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Abstract: Search and Rescue problem can be defined as the cooperative use of resources by mobile agents to accomplish their
mission of finding and rescuing important assets that are either lost or in some way at risk. We consider autonomous intelligent
mobile robot-agents that have several sensors and actuators as well as communication capabilities. All mobile agents have an
identical architecture so that they autonomously perform their tasks. These robot-agents perform tasks which may be delegated
to a single robot-agent or to a group of roboi-agents to be implemented in a disiributed way. In case of collective task execution
the robot-agents should be able to cooperate to minimize resources and improve mission performance. The mobile robot-agents
operate in an environment that 15 only partially accessible. We offer the control framework that uses behavioral model and

hybrid approach based on PSO and Q-learning.

Keywords: Autonomous, intelligent, agent, search, Q-learning, PSO.

1 INTRODUCTION

Collective of autonomous mobile robot-agents can be
applied to carrying out rescue and abnormal efforts in zones
of ecological disasters and cataclysms when an exploration
of terrain is impossible without automated vehieles [ 1], [2].
Howewver, control of the group of mobile robot-agents in
case of limited resources is complicated as there are several
factors affecting quality such as indefinite and non-
deterministic  environment,  incomplete  information
obtained via sensors with limited range, and frequent
absence of communication between all robot-agents
because of obstacles. Besides meeting rigid requirements
for immunity and reliability support to  the
communications is crucial as it guarantees the maximum

system performance to the whole group of robot-agents,

noise

The one of the most effective solutions of the search and
rescue problems in the conditions of dynamic-changing
environment is the decision-making based on intelligem
robot-agents [3]. Actions of each intelligent robot-agent of
the group have to be directed on achieving the global target
that 1s often can be divided on to the sequence of sub-
targets,

Twpically each member of the group of robot-agents is
unitary one having small size and weak functional
characteristics. This is very critical for restrictive resources,
e.i. embedded systems with |GHz CPU, 0.5GB RAM, few
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GB dist space. Although having small size and functional
capabilities, however, the whole group of robot-agents is
capable to solve the global problem effectively [4]. In case
of failure of some robot-agents functioning in extreme
conditions, the collective of robot-agents will be able to
continue operation of the global goal. Moreover, collective
control assumes redistribution of collective operations of
robot-agents initially intending to some failed robot-agents.
The redistribution has to be carried out depending on the
current conditions to achieve the collective goal in shortest
time and lowest expenses,

Assume that a large group of robot-agents 15 deployed
to the low-studied region and has to find and rescue
victims. Each robot-agent in the group possesses simple
technical capabilities such as detection by means of sensors,
signal transmission to other robot-agenis in the group, being
nearby, finding direction and distances to adjacent robot-
agents, and both controls of the direction and speed of all
movement. There is no initial data about the environment
and, therefore, it is essential to avoid unknown obstacles,
find victims and try 1o build 8 map of the overall field being
monitored. The global task is set to the collective of robot-
agents as follows: as many as possible robot-agents must
find the maximum quantity of rescued victims spending
minimum expenses within certain time of period or
minimum time [5].
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Among many necessary tasks such as communication,
sensing, manipulation, ete., the most eritical is collaboration
[6]. Communication is generally complicated as sending
signals may easily be obstructed. Therefore, mobile robot-
agents operate in an environment that is only partially
accessible, dynamic and non-uniform in terms of iis
configuration, presence of other robot-agents or level of
intelligence. In addition to the robot-agents in the
environment, several utilitarian agents are presented such as
2 knowledge base, a centralized intelligent controller for
detection and resolution of possible conflicts between two
or more agents that can also specify tasks and missions.

In this paper we offer an intelligent model of control of
the autonomous robotic system in the conditions of
dynamically changing environment,
reliability and resources that is based on Particle Swarm
Optimization (PSO) and Q-learning, First section considers
the architecture of the intelligent robot-agents control,

restrictions  on

Second section formulates the problem of collective control
to achieve the global best performance. Third section
presents an approach to solve the problem and intelligently
maintain conirol of the group of robot-agents that can be
observed from simulation results shown in the paper,

2 RELATED WORK

The one of most popular strategies of the autonomous
control system design to attain the global target is to build
an adaptive control for cach robot-agent based on feedback
from the adjacent robot-agents [7]. In spite of the fact that
local interactions between robot-agents are simple scalable
and reliable control systems provide the global behavior
that intelligently manages the group of robot-agents.
Certain success in this direction is achieved and series of
research work is based on development of technigues
related to the rules of group behavior control [8], [9]. [10]
shows that the robot-agent movement in the appropriate
changing environment can be realized by means of the table
describing  rules the distributed
retroactive  effect. that  such
approach allows the robot to bypass hindrances in the
dynamic environment,

In this paper we introduce the table of movements that
follow certain rules providing fast learning process and
avoiding obstacles to the group of intelligent robot-agents.

[11] presents the controller that adapts to the different
topology of modular robots. However, [11] does not
consider strategy maintaining modular robots adaptation to

of movement and
Authors  demonstrate
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the dynamic environment. [12] demonstrates distributed
algorithms for movement through barriers,

In this paper we offer intelligent model of the collective
control of autonomous robot-agents that employ an optimal
control approach in the conditions of dynamically changing
environment and constrainis on reliability and resources of
system, For the formulated problem we introduce a hybrid
of P50 and Q-learning based on specified table of rules
providing intelligent control in the applications of search
and rescue problem.

JAN ADAPTIVE CONTROL FRAMEWORK

3.1 An architeciure of the control system

Traditional architecture of collective of autonomous
rohot-agents consists of communicated robois equipped by
a series of sensors to oblain necessary information and
detect broad  range,
transceivers operating through appropriate ports, Any task
that is executed by some robot-agent can be considered as a
sequence of actions. Meantime, the global task 15 a
sequence of subtasks. The task can be solved by the target
group of robot-agents chosen by the system to complete 1t
within certain period of time or certain required amount of
resources. During process of interactions between robot-

agents it is often required that if some connection with a

victims  within actuators, and

robot-agent is broken then it might be necessary to continue
an execution of the intended target autonomously. Thus, it
15 necessary to develop a policy of intellipent decision-
making on how to behave in the environment and achieve
the set goal.

We introduce distributed system of a number of
interacting intelligent robot-agents where each robot-agent
is an autonomous control subsystem, The control subsystem
realizes a local policy of decision-making and takes into
account the global goal. Thus, in order to maintain
scalability and robustness of the distributed system not only
autonomous subsystem plays an important role but also a
mechanism that can rebuild communication links between
robot-agents and/or assignment of the robot-agent to new
tasks on the basis of a current state of the environment and
predicted future changes. We offer the architecture of
control of autonomous robot-agents taking into account the
structure of the intelligent robot-agent provided in Fig, 1
which consists of the lollowing components: Knowledge
Base, Analyzer, Goals, Behavior, Scenario that are parts of
the decision-making process.
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Fig.1 Architecture of the autonomous
intelligent robot-agent

The mtelligent contrel subsystem observes the non-
deterministic environment via Sensors, enriches Knowledge
Base and adapts its Behavioral model after specifying
Goals by Analyzer, generales Scenarios that contain
planning actions implemented by Actuators.

During execution of the tasks by the target groups of
robot-agents it is also necessary to be convinced that the
group completed all tasks. If some members of the group
are not able to execute some tasks then the control system
should redirect those tasks to available robot-agenis.
Analvezer provided in our control infrastructure allows
fixing outstanding 1asks and update Goals. Analvzer takes
CostOfObstacles,
ReliabilityLevel and analyzes Goals. These goals (tasks) are

mito account CostOfResources,
distributed among best candidates among existing robot-
agents, The process of the candidate assessment can
demand time. The one of important feature of proposed
model of control that can reduce time of such assessment is

o use Scenarios based on Behavior policy (Fig. 2).

Analycer
+ ot Cffesour
+oostofobstacks])
+ Pkl el
+iEnstndrehzer [
# |
Lioals Hehavwor
+10 +Robot-agentiD 2
+Trpe _': ...................... e +achon
+HRewardFatel) +(parstoraPerod(] +Flarnng)
+3atef Task()

Fig.2 Behavior model for an intelligent
decistion-making process

Poliey() specifies rules of adaptation and penerates
Scenarios that can be used if we have the same conditions
while selecting candidates it is faster to load store Scenario,

thereby reducing loads to the communications. Behavior
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model 15 also used to copy (imutate) the leader's actions 1f
there are needs to continue operations without loading of
communication network, All those features accelerate
decision-making process.

Behavior model always is updating as the intellectual
robot-agent is trained to act opiimally in dynamically
changing environment.
problem to reach maximum pgroup performance where

We formulate an optimization

factors of uncerainty of the environment and limited
resources play roles of consiraints. Next sub-section
presents the optimization problem which will be solved by
hybrid technique in the third section,

3.2 An optimal control problem

Let ' a group of N robol-agents operates in the
environment E. The state of robot-agent at time 1 we
describe as a vector:

R, (1) =[1 ()15 (0) (0]
where 7;(1) are the values of the state parameters at time t.
The state parameters J;[I] are determined as energy
resources, speed and acceleration, poesition, the orientation.

In order to introduce group of robot-agents we apply a
vector-function that defines the state of the group at the
time step 13

m{”zj:w{RﬂILR:[fL---R,-.-“H

The gontrol system should able to execute a sequence of
tasks ' from the set of tasks T = {?T,,,,.Tm} updated
by Analyzer. Each robot-agent RI is able to work on only
one task. The task distribution among robot-agents is
determined by Behavior model that  produces a
mamh(ﬂi,ﬂ.) . Let & is the sequence of tasks which is
global Goal.

According to disaster scenaro, the group of robot-
agents operates in the non-deterministic and non-stationary
environment that is determined by a vector-function:

E, (1) =[e (1).e,(1),...e, (D]
where e.(f) are observed parameters of the environment.
We want to provide fast and intelligent control framework
of autonomous robot-agents system that brings maximum
performance. An overall performance F. to achieve the
global task G by the group of robot-agents at certain period
of time can be formalized as a subtraction of the cost
associated with task failures from the sucecessful task
completion and excluding collisions.

It is necessary to find a control functions y  that leads
the group of robots to accomplish the goal with maximum
performance.
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We formulate an optimal control problem of the robot-
agents group R e can be formulated as one to identify
such u, control functions for each robot-agent in the
range [; .1 +As] that provide maximum to the functional:

i oedh
Y= J2 00 0t ot e (1)
which is subject to constraints;

u, (1) fu, (0}, @)
u,(#)=f,(u, (). 0, (), (1), () (3}
where 2 the vector control must belong to the set of
admissible controls which define a desirable level of
reliability of each robot-agent; f is a current time step and
I.f i5 the end of the operation of the group M; __,!:‘ means
that the vector control 1, depends on other robot-agents
control, Our functional (1) shows performance of the group
control that has to reach the goal, We transform (1)-(3) in a

compact form as follows;

The control system has to find uw, control functions
for each robot-agent performing global task in non-
deterministic and dynamically changing environment E
during observing period of time [r_,7, + Ar] that gives
maximum 1o the functional (1);

¥ — max 4
which is subject to constraints:

uj.{r} efu} (j= E:;ﬁ (5)
u (1= f (u ..o (O (0..0,(0)) (6]

Mext section shows an approach to solve (4)-(6).

3 HYBRID CONTROL APPROACH

We employ both PSO and Q-learning approaches.

PS5O method is based on collective behavior of socio-
organized “living” groups. We apply Particle Swarm
Optimization techniques (P50} where robots-agents are
particles. According to PSO  approach, each iteration
particles are searching an optimal solution for some
position and velocity [13], Q-learning method is used to
provide intelligent control framework of robot-agents
system [14]. At each step the evaluation function ¥ is
stored in a special table where inputs are states and tasks.
Next step evaluation function is attributed a certain way, In
Fig. 3 we demonstraie the simulation tool that realizes a
hybrid of the approaches as well as PSO and -learning by
themselves.
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Fig.3 An interface of the simulation tool

The graphical user interface of the program you can see
on Fig.l. We can add barriers and radiation sources on the
field drawing different forms of obstacles on the screen.
The radiation sources are represented as red circles. The
sources has the intensity of the radiation sources. The
simulation tool allows selection of the method of
optimization control among: PSO, Q-Learning and hybrid
of two alporithms PSO + Q-Learning. Choosing one of the
methods changes the bar at the bottom of the main window,
It is necessary initially specify parameters of the problem
such as;

Numbers of Agents — quantity agents with participate in
experiment;

Iterations — quantity of steps of the simulation;

State anthill
random places and in upper-left corner of the field.

For PSO implementation there is a special bar that has
the following parameters:

Dntferent modifications of PSO;

all agents bob up on work field not

Sensing Range — radius of the sensors of the apent to
find radiation source. When the agent approaches near to
the radiation source it become green;

Max velocity — maximum speed of the agent;

Min velocity — mitnimum speed of the agent;

Max Communication Range — maximum distance
between agents which they can translate messages. If the
parameter are too hig the agents will find only very far
located sources:

Min Communication Range -
between agents for translate messages;

W, G P
used to caleulate velocity and position of robot-agents,

minimum  distance
non-dimensional parameters of the model

The Q-matrix is a main matrix of space solves of the
agent. -matrix has columns that contain actions of the
agemt and rows containing states of the agent. At the initial
state matrix is filled by zeros. In some realizations of the -
learning the initial state of the matrix represents random
numbers. When agent successful learns, the Q-matrix must
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be successful full by non-zero values. Scheme of the Q-
matrix 15 shown in Tablel.

Table 1. Q-matrix

clion
0] 1) 2] 3 .| n| Description
State

Barrier is in

SIALIEE|

1 the cell with
number |

Barrier 15 n
2 the cell with
number 2

Barrier is in
3 the cell with
number 4

Maxrmum

syse]|

intensity  in

wiepog o) do wog Fuseamnap aEs 2 jo Ao

k direction of
the cell with
number |

Maximum
intensity  in
k+1 direction of
the cell with
number 2

k+2 And so on

The agent is
m inempty
World

Before the agent start turn it scans space around himself.
Quantity of the state equals to the quantity of the cells
which were scanned. Scanning has place in the following
way: firstly, the scan radius takes minimum value that
equals o 1 and the direction UP; next, the radius is
increased with some fixed increment of the angle and the
cells where agent checks a value of the cell. If the value of
the cell is negative one (indicate presence of the border)
then it returns this value of the cell as number of the state.
Secondly, the radius increases to 1 and all process is
repeated. For defined radius in ten unit (pixel) quality of the
possible states are about 340. They all spread on an
unwinding spiral from position of the agent. [dentical
process of scanning has place to find intensity of the

D ISARCH 2014

radiation source, Scarching of the cell with an intensity of
the radiation source 15 successful if the value is maximum
and this value returns as number of the state,

Most important in Q-learning algorithm is assignment
of rewards of true and false moves. Truth assignment is
guaranteed by fast and qualitative learning of the agent. The
values can be positive and negative. In this simulator we
usee the following scheme of assignments: if the agent finds
the radiation source receives one hundred points. If the
agent remains backward from radiation source it receives
negative five points. IF the agent crashes with obstacle it
receives negative ten points. In our experiments the agents
often stopped in same position (action equal zero) and
remained in it indefinitely. For this reason they receive
negative reward for stopping that is equal to five points. LF,
DF — non-dimensional parameters of the model Q-learning.
They are presented in the formula the Q-matrix.,

Quantity of the actions can vary depending on the
choice of the user. Maximum guantity of the actions is 88 if
maximum speed is five. Scheme of the agent movement
according to the system of rewards is shown in Fig, 4.

54-3-21-10 2345

1

Fig. 4. Scheme of the agent learning: spiral scheme and
Cl-matrix

Red cell indicates position of the agent. In the matrix
this cell coding by zero. The green cells indicate positions
when the agent shall be able move from actual position if
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its maximum speed is five, Yellow cells show array of
indexes. These indexes are needed in order to coordinate
real position of the agent receiving new allocation.
Thercefore, behavior of the agent is changing and learning
process allows him chose best direction to find sources.

During learning process the simulator calculates percent
of the learning of Q-matrix. It is a ratio of quality of the
nonzero values of the matrix to the full guality of the
elements of the matrix.,

4 CONCLUSION

We have introduced the intelligent control framework
for collective of autonomous robot-agents as well as hybrid
approach of PSO and Q-learning to tackle uncertainty of
environment that adapts behavior of the robot-agent and
allows reach maximum performance. The proposed hybrid
approach utilizes specific numbering of Q-matrix and
allows fast decision-making. Future work will be directed
towards applying mobile selection of leaders and extending
behavior model of the robot-agents,
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