESULTS OF 
PARALLEL ALGORITHM 
USING CUDA TECHNOLOGY 

For testing of the SPF problem we used devices with 
NVIDIA Tesla K20, GeForce GTX 770 and Tegra K1 
video cards with Kepler microarchitecture 
(www.nvidia.com). For further testing, we compared 
the characteristics of the devices. All characteristics 
affect the performance of programs calculation 
(Table 1).   
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Table 1: Description of the NVIDIA Kepler architecture 
video cards. 

 
Tesla 
K20 
GK110 

GeForce 
GTX 770 
GK104 

Tegra 
K1 
GK20A 

Cores  2496 1536 192 
Clock Speed [MHz] 732 1046 950 
Memory bandwidth 
[GB/s]  208 224 17 

Memory (max) [GB]  5 2 1 
TDP(Watt) 225 230 10 
Compute Capability 3.5 3.0 3.0 
Theoretical 
performance single  
(GFLOPS) 

3524 3213 365 

Theoretical 
performance double 
(GFLOPS) 

1175 134 290 

Let NX, NY and NZ to be respectively a number 
of nodes in the x, y, and z directions of the 
computational domain. Three-dimensional area with 
size NX x NY x NZ will be presented as one-
dimensional array of size NX x NY x NZ on CPU 
side. One-dimensional representation of data in 
global memory is also used on the GPU. Data 
distribution in the device memory is performed once 
at the beginning of calculation. On GPU data stored 
in the shared memory of processor kernel. 
Computational threads of each block copies data from 
global memory to the shared memory. The 
calculation is performed in the threads using that data. 
Thereafter, the calculation results are written back 
into the global memory before finishing the kernel 
function. To obtain the benefit of using shared 
memory arithmetic operations in the core must be 
complex enough to compensate the cost of copying 
the data. One way to achieve this is to increase size of 
the block. Working with the shared memory we must 
consider that it has restriction of 16 Kbytes. 

Table 2: Memory required for array initialization. 

Grid size Required memory (Gb) 
32x32x32 ~0.005 
64x64x64 ~0.042 

128x128x128 ~0.344 
256x256x256 ~2.750 

In the numerical algorithm of the solution, each 
computational node needed 176B memory space. So 
implementing memory allocation to whole grid 
required particular amount of free space (Table 2). 
Tegra K1 could not launch program computing the 

problem on 256x256x256 grid. It can be explained by 
the fact that the RAM of used mobile device is only 
1GB and initialization arrays did not fit to it. 

 
Figure 1: Program calculation time on different devices. 

Tests show that Tegra K1 graphic card computes 
on the same level with other tested ones. For example, 
on a 64x64x64 grid the mobile device performs the 
calculation faster than the GeForce GTX 770. In this 
case, we cannot find an excuse of architecture 
difference, since the microarchitecture of processors 
are the same. It can also be explained by the fact that 
algorithm minimizes addressing to global memory. 
As we can see in Table 1 memory bandwidth is a 
weak point of Tegra K1 and we are reducing its usage 
as much as possible. Tesla K20 has three times lesser 
calculation time since its characteristics significantly 
exceeds the remaining cards (figure 1).  

 
Figure 2: Distribution of water saturation and pressure. 

The results of parallel computational experiments 
conducted on the tablet presented on figures 2-3. 
Including OpenGL visualization it forms mobile 
application that can be used to calculate main 
technological parameters of oil recovery. 
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Figure 3: Demonstration of the mobile application results. 

4 CONCLUSIONS 

The paper describes usability of mobile devices to 
GPGPU calculation of industrial scale problem. As 
the problem we took a mathematical model of oil 
displacement process by polymer/surfactant 
injection. We presented the problem as an example of 
complex industrial simulation. The problem was 
solved by explicit numerical method because it well 
suits to GPGPU parallelization. 

The main steps of the numerical algorithm are 
implemented with separate CUDA kernel functions 
by using shared memory. The reason is that mobile 
device graphics card has an architecture that is 
adverse to only global memory algorithms. This is 
due to the fact that device has combined CPU and 
GPU RAM.  

By testing calculation time of the program on 
different grids, we will notice that the mobile device 
with the Tegra K1 video card, not much inferior to 
device with the Tesla K20 video card and practically 
equal to GeForce GTX 770. This suggests that the 
complex hydrodynamic problems can run wherever 
there is a mobile device with a video card that 
supports CUDA technology. 

Engineers can use presented mobile application 
for planning and analyze of oil recovery on real oil 
fields. Our future work will focus on the use of 
graphics cards power to calculate programs at a time 
on several mobile devices. We also plan to expand 
our code for heterogeneous computing. 
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