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Abstract. In cognitive science there has been considerable interest in the understanding of ex-
pertise development. Models for exploring human complex skill development are often based
on comparisons between experts and novices, and use measurements of performance at dif-
ferent levels of skills as predictors. In this paper we study the development of expertise by
analysing video game telemetry data collected from a real-time strategy game. Data that relate
to cognitive-motor abilities, attentional and perceptual processes were collected from StarCraft
2 game players from seven levels of expertise. We develop an extended generalized additive
model for ordered categorical data to investigate the effects of predictors on skill development.
Keywords: ordered categorical, cognitive science, generalized additive models, skill learning.

1 Introduction

Thompson et al.[18] conducted a study exploring human complex skill development.
Their aim was to identify potential predictors of expertise in real-time strategy (RTS)
video games using the telemetric data collected from RTS StarCraft 2 game players.
StarCraft 2 is a popular video game which has millions of players worldwide. Thomp-
son et al.[18] examined measures that relate to cognitive-motor abilities, attentional
and perceptual processes. Using random forest classifiers, they disproved the assump-
tion that importance of variables across skill levels remains static. Moreover, they
argue that telemetric data can become a standard tool for studying human cognition
and learning. As different expert areas such as, e.g. chess, basketball, surgery, are ex-
pected to show sufficient consistency in development of expertise, many studies have
been devoted to exploring skill development in strategy games (Chase and Simon[8],
Charness[9], Ericsson and Charness[10]).

This paper proposes to investigate development of expertise using additive regres-
sion modelling. The paper develops an extended generalized additive model for or-
dered categorical data (Wood et al.[19]) to study the effects of predictors on skill
learning. Modelling categorical responses using smooth functions of predictors al-
lows us to confirm Thompson et al.[18] findings and to further investigate the effects
of predictors on skill development.
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2 Video game data

The telemetric data collected from 3,360 RTS StarCraft 2 game players from 7 levels
of expertise. The dataset is public available at UCI Machine Learning Repository
(Bache and Lichman[5]). For each player, the level of expertise measured by the
league in which they contend, serves as an ordered response Yi. Yi takes a value
from r = 1, 2, . . . , 7, indicating Bronze, Silver, Gold, Platinum, Diamond, Master,
and Professional leagues. There are eighteen predictor variables available including
measures of attentional control, perceptual process and cognitive-motor speed. The
examination of the data and preliminary modelling revealed 13 variables relevant to
skill development. Table 1 summarizes the predictors under study. The time at which
values of the predictors is recorded is in terms of timestamps in the StarCraft 2 replay
file. GapBwPACs, ActionLatency, NumberOfPACs, and ActionsInPAC are
four variables that refer to a certain period of time during which a player performs at a
specific location. Perception action cycle (PAC) was defined by Thompson et al.[18]
as screen fixations with one or more actions. For the complete information about the
variables used in the study, see Thompson et al.[18].

Table 1. Telemetric data characteristics

Name Description Min Max
APM Action per minute 22.06 389.83
SelectByHotkeys Number of unit or building selections 0 0.043

made using hotkeys per timestamp
AssignToHotkeys Number of units or buildings assigned 0 1.75· 10−3

to hotkeys per timestamp
UniqueHotkeys Number of unique hotkeys used per 0 10

timestamp
MinimapAttacks Number of attack actions on minimap 0 3.02· 10−3

per timestamp
NumberOfPACs Number of perception action cycles (PAC) 6.79· 10−4 7.97· 10−3

per timestamp
GapBwPACs Mean duration in milliseconds between 6.667 237.143

PACs
ActionLatency Mean latency from the onset of PACs 24.09 176.37

to their first action in milliseconds
ActionsInPAC Mean number of actions within each PAC 2.039 18.558
TotalMapExplored The number of 24x24 game coordinate 5 58

grids viewed by the player per timestamp
WorkersMade Number of SCVs, drones, and probes 7.7· 10−5 5.15· 10−3

trained per timestamp
UniqueUnitsMade Unique unites made per timestamp 2 13
ComplexAbilUsed Abilities requiring specific targeting 0 3.08· 10−3

instructions used per timestamp



3 Modelling approach

Many models have been proposed to analyze ordered categorical data which became
well-known by virtue of Cox[7] and Plackett[16]. The most appealing regression
models for ordered categories are cumulative logit (proportional-odds version of the
cumulative logit) models expressed in terms of a latent usually unobservable continu-
ous variable proposed by McCullagh[15], Anderson and Philips[4], Hastie and Tibshi-
rani[13]. McCullagh[15] and Anderson and Philips[4] introduced parametric regres-
sion models with ordered categorical responses, whereas Hastie and Tibshirani[13]
extended this to a non-parametric version. The parameter estimation for those models
is based on maximizing likelihood assuming independent multinomial observations
using Fisher scoring algorithm. The cumulative logit models were also discussed in
Anderson[3], Agresti[1], Agresti[2], Goodman[12]. Fahrmeir and Lang[11], Kneib
and Fahrmeir[14] developed a general class of semi-parametric additive regression
models for categorical responses from a Bayesian perspective.

Extended generalized additive model

The model proposed in this paper is within a new general framework to generalized ad-
ditive modelling for non-exponential family responses introduced by Wood et al.[19].
The framework of Wood et al.[19] proposes two methods for the generalized addi-
tive models (GAM) generalization: an extended GAM fitting for the cases with a
single linear predictor and a log likelihood expressed as a sum over the log likeli-
hood for each response datum; and a general model estimation when log likelihood
depends non-linearly on smooth functions of predictors. The first method includes
such distributions outside the exponential family as beta, zero inflated Poisson, nega-
tive binomial, Tweedie, scaled t distribution and ordered categorical data. The GAM
fitting method is extended for these models. The second extension requires different
approach for model fitting and general and reliable smoothing parameter estimation.
It covers such models as Cox proportional hazard (Cox[6]) and Cox process mod-
els, generalized additive models for location scale and shape proposed by Rigby and
Stasinopoulos[17] and multivariate additive models (Yee and Wild[21]). Below is a
brief description of modelling with ordered categorical responses within a new ex-
tended GAM.

Consider independent response observations, yi, that take values from r = 1, . . . , R,
where r is ordered category label. A latent variable ui = µi + ϵi is introduced with
the c.d.f. of ϵi being F. Then, given −∞ = α0 < α1 < . . . < αR = ∞, yi = r if a
latent variable ui is such that αr−1 < ui ≤ αr,

P (Yi = r) = F (αr − µi)− F (αr−1 − µi).

The usual choice for the c.d.f. of ϵ is the standard logistic or normal. For identi-
fiability reasons α1 = −1, so there are R − 2 extra unknown parameters. To impose
increasing ordering on the cutting points, αr are set as

αr = α1 +
r−1∑
j=1

exp(θj), 1 < r < R,



so θj are parameters to be estimated. The mean value of the latent variable depends
on the predictor variable in the following way,

µi = Aiγ +
∑
j

fj(xji),

where A is a model matrix for the strictly parametric terms, γ is a vector of unknown
parameters, fj is an unknown smooth function of the predictor variable xj , where
xj can be vector valued. Each smooth term is represented by reduced rank spline
smoothers fj(xj) =

∑
k

βkjbkj(xj), where bkj are known spline basis functions, βkj

unknown coefficients. Then, the mean of the latent variable can be expressed as µ =
Xβ, with the model matrix X combining A and matrix of spline basis, and γ being a
part of β.

The log likelihood of the model can be written as

l =
n∑

i=1

li(yi, µi,θ),

where li is the log likelihood for each observation, θ is a (R − 2)−vector of the
extra parameters, θj , that control the thresholds. Then, the deviance corresponding
to the observation yi is defined in the standard way as Di = 2(l̃i − li), where li =
maxµi li(yi, µi,θ) is the saturated log likelihood. Given θ, the parameters β are
estimated by minimization of the penalized deviance

D(β,θ) =
∑
i

Di(β,θ) +
∑
j

λjβ
TSjβ,

where a quadratic penalty term βTSjβ measuring function smoothness is associ-
ated with each smooth fj and λj being a smoothing parameter. Penalized iteratively
re-weighted least squares (PIRLS) is applied for β estimation. Estimation of θ is
achieved by minimization of the negative Laplace approximate marginal likelihood
(LAML),

V =
D(β̂,θ)

2
− l̃(θ) +

log |XTWX+ Sλ| − log |Sλ|+
2

− Mp

2
log(2π),

where Sλ =
∑

j λjS
j and |Sλ|+ is the product of the positive eigenvalues of Sλ,

Mp is the number of zero eigenvalues of Sλ. Newton’s or a quasi-Newton’s method
is used for V minimization. Several issues with numerical instability have to be taken
into account to make the optimization procedure efficient and reliable. This is fully
covered in Wood et al.[19]. Generalized additive modelling with ordered categorical
data as well as other extensions are implemented in an R package mgcv available at
CRAN (Wood[20]).

Additive model for video game data

The preliminary backward selection, first in the framework of a generalized linear
model and then in the framework of an extended GAM, revealed thirteen covariates



relevant to skill development (see section 2). The extended GAM for ordered categor-
ical data with R = 7 was fitted with the selected set of predictors using smooth terms.
We first consider a model with all selected predictors having non-linear effects on the
mean of the ordered categorical latent variable.

Model 1:

µi = f1(NumberOfPACsi) + f2(UniqueHotkeysi) + f3(WorkersMadei)

+f4(GapBwPACsi) + f5(ActionLatencyi) + f6(AssignToHotkeysi)

+f7(MinimapAttacksi) + f8(APMi) + f9(SelectByHotkeysi)

+f10(ActionsInPACi) + f11(TotalMapExploredi)

+f12(UniqueUnitsMadei) + f13(ComplexAbilUsedi),

where the model terms f1 − f13 are unknown smooth functions of the corresponding
predictors. Thin plate regression splines are used for their representations. The pre-
dictor values were preprocessed using square root or log transformation in order to
avoid gaps with very small amount of data that account for the Professional league.
There was a significant linear dependence of NumberOfPACs, UniqueHotkeys
and WorkersMade on the mean of the latent variable, so that it was sufficient to
add strictly parametric structure for these three predictors. The resulted model has the
following structure.

Model 2:

µi = β1·NumberOfPACsi + β2·UniqueHotkeysi + β3·WorkersMadei

+f1(GapBwPACsi) + f2(ActionLatencyi) + f3(AssignToHotkeysi)

+f4(MinimapAttacksi) + f5(APMi) + f6(SelectByHotkeysi)

+f7(ActionsInPACi) + f8(TotalMapExploredi)

+f9(UniqueUnitsMadei) + f10(ComplexAbilUsedi),

where β1, β2 and β3 are unknown parameters.
Including the bivariate smooth of the APM and the second most important vari-

able, SelectByHotkeys, gives better model in comparison with the model with
univariate effect of the APM. Moreover, constructing a tensor product interaction of
GapBwPACs and ActionLatency, with their main effects being included sepa-
rately further improves the model fit. The following additive structure for the mean
value of the ordered categorical latent variable was considered as the third model.

Model 3:

µi = β1·NumberOfPACsi + β2·UniqueHotkeysi + β3·WorkersMadei

+f1(GapBwPACsi) + f2(ActionLatencyi)

+f3(GapBwPACsi,ActionLatencyi) + f4(AssignToHotkeysi)

+f5(MinimapAttacksi) + f6(APMi,SelectByHotkeysi)

+f7(ActionsInPACi) + f8(TotalMapExploredi)

+f9(UniqueUnitsMadei) + f10(ComplexAbilUsedi),



where all the predictors except for the first three have nonparametric smooth effects.
A tensor product interaction of GapBwPACs and ActionLatency, is used for rep-
resenting f3 with the main effects comprised in f1 and f2. .

4 Results and discussion

In addition to the above mentioned models, we fitted submodels with certain terms
omitted. The model selection procedure showed that the best model in terms of the
Akaike information criterion is the full model 3. Other model performance measures
such as generalized cross validation score, adjusted r2 and percentage deviance ex-
plained were also better for model 3 than for other considered models.

Figure 1 illustrates the estimated effects of the two bivariate smooths of model 3.
APM variable is used as a measure of cognitive speed. This variable is shown to have
the highest rank of the predictive importance Thompson et al.([18]) in distinguishing
Bronze-Professional classifier. The first decreasing trend of the APM (figure 1, right
panel) is due to the high correlation between the APM and SelectByHotkeys vari-
ables (higher values of the covariate effect correspond to higher league level). Both
predictors have increasing trends when considered separately as smooths of a single
variable.
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Fig. 1. Video game data: the estimated interactions between Gap Between PACs and Action
Latency variables, and between APM and Select By Hotkeys.



The estimates of the univariate effects are shown in figure 2. As expected, the main
effects of the two characteristics of the PACs, GapBwPACs and ActionLatency,
are decreasing with increase in the skill level (panels (a) and (b)), while the other two
have increasing trends (panel (e) and the positive parametric effect of NumberOfPACs).
An adaptive smoother was used to estimate the effect of the ActionsInPAC, that
allowed the degree of smoothing to vary along the range of the predictor values.
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Fig. 2. Video game data: the estimated univariate smooth effects.

The strong increasing effect of the MinimapAttacks (fig. 2, panel (d)) which
is used as a measure of the attentional control, supports the hypothesis of Thompson
et al.[18] that more skillful players act on minimap more often. On the contrary the
TotalMapExplored has a decreasing trend (panel (f)), more skillful players view
the total map less often. Usage of hotkeys allows players to build and control game
units in more efficient way, so that the higher values of the AssignToHotkeys
variable would correspond to higher level of expertise (panel (c)). The estimated ef-
fects of the last two predictors do not have such monotonic features as for the other
smooths. Players in the highest leagues seem to use moderately abilities that require
particular targeting instructions (panel (h)), and keeping from the production of the
Unique Units (panel (g)). Whereas, the lowest league players make medium number
of units while avoiding complex abilities. The estimated monotone increasing trend of
the WorkersMade shows that to progress players must produce more workers. How-



ever, the importance of this variable diminishes for the highest league (Thompson et
al.[18]), which is explained by possible automatization of the worker production skill.
Moreover, to advance in skills, players are required to put more effort on managing
their learning and increasing cognitive demand, which is reflected by the positive lin-
ear trend of the UniqueHotKeys predictor.

This study supports Thompson’s et al. [18] proposition that telemetric data can
be used as a standard tool for studying human cognition and learning. Moreover, the
proposed model confirms the previous findings that the assumption that importance of
predictors across skill levels remains static is not correct. We showed that constructing
non-isotropic tensor product splines used to model smooth interactions improves pre-
diction of skill development. Modelling categorical responses using smooth functions
of predictors allows to capture skill learning in a continuous fashion.
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