2015 **SCIEI Toronto, Canada CONFERENCES PROGRAM** August 17-18, 2015

2015 2nd International Conference on Software Engineering(ICOSE 2015) 2015 2nd International Conference on Substantial Environmental Technologies(ICSET 2015) 2015 4th International Conference on Advancements in Information Technology(ICAIT 2015) 2015 4th International Conference on Electronics, Mechatronics and Automation(ICEMA 2015)

Call for Papers

December 2015, Abu Dhabi, UAE

Abu Dhabi, UAE, Dec 06-08, 2015

Submission deadline: 2015-9-10

2015 The 2nd International Conference on Renewable Energy Technologies (ICRET 2015) http://icret.org/, submission e-mail: icret@sciei.us.

Conference proceeding of ICRET 2015 will be selected to be published by Journal of Clean Energy Technologies (ISSN: 1793-821X)

2015 The 2nd International Conference on Mechatronics and Mechanical Design (ICMMD 2015) http://icmmd.org/, submission e-mail: icmmd@sciei.org.

Conference papers will be selected to publish by Applied Mechanics and Materials Journal.

2015 The 4th International Conference on Nanostructures, Nanomaterials and Nanoengineering (ICNNN 2015) http://icnnn.org/, submission e-mail: icnnn@sciei.org.

Conference papers can be selected and published by by Advanced Materials Research Journal.

December 2015, Tokyo, Japan

Tokyo, Japan, Dec 26-27, 2015

Submission deadline: 2015-9-25

2015 The 4th International Conference on Information and Intelligent Computing (ICIIC 2015)

http://www.iciic.org/, submission e-mail: iciic@sciei.org

Conference papers can be selected and published by Journal of Computers or Journal of Advances in Information Technology.

2015 The 4th International Conference on Control, Robotics and Informatics (ICCRI 2015)

http://www.iccri.org/, submission e-mail: iccri@sciei.org

Conference papers can be selected and published by Journal of Automation and Control Engineering or Lecture Notes on Information Theory.

2015 The 4th International Conference on Network, Communication and Computing (ICNCC 2015) http://www.icncc.org/, submission e-mail: icncc@sciei.org.

Conference papers can be selected and published by Journal of Communications or International Journal of Computer and Communication Engineering.

Toronto, Canada

2015 SCIEI Toronto, Canada CONFERENCES PROGRAM

and the state of the second second

nnesen na na standar era sametan in ina serieta ina serieta Sectoretin (SCATTIZET)

Ramada Plaza: the Premier Downtown Hotel in Toronto, ON

300 Jarvie Street, Toronto, Ontario M53 205. Canada T: (418) 977-4823 (Toil Free: 1-800-567-2233 http://www.camadaplazatoronto.com/

Contact: SCOTTTHOMPSON Ensit reservationsgiramadaplazatoronto.com

1

	Toronto, Canada
E013	Equilibrium Control on Four-Limbed Climbing Robot
	Mr. Nguyen Anh Dung, Akira Shimada
	Shibaura Institute of Technology, Japan
	Abstract
Entr	This research represents a method to improve the technology that enables the design and simulation of a four-limbed climbing robot, named FLC-Robot. It is equipped with planning capabilities to free climb vertical terrain. It means to extend the robot's ability to a vertical direction under the gravity force. However, we need to analyze climbing and create the theory in parallel with hardware development. In this paper, the equilibrium allowance area of the four-limbed climbing robot is introduced and the corresponding torque is calculated. Hence, this paper starts with a rudimentary analysis of mechanical structure and kinematics of FLC-robot. Secondly, a 3D climbing robot model is built and simulated in Matlab-Simscape environment. Finally, the corresponding motion planning and control method is performed considering statics and dynamics.
E015	Teaching Industrial Robot Manipulators by Easy to Use Interface Systems Prof. Genci Capi , Delowar Hossain, Shin-Ichiro Kaneko and Koco Bode University of Toyama, Japan
	Abstract
	The need for simple and safe teaching methods for robot manipulators need to be considered because: 1) Small size robots presence in everyday life environments is increasing requiring
	non-experts operators to teach the robot; 2) In small applications, the operator has to teach several different motions in a short time. In this paper, we evaluate the performance of three
	teaching systems for robot manipulators which utilize the following devices 1) i-phone; 2) haptic and 3) kinect. In difference from previous force sensor based teaching, proposed systems are safe because the operator keeps the distance with the robot. The performance is compared in terms of time to complete the task and accuracy. The results of 10
	non-experienced subjects show the advantages of one method over the others.
E2003	Enhancement of ZnO films photoluminescence by annealing and H-plasma treatment Kh.A. Abdullin, M.T. Gabdullin, L.V. Gritsenko, N.R. Guseinov, D.V. Ismailov, Zh.K. Kalkozova, S.E. Kumekov, Ms. Zhanar O. Mukash , A.Yu. Sazonov, E.I. Terukov Al-Farabi Kazakh National University, Kazakhstan
	Abstract
	 Zinc oxide has unique physical characteristics, such as wide bandgap (~ 3.37 eV), a large exciton energy; its electrical characteristics can be controlled over a wide range by varying the stoichiometry and doping. So this oxide semiconductor becomes relevant material for a wide range of applications. An important factor for practical use is its low cost, biocompatibility and non-toxicity. Zinc oxide and materials based on it are used in short-wavelength light-emitting diodes, detectors, biosensors, piezoelectric devices, power electronics and many other applications. In this paper, the development of new method to increase photoluminescence intensity of ZnO films will be presented. PL spectra of ZnO (B) samples were investigated under 300 nm excitation wavelength. The spectra consist of excitonic emission pear the band gap energy (~380 nm) and the impurity.
	spectra consist of excitonic emission near the band gap energy (~380 nm) and the impurity band with a maximum around 550 nm. It was shown that hydrogen plasma treatment at

Toronto, Canada

	room temperature increases photoluminescence intensity significantly. The PL intensity
j	increases considerably just after 10 s treatment, and gradually increases with the duration up
	to 500 s, reaching saturation afterwards. The PL intensity increases more than 100 times
	under H-plasma treatment, and the spectrum contains only excitonic PL band at ~380 nm.
	PL spectra were studied after preliminary annealing in air and processing in the H- plasma. It
	was found that the thermal pretreatment of samples greatly enhances the effect of hydrogen
	plasma treatment on the PL intensity. The increase in PL intensity depends on the
	temperature of preliminary calcination in air: the higher the temperature of pre-annealing in
	the range from 200oC to ~500oC for a fixed annealing time (30 min), the greater the
	photoluminescence intensity after H-plasma treatment. It can be assumed that the annealing
	causes a transformation of nonradiative recombination centers, therefore they can be more
	easily passivated by hydrogen.
	The change of electrical properties of ZnO (B) samples under thermal annealing in air was
	investigated. It was shown that the annealing above 200 °C causes degradation of the
	electrical characteristics. The main culprit is a strong decrease of free carrier mobility with a
	slight decrease of the carrier concentration. The annealing in vacuum at temperatures of
	~500oC largely restores the electrical characteristics of ZnO, which leads to a value of the
	carrier concentration ~4×1019cm-3, the mobility of ~30 cm2/V*s and~5×10-3 Ohm*cm
	regardless of the values before vacuum annealing.

Session 4-- Ecological development and environmental protection

.

Chain	
Chair	•
Chun	

Time: 16:50pm-18:30pm

T004	Venue: Essex Lounge Integrated Energy Solution towards Sustainable Isolated Communities
1001	Golnar Hejazi, Mr Christian Wimmler , Eduardo de Oliveira Fernandes, Manuel A. Mato
	and Stephen R. Connors
	University of Porto, Portugal
	Abstract
	Since any activity requires energy, access to energy is an essential means for all. Especial
	isolated communities in developing countries often have no or limited access to affordabl
	energy resources. Yet, more than 1.5 billion people do not have the possibility to us
	electricity and around 2 billion people also rely on premier resources such as dung and woo
	for heating and cooking. It is often those premier resources that cause indoor air pollution
	and health problems. Besides, the minimum level of energy needs can frequently not b
	reached.
	An integrated approach for isolated communities to improve access to energy and increase
	the level of health and well-being in housing will be presented. Housing and other physic
	elements and conditions of such communities will be analyzed so that sustainable livelihood
	can be achieved. Thereby the needs and opportunities for the enhancement of housing an
	living in general have to be balanced. In the end, planning for sustainable livelihoods require
	an integrated framework to guarantee sustainable development and growth.
T1001	Willingness to pay of citizens for environmental services of farming systems; case study of
	Qazvin, Iran
	Dr Ali Asadi, Hojjat Varmazyari, Khalil Kalantri, Inakwu Odeh
	University of Tehran, Iran