

May 26 – 29, 2015 Auburn, Alabama

Poster		Abstract
A15	Photoemission and work function of the lunar dust simulant Libor Nouzak	57
Alb	Small dispersed particles synthesis in the plasma of arc and radio-frequency discharges Gabdullin Maratbek	58
A17	Expansion of Yukawa dust clouds John K. Meyer	59
A18	The Dust Particle Evolution in Divertor Plasma Sandugash Kodanova	60
A19	Experiments on sputtering of dust grains Jiri Pavlu	61
A20	A sensor deployment algorithm for underwater sensor networks inspired by dusty plasma crystallization Xiangyu Yu	62
A21	Parameter Study in Mobile Sensor Network Deployment Algorithm Based on Dusty Plasma Simulation Xin Qianand	63
A22	Structural and transport properties of the complex plasmas in the combined gas discharge	64
A23	Merlan Dosbolayev Resolution of Forces in Poloidal Rotations in Dusty Plasmas Stephen Adams	65
A24	Rotational dust clusters in complex (dusty) plasmas Bo Zhang	66 67
A25		68
A26	Study of a two-dimensional shear flow Chun-Shang Wong	(*************************************
A27	Experimental Observations of Vertical Clouds In a Boundary-Controlled Dusty Plasma Environment Jorge Carmona-Reyes	69

SMALL DISPERSED PARTICLES SYNTHESIS IN THE PLASMA OF ARC AND RADIO-FREQUENCY DISCHARGES

Batryshev D.G., Ramazanov T.S., Dosbolayev M.K., Gabdullin M.T.

IETP, NNLOT, LEP Al-Farabi Kazakh national university, 71, al-Farabi av., Almaty, 050040, Kazakhstan

In the plasma of combined discharge the small dispersed graphite particles were obtained. The synthesis process of small dispersed particles in the plasma of combined discharge represents two parallel processes which are synthesis process of polydispersive graphite particles using arc discharge graphite electrode evaporation and extraction of small dispersed graphite particles using separation method of polydispersive dust structure in the plasma of radio-frequency (RF) discharge. The arc-discharge evaporation method is well known method for obtaining of different particles [1,2], whereas separation method in plasma of radio-frequency is a new method of obtaining small dispersive particles [3-5].

Obtained samples of polydispersive graphite microparticles have diameter in range of 1-100 μ m. The size and chemical composition of samples were examined using a scanning electron microscope Quanta 3D 200i (SEM, FEI, USA). The average size of graphite particles after separation in RF discharge was equal to 5 μ m.

The advantage of proposed method in the plasma of combined discharge is the simplicity of technology for obtaining small dispersed particles without limitations on the choice of materials.

- V. E. Muradyan, Yu. M. Shulga, M. Leonowicz, Ferromagnetic nanoparticles produced by arc-discharge evaporation of Fe-Ni-graphite electrodes / Carbon Nanomaterials in Clean Energy Hydrogen Systems, 2008, pp 313-316.
- 2. Yoshinori Ando, Sumio Iijima, Preparation of carbon nanotubes by arc-discharge evaporation / Jpn. J. Appl. Phys. Vol. 32, No 1A/B, pp 107-109.
- D.G. Batryshev, T.S. Ramazanov, M.K. Dosbolayev, M.T. Gabdullin, Separation Process of Polydisperse Particles in the Plasma of Radio-frequency Discharge / Journal of nanoand electronic physics, Vol. 6 No 3, 03032(3pp) (2014).
- D. Batryshev, T. Ramazanov, M. Dosbolayev, M. Gabdullin, S. Orazbayev, Method of separation of polydisperse particles in plasma of radio-frequency discharge / Book of Abstract International Conference on Strongly Coupled Coulomb Systems, Santa Fe, New Mexico, USA, 2014, July 27th – August 1st, P. 127.
- D. Batryshev, T. Ramazanov, M. Dosbolayev, M. Gabdullin, S. Orazbayev, Separation of Polydisperse Particles In Plasma of Radio–Frequency Discharge / Book of Abstract 7th International conference on the Physics of Dusty Plasma, New Delhi, India, March 3-7, 2014, P. 100.