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An approach is presented to derive a pseudopotential model of interaction between dust particles that simul-
taneously takes into account the polarization, finite size and screening effects. The consideration starts from
the assumption that the dust particles are hard balls made of a conductive material such that their mutual in-
teraction and interaction with the electrons and ions of the buffer plasma can analytically be interpreted within
the method of image charges. Then, the renormalization theory of plasma particles interaction, leading to the
so-called generalized Poisson-Boltzmann equation, is applied to obtain the interaction potential of two isolated
dust grains immersed into the buffer plasma of electrons and ions. After that the Ornstein-Zernike relation
in the hyper-netted chain approximation (HNC) is numerically solved to study the radial distribution function
and the static structure factor of the dust grains. In doing so the system of hard balls is actually replaced by a
system of point-like charges with properly adjusted number density in the form of van der Waals correction. A
straightforward comparison is made with the Monte-Carlo simulation to find a fairly good agreement for the
radial distribution function at relatively high dust couplings.

c© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

These days strongly coupled Coulomb systems are still attracting much interest of the plasma physics community
since they frequently appear in contemporary context ranging from nanotechnology [1–3] and Penning traps [4]
to astrophysics [5–7]. One common feature that unifies such intrinsically various objects is strong interparticle
interactions caused by the long-range electrostatic forces with the latter being responsible for notorious difficul-
ties in theoretical description. It is, thus, rather obvious that the realm of strongly coupled plasmas cannot be
theoretically covered by one single approach. Moreover, the entire apparatus of theoretical physics [8, 9] and the
simulation techniques [10,11] are engaged to correctly describe the whole range of phenomena occurring at such
different scales.

A dusty plasma takes a very special place among the strongly coupled Coulomb systems since it is a funda-
mentally classical system whose behavior is readily visualized in rather sophisticated experimental researches.
This provides a good opportunity to test theoretical approaches worked out for the past decades and to shed some
light on what effect the strong interactions have on thermodynamic [12, 13] and transport [14, 15] properties of
plasmas. Until very recently almost all investigations have been adapting the Yukawa potential to describe the in-
teraction between the dust particles [16,17]. As it will be shown below such an assumption implicitly implies that
the dust particles are point-like charges which cannot be always true especially if the grain number density grows.
This work solely focuses on the influence of finite dimensions of dust particles on such measurable macroscopic
characteristics as the radial distribution function and the static structure factor.

2 Dusty plasma parameters

Let the dust particles, called grains, be merged into a two-component hydrogen plasma consisting of free electrons
with the electric charge−e and the number density ne, and free protons with the electric charge e and the number
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density np. It is assumed hereinafter that the dust particles are metallic hard balls of radius R and possess the
negative electric charge −Zde with Zd being the grain charge number. Since an ordinary plasma medium must
remain quasineutral, the equality np = ne + Zdnd should essentially be held with nd being the dust particle
number density.

The state of the buffer hydrogen plasma is described by the density parameter rs = a/aB , where ae =
(3/4πne)

1/3 stands for the average distance between free electrons in the buffer plasma, aB = �
2/mee

2 is
the very well known first Bohr radius, � designates the reduced Planck constant and me denotes the electron
mass. The coupling parameter of the buffer plasma Γ = e2/aekBT represents the ratio of the average Coulomb
interaction and thermal kinetic energies of free electrons. Here kB denotes the Boltzmann constant and T stands
for the plasma temperature.

The interrelation between the dust component and the buffer plasma is introduced by the Havnes parameter
P = Zdnd/ne that determines the ratio of the charge densities of the dust and electron components [18], as
well as by the screening parameter κ = ad/λD, with λD = (kBT/4π(ne + np)e

2)1/2 being the Debye screen-
ing length and ad = (3/4πnd)

1/3 being the mean intergrain spacing. The main objective in the sequel is to
consistently treat the finite dimensions of dust particles that are to be characterized by the grain size parameter
D = ad/R.

It has to be strictly emphasized that numerical values of plasma parameters, i.e. all the number densities and
the plasma temperature, are simply retrieved if all magnitudes of the dimensionless parameters mentioned above
are thoroughly specified.

3 Intergrain interaction model

As it has already been mentioned above the grains are assumed to be metallic charged balls such that the inter-
action micropotentials between the dusty plasma constituents are found in the framework of the image charge
method as follows [19]:

ϕee(r) = ϕpp(r) = −ϕep(r) =
e2

r
, (1)

ϕed(r) =
Zde

2

r
− e2R3

2r2(r2 −R2)
, ϕpd(r) = −Zde

2

r
− e2R3

2r2(r2 −R2)
, (2)

ϕdd(r) =
Z2
de

2

R

⎡
⎢⎢⎢⎢⎣

1

sinhβ
∞∑

n=1

(−1)n+1

sinhnβ

− 1

⎤
⎥⎥⎥⎥⎦ . (3)

where coshβ = r/2R.
It is seen from (2) that the electrostatic induction results in that the interaction of a charged particle with a

metallic charged ball comprises, together with the pure Coulomb interaction, an additional term corresponding
to the attraction of the charged particle with an induced image charge of opposite sign. It can be learnt from
formula (3) an infinite number of image charges must be taken into account in describing the interaction between
two charged metallic balls.

It makes no sense to consider the penetration of the electrons and the protons into the dust particle since it
only alters the grain charge already accounted for by the introduction of the grain charge number Zd. The same
can be said about the interpenetration of grains. Thus, to treat the finite size effects in interaction potentials
(2) and (3) the substitutions ϕd(e,p)(r) → ϕd(e,p)(r + R), ϕdd(r) → ϕdd(r + 2R) are made to imply that the
distances between the particles involved are now counted from the grain surface. Such a shift in distance counting
is introduced in order to correctly derive the Fourier transforms of interaction potential (2) and (3) needed for all
further consideration. At the same time this means that the system of hard balls is virtually substituted by the
system of point-like charges with the appropriately modified interaction potential. What other consequences such
a treatment has on the collective events in plasmas is discussed in the following section.
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The Fourier transforms of micropotentials (1), (2) and (3) take the form:

ϕ̃ee(k) = ϕ̃pp(k) = −ϕ̃ep(k) =
4πe2

k2
, (4)

ϕ̃pd(k) = −4πZde
2

k2
+
4πZde

2R

k

[
Ci(kR) sin(kR) +

1

2
cos(kR)(π − 2Si(kR))

]
− πe2R

k

×[2Ci(kR) sin(kR)− 2Ci(2kR) sin(2kR) + cos(kR)(π − 2Si(kR))

− cos(2kR)(π − 2Si(2kR)], (5)

ϕ̃ed(k) =
4πZde

2

k2
− 4πZde

2R

k

[
Ci(kR) sin(kR) +

1

2
cos(kR)(π − 2Si(kR))

]
− πe2R

k

×[2Ci(kR) sin(kR)− 2Ci(2kR) sin(2kR) + cos(kR)(π − 2Si(kR))−
cos(2kR)(π − 2Si(2kR)], (6)

ϕ̃dd(k) =
4πZ2

de
2

k2
+
Z2
de

2Rf(k)

k
− 8πZde

2R

k
[Ci(2kR) sin(2kR)+

1

2
cos(2kR)(π−2Si(2kR))], (7)

where f(k) is a known interpolating function.
To account for the screening effects in the interaction of two isolated dust particles the following generalized

Poisson-Boltzmann equation is applied [20]:

ΔiΦab(r
a
i , rbj) = Δiϕab(r

a
i , rbj)−

∑
c=e,p

nc

kBT

∫
Δiϕac(r

a
i , rck)Φcb(r

b
j , rck)drck, (8)

with nc being the number density of particle species c. Note that in equation (8) the summation is only taken
over the free electrons and protons of the buffer plasma, c = e, p, whereas the number density of dust particles is
kept to be zero. It is deliberately done since of interest is the interaction of two isolated grains whose screening
is realized by the electrons and protons of the buffer plasma.

Note that the generalized Poisson-Boltzmann equation can be strictly derived from the Bogolyubov hierarchy
for the equilibrium distribution functions in the pair correlation approximation [21]. Moreover, in the past decade
it was successfully applied to a variety of plasmas, such as semiclassical [22], partially ionized [23, 24] or even
dusty plasmas in the Debye approximation [25]. Some of those results were then successfully used to neatly
describe experimental data on X-ray scattering in dense plasmas [26, 27].

In virtue of (8), the microscopic potentials ϕab determine the intergrain potential Φdd which takes into account
the screening phenomena due to the electrons and protons of the buffer plasma by incorporating the corresponding
number densities. In the Fourier space, the set of equations (8) turns into a set of linear algebraic equations whose
solution for the intergrain interaction potential is found as:

Φ̃dd(k) = ϕ̃dd(k)−
Apϕ̃

2
pd(k) +Aeϕ̃

2
ed(k)−AeApϕ̃ee(k)[ϕ̃

2
ed(k) + ϕ̃2

pd(k) + 2ϕ̃ed(k)ϕ̃pd(k)]

1 + (Ae +Ap)ϕ̃ee(k)
, (9)

where Ae,p = ne,p/kBT .
The expression for the intergrain potential in the configuration space is utterly obtained from (9) by the inverse

Fourier transform

Φdd(r) =

∫
Φ̃dd(k) exp(−ikr)dk. (10)

It is worth noting that under the present consideration the dust particles have absolutely no effect on the interaction
of the buffer plasma particles, i.e. the free electrons and protons. At the same time the well used Yukawa potential
is a limiting case of the above expressions when R→ 0, i.e. when the dust particles are assumed to be point-like
charges to entirely ignore their finite dimensions.
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As it has been mentioned above expressions (9) and (10) simultaneously take into account the finite size of
grains, the shielding of their electric field due to the buffer plasma and the polarization phenomena. A theoret-
ical analog of the present approach is the dielectric medium approximation [28] in which the screening in the
intergrain interaction is accounted for by the dielectric function of the buffer plasma. The only drawback of both
methods is that the dusty plasma is meant to be in equilibrium state which somehow restricts the applicability
of the results to real dusty plasma experiments. Nevertheless, deviations of the particle distribution functions
from the Maxwellian, caused by the so-called absorption and shadowing effects. can easily be handled to show
that the Yukawa potential turns invalid at rather large distances between grains [29–31]. Moreover, under certain
external conditions the free flight paths of the buffer plasma particles may turn less in magnitude than the Debye
shielding length and, thus, an increasingly important role is played by interparticle collisions that result in ion
trapping in the vicinity of dust particles [32] or even requires an application of hydrodynamics to correctly treat
the plasma shielding effect [33]. It has to be admitted that real dust grains are hardly spherical in shape which
leads to non-zero dipole moments of dust particles and, as a consequence, to anisotropic interactions between
them [34]. The intergrain interaction potential can yet be determined experimentally with the aid of some theo-
retical arguments which, for example, was done in [35] for the rf discharge dusty plasma in the framework of the
Langevin dynamics.

4 Correlation functions of dusty plasmas

It has already been stressed in the previous section that the present consideration essentially stems from the
insight that the system of metallic hard balls is to be replaced by the system of point-like charges. This has
immediate effect on the interaction between two particular grains since if the number density of dust particles is
left unchanged, then, the average interaction energy will inevitably decrease because the distance between grains
is now counted from their surfaces. Thus, the grain number density should be adjusted for the average interaction
energy to stay the same which is simply achieved by the idea of van der Waals when he introduced his famous
correction for the finite size of atoms into the ideal gas equation of state. In particular, the effective number
density of dust particles neff

d is proposed to take the following form:

neff
d =

nd

1− 4πndR
3

3Δ

. (11)

Here Δ = π/
√
18 stands for the packing parameter of the hexagonal packing of hard balls which is believed

to be the most compact of all possible packings in the theory of condensed matter physics. The idea is to only
consider the volume available to the dust particles such that the grains should completely lose their mobility
when the packing becomes the most compact and the distance between the surfaces of two adjacent dust particles
turns zero. In this particular case the effective number density of dust particles turns infinite and the real average
distance between them becomes equal to 2R as it should be.

Neither the number density of dust particles nor its effective counterpart does enter interaction potential (9)
and (10) that virtually holds for the interaction energy of two isolated grains whose shielding is performed by the
electrons and protons of the buffer plasma. It is therefore fully justified to further apply the constructed effective
potential model in well-tested theoretical approaches and computer simulation techniques treating the collective
events for dust particles as it is routinely done in a one-component system. One of the reliable methods for
studying system correlation functions is the method of integral equations [36, 37]. In particular, the Ornstein-
Zernike relation in the hyper-netted chain approximation (HNC) is numerically solved with the effective number
density introduced above to obtain the radial distribution function of dust particles whose non-monotonic behavior
is portrayed in Figures 1 and 2 to clearly demonstrate the short- or even long-range order formation. A comparison
is also made with the Monte-Carlo simulations with the same interaction potential between grains to find a fairly
good agreement at rather high values of the dust coupling.

Figures 3 and 4 show non-monotonic behavior of the static structure factor calculated within the HNC for
different values of the grain size parameter. The maxima and minima, interpreted as an order formation, turn
less pronounced when the polarization phenomena are properly taken into account since they always weaken
repulsion between the dust particles. Analogous inference can absolutely be made in case of the decrease in

www.cpp-journal.org c© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



184 A.E. Davletov et al.: Polarization and finite size effects

the grain size parameter D.Note that quite a similar behavior of the correlation function was observed in the
Percus-Yewick and superposition approximations with further experimental verification for the gas-discharge
plasmas [38], cf. [39, 40].

Fig. 1 Radial distribution function gd of grains against the
dimensionless distance r/ad at Γ = 0.2, P = 5, κ = 4
and D = 2. Blue line: without polarization phenomena; red
line: with polarization phenomena; circles: corresponding
Monte-Carlo simulation data.

Fig. 2 Radial distribution function gd of grains against the
dimensionless distance r/ad at Γ = 0.2, P = 5, κ = 4
and D = 8. Blue line: without polarization phenomena; red
line: with polarization phenomena; circles: corresponding
Monte-Carlo simulation data.

Fig. 3 Static structure factor Sdd of grains against the di-
mensionless wavenumber kad at Γ = 0.2, P = 5 and κ = 4
with the polarization phenomena taken into account. Red
line: D = 2; blue line: D = 2; green line: D = 8.

Fig. 4 Static structure factor Sdd of grains against the di-
mensionless wavenumber kad at Γ = 0.2, P = 5 and κ = 4
without the polarization phenomena taken into account. Red
line: D = 2; blue line: D = 2; green line: D = 8.

5 Conclusions

This paper has studied the correlation functions of dust particles starting from the original interaction model
taking into account the polarization phenomena, the finite size of grains and the screening due to the buffer plasma
particles. The grains have been assumed to be metallic hard balls to take into account the polarization phenomena
by invoking the image charge method. Then, the generalized Poisson-Boltzmann equation has been utilized to
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appropriately treat the shielding of electric fields. The main idea behind this paper is to substitute the hard ball
system of interest by a system of point-like particles with the properly introduced effective number density as it
is regularly done in the van der Waals equation of state of real gases. In particular, the Ornstein-Zernike relation
in the hyper-netted chain approximation has been iteratively solved with the effective number density of grains
and highly pronounced peaks in the curve of the radial distribution function and the static structure factor unveils
the short- or even long-range order formation in the system.

It is concluded on the basis of the above stated results that the polarization effects weaken the intergrain
interaction energy as compared to the case of taking into account the finite size effects only which manifests itself
in that the corresponding peaks in the correlation functions decrease in height with a shift to smaller values of the
distance or the wavenumber, respectively. The Monte-Carlo simulations have shown a satisfactory agreement for
the radial distribution function at relatively high values of the dust coupling.
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