
Geometric characteristics of the solitonic solution in the case of finite density
Zhanat Zhunussova and Karlygash Dosmagulova 
 
Citation: AIP Conference Proceedings 1676, 020103 (2015); doi: 10.1063/1.4930529 
View online: http://dx.doi.org/10.1063/1.4930529 
View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/1676?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
A numerical investigation of stability of 1D soliton solutions of Boussinesq paradigm equation in the 2D case 
AIP Conf. Proc. 1629, 207 (2014); 10.1063/1.4902275 
 
Geometric solitons of Hamiltonian flows on manifolds 
J. Math. Phys. 54, 121505 (2013); 10.1063/1.4848775 
 
The geometric property of soliton solutions for the integrable KdV6 equations 
J. Math. Phys. 51, 043508 (2010); 10.1063/1.3359002 
 
Effect of zeroth‐order density inhomogeneity on ion acoustic soliton reflection in a finite ion temperature plasma 
Phys. Fluids B 3, 255 (1991); 10.1063/1.859944 
 
Finite amplitude envelope solitons 
Phys. Fluids 20, 1286 (1977); 10.1063/1.861998 
 

http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://scitation.aip.org/search?value1=Zhanat+Zhunussova&option1=author
http://scitation.aip.org/search?value1=Karlygash+Dosmagulova&option1=author
http://scitation.aip.org/content/aip/proceeding/aipcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4930529
http://scitation.aip.org/content/aip/proceeding/aipcp/1676?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4902275?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/54/12/10.1063/1.4848775?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jmp/51/4/10.1063/1.3359002?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pofb/3/1/10.1063/1.859944?ver=pdfcov
http://scitation.aip.org/content/aip/journal/pof1/20/8/10.1063/1.861998?ver=pdfcov


Geometric characteristics of the solitonic solution in the case
of finite density
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Al-Farabi Kazakh National University, 050040, Almaty, Kazakhstan

Abstract. Some exact solutions of nonlinear partial differential equations are widely investigated both mathematical and
physical points of view. Physically interesting solution as solitonic is well known. Also solitonic solution have simple behavior
in bumping and are stable. There are various methods for searching of these exact solutions.
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INTRODUCTION

Exact solutions of nonlinear partial differential equations are widely investigated both mathematical and physical
points of view [1–4]. Physically interesting solution as soliton is well known. Also soliton solution have simple
behavior in bumping and are stable. There are various methods for searching of these exact solutions [2, 3]. In (1+1)-
dimensional case nonlinear partial differential equations are given as a condition of zero curvature

Ut −Vx +[U,V ] = 0,

where [U,V ] =UV −VU , matrix U is prescribed, and matrix V is expressed in the terms of the elements of the matrix
U . Also the nonlinear partial differential equation is the compatibility condition the system of linear equations

ϕx =Uϕ , ϕt =V ϕ ,

where ϕ is a scalar function. In this case there is a surface with immersion function P(x, t) defined by the formulas
∂P
∂x = ϕ−1Xϕ , ∂P

∂ t = ϕ−1Y ϕ . The surface defined by P(x, t) is identified with surface in tree-dimensional space with
coordinates [1] x j = Pj(x, t), j = 1,2,3. Frame on the surface is given [1]

∂P
∂x

= ϕ−1Xϕ ,
∂P
∂ t

= ϕ−1Y ϕ , N = ϕ−1Jϕ ,

where J = [X ,Y ]
|[X ,Y ]| , | X |=

√
< X ,X >. By definition

< X ,Y >=−1
2

tr(XY ),

where X ,Y are some matrices. The first and second fundamental forms are given

I =< X ,X > dx2 +2 < X ,Y > dxdt+< Y,Y > dt2, (1)

II =<
∂X
∂x

+[X ,U ],J > dx2 +2 <
∂X
∂ t

+[X ,V ],J > dxdt+<
∂Y
∂ t

+[Y,V ],J > dt2. (2)

As it is shown in the work [1] immersion function P can be defined by formula

P = γ0ϕ−1ϕλ +ϕ−1M1ϕ =
3

∑
j=1

Pj f j,

where M1 is a matrix function depending on λ ,x and t which are unknown variables. Here f j = − i
2 σ j is the basis of

the corresponding algebra, σ j are Pauli matrices and [ fi, f j] = fk. In this case, X and Y can be written as

X = γ0Uλ +M1x +[M1,U ],Y = γ0Vλ +M1t +[M1,V ],

where γ0 is an arbitrary constant; M1x,M1t are derivatives of the matrix M by x and t correspondingly.
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SOLITONIC IMMERSION IN (1+1)-DIMENSION

Let the matrices X ,Y,J have the form

X =

(
a11 a12
a21 a22

)
, Y =

(
b11 b12
b21 b22

)
, J =

(
c11 c12
c21 c22

)
, (3)

where ai j, bi j, ci j, i = 1,2, j = 1,2 are some arbitrary variables.
In this case the matrices J are expressed through elements of the matrix X and Y in accordance with the formulas

c11 =
a12b21 −b12a21

| [X ,Y ] |
, c21 =

a21(b11 −b22)+b21(a22 −a11)

| [X ,Y ] |
,

c12 =
b12(a11 −a22)+a12(b22 −b11)

| [X ,Y ] |
, c22 =

a21b12 −b21a12

| [X ,Y ] |
. (4)

Then the first fundamental form (1) of the two-dimensional surface is I = Edx2 +2Fdxdt +Gdt2, where

E =−1
2
(a2

11 +2a12a21 +a2
22), F =−1

2
(a11b11 +a12b21 +a21b12 +a22b22), (5)

G =−1
2
(b2

11 +2b12b21 +b2
22). (6)

As example of the solitonic equation which reduced to the immersion we consider nonlinear Schrödinger equation

iψt +ψxx +2β |ψ |2ψ = 0,

where β =+1, ψ is a complex function. In this case, matrices U,V have the form [3]

U =
λσ3

2i
+U0, U0 = i

(
0 q̄
q 0

)
,

V =
iλ 2

2
σ3 + i|q|2σ3 − iλ

(
0 q̄
q 0

)
+

(
0 q̄x

−qx 0

)
. (7)

We present the lemma.

Lemma 1. The second fundamental form in sense of Fokas-Gelfand corresponding to the solitonic solution q of the
nonlinear Schrödinger equation in the case of finite density has the form

II = Ldx2 +2Mdxdt +Ndt2, (8)

where
L =− 1

2{a11xc11 +a12xc21 +a21xc12 +a22xc22 −λ i(a21c12 −a12c21)

+iq(a12c11 +a22c12 −a11c12 −a12c22)+ iq̄(a21c22 +a11c21 −a22c21 −a21c11)},

M =− 1
2{a11tc11 +a12tc21 +a21tc12 +a22tc22 + i(λ 2 +2|q|2)(a21c12 −a12c21)

+(qx +λ iq)(a11c12 +a12c22 −a12c11 −a22c12)

+(q̄x −λ iq̄)(a11c21 +a21c22 −a21c11 −a22c21)},

N =− 1
2{b11tc11 +b12tc21 +b21tc12 +b22tc22 + i(λ 2 +2|q|2)(b21c12 −b12c21)

+(qx +λ iq)(b11c12 +b12c22 −b12c11 −b22c12)

+(q̄x −λ iq̄)(b11c21 +b21c22 −b21c11 −b22c21)}.

(9)

Proof. We present the matrices (3), (7) in the form (2). After some algebraic operations we obtain (8), (9).
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ONESOLITONIC SOLUTION OF THE NONLINEAR SCHRÖDINGER EQUATION
CORRESPONDING TO THE SURFACE

We consider a particular case of the immersion at γ0 = 1, M1 = 0. In this case, we get

X =Uλ =
1
2i

(
1 0
0 −1

)
, Y =Vλ =−i

(
−λ q̄
q λ

)
,J =

(
0 − q̄√

qq̄
q√
qq̄ 0

)
, (10)

and P = ϕ−1ϕλ . In order to calculate the explicit expressions for the immersion function P we consider a onesolitonic
solution of the nonlinear Schrödinger equation in the case of finite density in the form

q(x, t) = ρ
1+ eiθ exp{ν1(x− vt − x0)}

1+ exp{ν1(x− vt − x0)}
, (11)

where v =−ωcos θ
2 , x0 =

1
ν1

lniγ1; ω,θ ,γ1,ν1 are some parameters of the model.

Theorem 2. Onesolitonic solution of the nonlinear Schrödinger equation in the case of finite density corresponds a
surface in sense of Fokas-Gelfand with following coefficients of the first fundamental form

E =
ν2

1 exp2{ν1(x−vt−x0)}
(1+exp{ν1(x−vt−x0)})4

[
4ρ2x2

(λ−λ̄1)4 (2− eiθ − e−iθ )+ 4(eiθ−1)2[1+ν1x(1−eiθ exp2{ν1(x−vt−x0)})]2
(1+eiθ exp{ν1(x−vt−x0)})4

]
,

F =
2ρ2ν2

1 vxexp{ν1(x−vt−x0)}(eiθ+e−iθ−2)
(λ−λ̄1)4(1+exp{ν1(x−vt−x0)})3 +

4ν3
1 vxexp2{ν1(x−vt−x0)}(eiθ−1)2(eiθ−exp2{ν1(x−vt−x0)}−1)
(λ−λ̄1)2(1+exp{ν1(x−vt−x0)})4(1+eiθ exp{ν1(x−vt−x0)})4

×(1+ν1x−ν1xeiθ exp2{ν1(x− vt − x0)}),

G =
v2ν2

1 exp{ν1(x−vt−x0)}
(λ−λ̄1)4(1+exp{ν1(x−vt−x0)})4

[
ρ2(eiθ − e−iθ )2 (1+2exp{ν1(x− vt − x0)})2

+ρ2(eiθ − e−iθ −2)2 +
4ν2

1 x2(eiθ−1)2(eiθ exp{ν1(x−vt−x0)}−1)2

(1+eiθ exp{ν1(x−vt−x0)})4

]
,

(12)

where λ1 = const.

Proof. Solution of the linear system we find in the form

ψ = ϕe−(
λσ3

2i x+ iλ2
2 σ3t). (13)

Taking into account (13) and applying (7) we have

ψx =

(
λσ3

2i
+U0

)
ψ −ψ

λσ3

2i
=

λσ3

2i
ψ −ψ

λσ3

2i
+U0ψ =

[
λσ3

2i
,ψ
]
+U0ψ. (14)

We take

ψ = I − Ã
λ −λ ∗

1
, Ã =

(
ã b̃
c̃ d̃

)
, I =

(
1 0
0 1

)
, λ ∗

1 − const. (15)

We substitute (15) to (14)

ψx =U0 −
U0Ã

λ −λ ∗
1
− 1

2i
[σ3, Ã]−

λ ∗
1

2i(λ −λ ∗
1 )

[σ3, Ã]. (16)

On the other hand, from (15) it follows

ψx =− Ãx

λ −λ ∗
1
. (17)

From (16) and (17), we get

− Ãx

λ −λ ∗
1
=U0 −

U0Ã
λ −λ ∗

1
− 1

2i
[σ3, Ã]−

λ ∗
1

2i(λ −λ ∗
1 )

[σ3, Ã]. (18)
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Thus,

Ãx =U0Ã+
λ ∗

1
2i

[σ3, Ã],U0 =
1
2i
[σ3,A]. (19)

We note, that

[σ3, Ã] = σ3Ã− Ãσ3 = 2
(

0 b̃
−c̃ 0

)
. (20)

Then by substituting (20) to (35) we get

U0 =
1
i

(
0 b̃
−c̃ 0

)
. (21)

We put (20) to (19) and get (
ãx b̃x
c̃x d̃x

)
=

1
i

(
b̃c̃ b̃d̃
−c̃ã −c̃b̃

)
+

λ ∗
1
i

(
0 b̃
−c̃ 0

)
. (22)

From (7) and (21) we get

i
(

0 q̄
q 0

)
=

1
i

(
0 b
−c 0

)
⇒
{

iq̄ = 1
i b

iq =− 1
i c

⇒
{

b =−q̄,
c = q. (23)

Thus, we found the matrix Ã in the explicit form with components (22). By using (11), we get

ã =− iν1xexp{ν1(x− vt − x0)}(eiθ −1)
(1+ exp{ν1(x− vt − x0)})(1+ eiθ exp{ν1(x− vt − x0)})

−λ ∗
1 . (24)

From (22) it follows ã =− ic̃x
c −λ ∗

1 ⇒ ã =− 1
i
∫

q̄qdx. By using (11), we get

ãx =
1
i

b̃c̃ ⇒ ãx =
1
i
(−q̄)q, (25)

then
ã =− iqx

q
−λ ∗

1 . (26)

Consequently, from (22), (23) we can write

d̃ =
ib̃x

b̃
−λ ∗

1 ⇒ d̃ =
i(−q̄)x

(−q̄)
−λ ∗

1 ⇒ d̃ =
iq̄x

q̄
−λ ∗

1 . (27)

Using (11) we get

d̃ =
iν1xexp{ν1(x− vt − x0)}(e−iθ −1)

(1+ exp{ν1(x− vt − x0)})(1+ e−iθ exp{ν1(x− vt − x0)})
−λ ∗

1 . (28)

From (22), (23) it follows

d̃x =−1
i

c̃b̃. (29)

Moreover from (28), (29) follow

d̃ =
1
i

∫
qq̄dx (30)

Taking into account (30), we get (25) in the form
d̃ =−ã. (31)

Thus, the matrix Ã for onesolitonic solution (11) of the nonlinear Schrodinger equation takes the form

Ã =

 − iν1xexp{ν1(x−vt−x0)}(eiθ−1)
(1+exp{ν1(x−vt−x0)})(1+eiθ exp{ν1(x−vt−x0)})

−λ ∗
1 −ρ 1+e−iθ exp{ν1(x−vt−x0)}

1+exp{ν1(x−vt−x0)}

ρ 1+eiθ exp{ν1(x−vt−x0)}
1+exp{ν1(x−vt−x0)}

iν1xexp{ν1(x−vt−x0)}(e−iθ−1)
(1+exp{ν1(x−vt−x0)})(1+e−iθ exp{ν1(x−vt−x0)})

−λ ∗
1

 . (32)
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Then we take ϕ = I − A
(λ−λ̄1)2 , where λ1 is constant, then from (10) we get

P = ϕ−1ϕλ =

(
I +

Ã
λ −λ1

)
Ã

(λ − λ̄1)2
. (33)

On the other hand, we have

P =
3

∑
j=1

Pj f j =− i
2

3

∑
j=1

Pjσ j =

(
− i

2 P3 − i
2 P1 − 1

2 P2
− i

2 P1 +
1
2 P2

i
2 P3

)
. (34)

From (33), (34) with help of (29) we get P3 =
2iã

(λ−λ̄1)2 . Now taking into account (31) we find P3 in the explicit form
for nonlinear Schrodinger equation in the case of finite density

P3 =
2ν1xexp{ν1(x− vt − x0)}(eiθ −1)

(λ − λ̄1)2(1+ exp{ν1(x− vt − x0)})(1+ eiθ exp{ν1(x− vt − x0)})
− 2iλ ∗

1

(λ − λ̄1)2
. (35)

From (33), (34) we get P2 =
c̃−b̃

(λ−λ̄1)2 . Thus,

P1 =
i(c̃+ b̃)
(λ − λ̄1)2

, P2 =
(c̃− b̃)

(λ − λ̄1)2
, P3 =

2iã
(λ − λ̄1)2

.

From (33), (11) by using known formulas

shζ =
eζ − e−ζ

2
, chζ =

eζ + e−ζ

2
, cosζ =

eiζ + e−iζ

2
, sinζ =

eiζ − e−iζ

2i
, (36)

where ζ = ν1(x− vt − x0) and we get the explicit values P1,P2,P3 of the matrixes P

P1 =
iρ(eiθ−e−iθ )exp{ν1(x−vt−x0)}
(λ−λ̄1)2(1+exp{ν1(x−vt−x0)})

,

P2 =
ρ(2+eiθ exp{ν1(x−vt−x0)}+e−iθ exp{ν1(x−vt−x0)})

(λ−λ̄1)2(1+exp{ν1(x−vt−x0)})
.

(37)

Now we calculate the coefficients of the first fundamental form, i.e.,

E = P2
1x +P2

2x +P2
3x. (38)

In order to do it we calculate P1x,P2x,P3x. Now we calculate the first derivative squared and put to (38), then

E =
ν2

1 exp2{ν1(x− vt − x0)}
(1+ exp{ν1(x− vt − x0)})4

[
4ρ2x2

(λ − λ̄1)4
(2− eiθ − e−iθ )

+
4(eiθ −1)2[1+ν1x(1− eiθ exp2{ν1(x− vt − x0)})]2

(1+ eiθ exp{ν1(x− vt − x0)})4

]
.

Similarly, according to the formulas

F = P1xP1t +P2xP2t +P3xP3t , G = P2
1t +P2

2t +P2
3t ,

we get the values

F =
2ρ2ν2

1 vxexp{ν1(x−vt−x0)}(eiθ+e−iθ−2)
(λ−λ̄1)4(1+exp{ν1(x−vt−x0)})3 +

4ν3
1 vxexp2{ν1(x−vt−x0)}(eiθ−1)2(eiθ−exp2{ν1(x−vt−x0)}−1)
(λ−λ̄1)2(1+exp{ν1(x−vt−x0)})4(1+eiθ exp{ν1(x−vt−x0)})4

×(1+ν1x−ν1xeiθ exp2{ν1(x− vt − x0)}),

G =
v2ν2

1 exp{ν1(x−vt−x0)}
(λ−λ̄1)4(1+exp{ν1(x−vt−x0)})4

[
ρ2(eiθ − e−iθ )2(1+2exp{ν1(x− vt − x0)})2

+ρ2(eiθ − e−iθ −2)2 +
4ν2

1 x2(eiθ−1)2(eiθ exp{ν1(x−vt−x0)}−1)2

(1+eiθ exp{ν1(x−vt−x0)})4

]
.

(39)
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Using (35), (37), we find the coefficients of the second fundamental form L,M,N. In order to get it we have to calculate

n =
rx × rt√

Λ
,

√
Λ =

√
EG−F2. (40)

We substitute the values (35), (37) to (40) and find the components of the vector n. We calculate, with help of (39), the
value √

Λ = (EG−F2)
1
2 .

Now we find
P1xx,P2xx,P3xx.

Then we can find L. Similarly we find M,N. Then we can find Gaussian and the main curvature K and H. Now from
(5), (6) using (10) for this case γ0, M1 = 0 we get the coefficients of the first fundamental form corresponding (11) as

E =
1
4
, F =−λ

2
, G = λ 2 + q̄q.

Accordingly, from (9) using (10), we find the coefficients of the second fundamental form. Now we can calculate

Λ = EG−F2 =
1
4

q̄q.

Theorem is proved.

CONCLUSION

Thus, we have investigated the solitonic immersion in (1+1)-dimension. As example, (1+1)-dimensional nonlinear
Schrödinger equation is considered. The first fundamental form with coefficients (12) for integrable surface corre-
sponding to onesolitonic solution of the nonlinear Schrödinger equation in the case of finite density is found. Gaussian
and the main curvature of the surface are found.

REFERENCES

1. O. Ceyhan, A. S. Fokas, and M. Gurses, J. Math. Phys. 41, 2551–2270 (2000).
2. Zh. Zhunussova, KazNU Bulletin Ser. Math., Mech., Inf. 2, 37–42 (2014).
3. Zh. Zhunussova, Proceeding of the Forth International Conference "Modern Problems of Applied Mathematics and Information

Technologies, Al-Khorezmiy 2014", Samarkand, p. 283, 2014.
4. Zh. Zhunussova, “Nonlinear PDE as Immersions" Proceedings of the 9th ISAAC Congress, Springer, Series: Trends in

Mathematics, ISBN 978-3-319-12576-3, pp. 289–297, 2015.

020103-6

http://dx.doi.org/10.1063/1.533237

