International Conference

Advanced Carbon Nanostructures

Abstracts of Invited Lectures & Contributed Papers

> June 29 - July 03, 2015 St. Petersburg, Russia

	Найти prikh	
Other Nanocarbons		
Optical properties of diamond-like carbon films modified wit platinum	allyey and	H
Prikhadika O.Yu. ⁺ , Manabany N.K. ⁺ , <u>Mikharkova S.L.</u> ⁺ , Gunnynov N.R. ⁺ , Daineka E.A. S.Ya. ⁺ Mukharantrarimov Ye.S. ⁺	', Maksimova	

skysvetik! I @mail.ru

¹ al Parahi Kazakh National University, Almaty, Kazakhstan

In this work comparative results of amorphous channed-like entron firms with liver (a-C:H<Ag> films) and plaimum (a-C:H<PE> films) clusters structure and optical properties study are presented. The films were fabricated by no plasme magnetive southering of combined polycrystalline graphitemetal target. The sputtering process was carried out in hydrogen and argon gas matters. The films were deposited on quartz and silicon substrates. The content of platmum and styler mpurity in the films was changed from 0 to 9 at. % and from 0 to 20 at. %, respectively. Concentrations of metal in the films were changed by alteration metal and graphite area relation in the]combined target.

Presence of isolated clusters in the films was found by transmission electron microscopy (TEM). The character of Pt clusters weakly changed with a rise of a motal content and was -5 mm. On the contrary, the average size of the Ag clusters grows from 2 nm at 2 at. % to 8 nm with a metal content increase to 20 at. %.

An important feature of a C-H<Pt> and a C-H<Ag> films optical properties was the presence of absorption peak in the visible range of the optical shearption spectra. The absorption peaks m spectra of the a-C-H<Ag> films situated in the range from 495 to 496 to m and for the a-C-H<Ag> films list at 420 nm. The missible range of the peaks rese with morease of metals concentration in the films. Besides, the peaks were more minimize in a-C-H<Ag> films in a data and a c-H<Ag> films in a data and a c-H<Ag> films in a c-H<Ag> films in a c-H<Ag> films in the absorption peaks were more minimized that the absorption peaks in the c-H<Ag> films at the same metal concentration. It is supposed that the absorption peaks was determined from resonance absorption spectra and it was in good agreement with TEM results.

Modeling of the resonance absorption process with a usage of Mie theory for the isolated metal clusters imbedded in the dielectric metric provides good coincidence with our experiment.

Thus, a-C:H<Pt> and a-C:H<Ag> firms are nanostructure heterophased material characterized by presence of absorption peak in the visible range of optical electrotion spectrum.

A part of the research was carried out in framework 4608/GF4 grant of Ministry of Education and Science of Kazakhstan Republic.

P6-07	Faziitdinova A.G.	Найти		
	Phase transformations of polyacrylocstrile and carbon fiber in the process of i treatment	prikh		
P6-08	Goryumov A.S. Interactions of shungite nanocarhon, a graphene family nanomaterial, with humacromolecules		228	Н
P6-09	Kovalevski V.V. Structure of graphene layers in shungite carbon		469	
P6-10	Kvavknin A.G. New prospective composite concentrations based on graphene, $C_{\rm m}$ and TMDs		230	
P6-11	Makarova T.I. Alignment of carbon nanotubes in polystyrene matrix detarmined by atomic for microscopy and magnetometry		231	
P6-12	Malhaw A. A. Dependence of properties of equeous electrosyte based supercapacitors on mi manoporous carbons structura	cro-and	232	
P6-13	Mikhailova S.L. Optical properties of diamond like carbon films modified with silver and platin	11 11 1.	233	
P6-14	Moshaikov I.A Electrophysical properties of shungite at low temperatures.		234	
P6-15	Oriova T.S. Fine merostructure and thermal conductivity of wood derived biomorphic car	ton	235	
P6-16	Ponkratov K. Raman characterisation of large area 2D materials		236	
P6-17	Penomarev A.N. The high non-imparity of the electromagnetic waves absorption for Astralenes frequency region	st the ∏{z	237	
P6-18	Semence K.N. Synthesis, identification and physical chemical properties of adduct of light fiz and argummeC _m (C _i H ₁ ,NaN ₂ O ₂) ₁ H ₄	lerene C _{er}	238	
P6- 19	Smovth D.V. The morphology of arc discharge carbon soot formed in presence Si or Al vapo	urs.	239	
P6- 20	Terranova M L. Playing with the nanofhamond surfaces to modulate up-take and therapoutic a plant secondary metabolites	ctivity of	240	
	Terranova $M \sim 1$. Selective formation of color centers in charmond and nanodiamond by catalytic methodologies	CVD	241	
P6-22	Tveritinova E.A. Carbon nanomaterials in Catalysis. The role of surface chemistry and carbon r structure in 1,2 dichlorosthane dachlormation and aliphatic alcohols conversi		242	
P6-23	Urbanovich V.S. High pressure suitering of Sl ₂ N, C(nano) nanocomposites and their properties		243	
P6-24	Uzbokov R. Magnet-induced bahavior of from Carbide Pe7C3@C Nanoparticles in the Cyte Living Calls.	plasm of	244	
P6-25	Verstennikov E.A. The effect of detonation panodiamonds on the isomers distribution of monomit during toluene ultration with mixed acids	rotokiene	245	
P6- 26	Vozniakovski A.A. Thermophysical properties of polyurethane nanoclusters composites		246	
P6-27	Voznyakowski A.P. The influence of nanocarbos cluster additive on polyurathane sugramolecular SAXS method.	sincture.	247	