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Abstract—We present the results of experiments with
20 electronic limit-cycle oscillators, globally coupled via
a common load. We analyze collective dynamics of the
ensemble in cases of linear and nonlinear phase-shifting
unit in the global feedback loop. In the first case we observe
the standard Kuramoto transition to collective synchrony.
In the second case, we observe transition to a self-organized
quasiperiodic state, predicted in [M. Rosenblum and A.
Pikovsky, PRL, (2007)]. We demonstrate a good correspon-
dence between our experimental results and previously
developed theory. We also describe a simple measure which
reveals the macroscopic incoherence-coherence transition
in a finite–size ensemble.

I. INTRODUCTION

Mean field approximation is widely used in descrip-
tion of oscillator networks with high degree of connec-
tivity. Models of oscillator ensembles with mean field
coupling, also known as global or all-to-all coupling,
provide characterization of collective dynamics of oscil-
lating objects of various nature, including fireflyes, spon-
taneously beating atrial cells, pedestrians on the foot-
bridges, handclapping individuals in a large audience,
Josephson junctions, lasers, electrochemical oscillators,
spiking or bursting neurons, to name just a few. Analysis
of collective behavior of such systems poses a number of
problems which are highly nontrivial from the standpoint
of nonlinear dynamics. Due to these reasons, this topic
remains in the focus of interest within last three decades.
Basic theory and further references can be found in the
following books, book chapters, and review articles [1],
[2], [3], [4], [5], [6], [7], [8], [9], [?].

A subject of recent interest are coherent though not

synchronous states, also denoted as partial synchrony.
Such regimes have been observed in networks of pulse
coupled integrate-and-fire units [10], [11], [12] and in
ensembles of Stuart-Landau and phase oscillators with
global nonlinear coupling [13], [14]. The latter systems
exhibit an interesting transition from synchrony to self-
organized quasiperiodicity (SOQ). In the SOQ state the
frequency of the mean field differs from the frequency
of oscillators, i.e. the emergent collective mode and
individual units are not locked. The primary goal of our
current study is experimental verification of these results
[15]. For this purpose, we performed experiments with
electronic oscillators, globally coupled via a common
feedback loop with a phase-shifting unit. The coupling
is nonlinear in the sense that phase shift depends on the
amplitude of the collective oscillation. We demonstrate,
with increase of the strength of the global coupling,
a transition from asynchronous state to collective syn-
chrony and then to SOQ.

Before presenting our results, we briefly review the
experimental studies of globally coupled systems. First
of all, there is a number of observations of synchronous
collective dynamics in systems, where the coupling is
assumed to be of all-to-all type, although it is most
likely not homogeneous. These observations include
synchronous emission of optical or acoustical pulses
by groups of insects [16], rhythmical hand clapping in
opera houses [17], glycolytic oscillation in populations
of yeast cells [18], [19], etc. A well-known example
is pedestrian synchrony on the London Millennium
Bridge; the experiments with the pedestrian groups of
different size demonstrated that collective synchrony is



a threshold phenomenon [20], in correspondence with
the theoretical results [21], [22]. Next, we mention a
brilliant demonstration of collective synchrony in a very
simple experiments with metronomes, performed by B.
Daniels within a framework of student research [23]. Nu-
merous well-controlled experiments on globally coupled
oscillators have been performed by J. Hudson, I. Kiss,
and collaborators [24], [25], [26], [27]. Using an array
of 64 electrochemical oscillators they have confirmed
practically all theoretical predictions. In particular, they
have demonstrated Kuramoto transition in ensembles of
periodic and chaotic oscillators. Other laboratory exper-
iments have been conducted with Josephson junctions
[28], [29], photochemical oscillators [30], and vibrating
motors on a common support [31].

II. EXPERIMENTAL SETUP

We performed experiments with 20 electronic gener-
ators, coupled via a global feedback loop, see Fig. 1.
Coupling is organized via a common resistor Rc; a
fraction of the voltage across this resistor is fed to the
input of the phase-shifting unit. The output of this unit
is fed back to all oscillators via resistors R1. Scheme of
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Fig. 1. Scheme of the globally coupled system. Individual generators
are shown here by one symbol, there detailed scheme is given in
Fig. 2, whereas the scheme of the phase-shifting unit is given in
Fig. 3.

an individual generator is given in Fig. 2; it represents a
Wien bridge oscillator with a saturation of the amplitude.
The saturation is ensured by the nonlinear circuit in
the negative feedback loop of the operational amplifier;
this circuit is built by diods D1,2 and resitor R7. With

the help of the trimmer resistor R6 amplitudes of all
uncoupled oscillators were tuned to approximately same
value V ≈ 1 V. The scheme of the phase-shifting

Fig. 2. Wien bridge oscillator. Here Vi is the output voltage of the
i-th oscillator, Vf is the output voltage of the global feedback loop.

unit is depicted in Fig. 3. It consists of two identical
linear subunits and one nonlinear. The linear subunit is
a standard RC-circuit. The nonlinear part represents a
high-pass first order filter, where nonlinear properties of
diods provide a dependence of the phase shift between
input and output on the amplitude of the input. We

Fig. 3. Phase-shifting unit consists of two linear and one nonlinear
shifting subunits.

performed 3 experiments: (i) Phase shifting unit excluded
so that the signal from the common load was directly
applied to the inputs of oscillators, i.e. Vf = Vc; (ii) only
the linear phase shifting unit was included, and (iii) both
linear and nonlinear units are used, as shown in Figs. 1,3.
In each experiment we gradually changed the input to the
feedback loop Vc from zero to its maximal value VL and
recorded the outputs of all oscillators, Vi, i = 1, . . . , N ,



and the mean field voltage VL. (It can be easily shown
that VL = N−1 ∑N

j=1 Vj , provided R2 ≪ NRc.) In each
recording we obtained 105 points per channel, with the
sampling rate 65 kHz. For each value of the coupling
strength ε = Vc/VL we performed 10 recordings.

III. DATA ANALYSIS AND RESULTS

For the presentation of results we have computed,
for each value of the coupling strength ε, the following
quantities:

1) instantaneous phases φi of all oscillators and in-
stantaneous phase and amplitude Amf of the mean
field VL were obtained with the help of the Hilbert
transform;

2) frequencies fi of all oscillators and frequency
fmf of the mean field were computed from the
unwrapped phases for each recording and then
averaged over 10 recordings;

3) the order parameter R was obtained by averaging
the quantity N−1 ∑N

j=1 e
iφj over time and over 10

measurements;
4) the minimal (over all 10 measurements) value

Amin of the instantaneous mean field amplitude
Amf .

We note that typically synchronization transition in a
globally coupled system is traced by plotting R vs. ε.
This approach is efficient in the limit N → ∞, where
R = 0 in the incoherent state. However, since in our
case N = 20, the finite-size fluctuations of the mean
field in this state are quite large (they are known to scale
as 1/

√
N ) and therefore R is not small either. We find

that the distinction between incoherent (fluctuating mean
field) and coherent (oscillatory mean field) states can be
better revealed by Amin.

In the first and second experiments (no phase shifting
unit and linear unit, respectively), we observed standard
Kuramoto transitions to collective synchrony, character-
ized by a monotonic dependence of R and Amin on
ε. In the third, main, experiment, we observed a non-
monotonic dependence of R and Amin on ε (Fig. 4). We
have found, that with increase of ε, 10 oscillators formed
a cluster at ε ≈ 0.12, while other 10 remained asyn-
chronous. Next, the frequency locked oscillators leaved
the cluster one by one. Finally, SOQ state appeared at
ε ≈ 0.72. In order to show that this is indeed a transition
to SOQ but not simply a breakup of synchrony, we
have plotted the Hilbert transform of the mean field
vs. the mean field itself (not shown). We have seen
that in the asynchronous state the pattern is typical
for a narrow-band random process, with the amplitude
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Fig. 4. Results of the experiment with the linear and nonlinear
phase-shifting unit. Order parameter R (a) and minimal mean field
amplitude Amin (b, blue circles). At ε ≈ 0.12 we observe the
transition to a partially synchronous state, where the fastest oscillators
lock to each other and to the mean field. Between ε ≈ 0.43 and the
ε ≈ 0.72 oscillators leave the cluster and for ε > 0.72 the SOQ
state is observed: mean field is faster than all oscillators. Although
the values of the order parameter in the asynchronous (ε < 0.12)
and SOQ states are almost the same, these states are qualitatively
different and can be easily distinguished by the quantity Amin.

dropping practically to zero, whereas in the SOQ state
the mean field is clearly oscillatory and its phase and
frequency are well-defined.

IV. SUMMARY

In summary, we have experimentally demonstrated
a state where oscillators are synchronized neither with
each other nor with the mean field, but the amplitude
of the latter is, nevertheless, non-zero. This peculiar
coherent state is possible because phases of oscillators,
though not locked, are coordinated in a way that their
distribution is non-uniform. Our results well correspond
to analytical results for phase oscillators [13], [14], [32].
The SOQ regime we observe emerges when the system is
brought, due to the phase shift, close to the point where
attractive interaction becomes repulsive. Thus, we expect
SOQ to be observed in other physical systems where
the global coupling is characterized by an amplitude-
dependent phase shift or time delay. For example, these
dynamics appear in systems where the global coupling
contains linear and cubic terms [14], cf. [?]. Moreover,
numerical observations, e.g., reported in [33], indicate



that SOQ states can appear in linearly coupled ensem-
bles of strongly nonlinear oscillators. Analysis of such
systems is a topic for future studies, both theoretical and
experimental. Finally, we notice that we have used a
simple and easily computable measure Amin and have
shown that it reliably reveals macroscopic incoherence-
coherence transition. We suggest that this quantity can
be efficiently used in other experimental studies, as well
as in numerical studies of finite size ensembles.
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