THE DRIFT OF ELECTRONS IN A GAS IN A SPATIALLY INHOMOGENEOUS PERIODIC ELECTRIC FIELD

R.I. Golyatina, *S.K. Kodanova, *T.S. Ramazanov, S.A. Maiorov

A.M. Prokhorov General Physics Institute, Moscow, Russia, e-mail: <u>mayorov_sa@mail.ru</u>

^{*}KazNU Al-Farabi, Almaty, Kazakhstan, e-mail: <u>kodanova@mail.ru</u>

In this paper we consider the electron drift in the electric field, which is a periodic disturbance of the power of character: $E(x) = E_0 \{x/L\}^n / (n+1)$. Here L - period, $\{x\}$ - the fractional part of x, $\{x\} = x - [x]$, [x] - the integer part of x. At drift electrons acquire energy by Joule heating $Q_{EW} = eEW$, e - the electron charge, E - electric field, W - the drift velocity. The purchased energy is lost in elastic collisions with atoms, is spent on the excitation of atomic levels and ionization: $Q_{EW} = Q_{ea} + Q_{ex} + Q_{ion}$.

In Tab. the results of Monte Carlo simulations [1] electron drift characteristics in neon at a temperature of 298 K, given the average electric field E / N = 10 Td: drift velocity W, the average energy $\langle \varepsilon \rangle$, percentage of energy input that went to the excitement **100%** Q_{ex}/Q_{EW} and ionization, , **100%** Q_{ion}/Q_{EW} . As a measure of heterogeneity of variance is shown δ^2 , normalized to the mean field: $\delta^2 = \left[\langle E^2(x) \rangle - \langle E(x) \rangle^2 \right] / \langle E^2(x) \rangle$

	Characteristics of the field		Drift characteristics			
No	n	δ^2	W, km/s	$<\mathcal{E}>$, eV	Q_{ex} / Q_{EW} , %	$Q_{ion} / Q_{EW}, 0/0$
1	0	0	19.7	7.75	79.3	1.7
2	1	1/3	19.4	7.54	78.6	2.8
5	2	9/5	18.7	7.21	77.9	4.3
7	3	16/7	18.3	6.94	77.1	5.8
9	4	25/9	17.9	6.71	76.6	6.9
11	5	36/11	17.5	6.53	76.3	7.8

A comparison of the distribution functions of the electron energy distributions Maxwell Druyvesteyn, and with the approach of an unlimited flow (pipe model) [2]. From the analysis of the results of calculations that:

- even the large spatial fluctuations of the field does not lead to a large change in the average characteristics of the drift of the drift velocity and average energy;

the largest increase in the dispersion of the field effect has on the rate of ionization, there is a significant increase in the ionization rate and the proportion of the energy used for ionization;
the spatial inhomogeneity of the field can lead to Maxwellization electrons in the glow Townsend discharge, which is the subject of a long-known and much-discussed paradox Langmuir [2].

The study was supported by The Ministry of education and science of Russia, project 8392.

References

- [1]. Golyatina R.I., Maiorov S.A., Applied Physics, 2011, №5, 22.
- [2]. Cendin L., UFN, 2010, **133**, issue. 4, 948.