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Abstract. Dilatonic black hole dyon-like solution in the gravitational 4d model with two
scalar fields and two 2-forms, governed by two 2-dimensional dilatonic coupling vectors ~λi

obeying ~λi(~λ1 + ~λ2) > 0, i = 1, 2, is found. Some physical parameters of the solutions are
obtained: gravitational mass, scalar charge, Hawking temperature, black hole area entropy and
parametrized post-Newtonian (PPN) parameters β and γ. The PPN parameters do not depend

on the coupling vectors ~λi. A bound on the gravitational mass is proved.

1. Introduction
In this paper we continue our previous works [1–3] devoted to dilatonic dyon black hole solutions.
We note that at present there exists a certain interest in spherically symmetric solutions, e.g.
dilatonic black hole ones, see [4–10] and the references therein. These solutions appear in
gravitational models with scalar fields and antisymmetric forms.

Here we consider a special dilatonic black hole solutions with electric and magnetic charges
Q1 and Q2, respectively, in the 4d model with metric g, two scalar fields ϕ1, ϕ2, two 2-forms
F (1) and F (2), corresponding to two vectors of dilatonic coupling constants ~λ1 and ~λ2, belonging
to R2 respectively. All fields are defined on an oriented manifold M.

Here we present a black hole solution with a dyon-like configuration for fields of 2-forms:

F (1) = Q1τ1, F (2) = Q2τ2, (1)

where τ2 = vol[S2] is magnetic 2-form, which is volume form on 2-dimensional sphere and τ1 is
an “electric” 2-form on M. (We call this noncomposite configuration a dyon-like one while the
original dyon configuration in theory with one 2-form F is composite, i.e. F = Q1τ1 + Q2τ2.)
Due to (1) we deal here with a charged black hole with two color charges: Q1 and Q2. The
charge Q1 is the electric, while the charge Q2 is the magnetic.



ICPPA 2020
Journal of Physics: Conference Series 1690 (2020) 012143

IOP Publishing
doi:10.1088/1742-6596/1690/1/012143

2

We note that in the case of one scalar field ϕ and two coupling constants λ1, λ2 the dyon-like
ansatz was considered recently in [2,3,9,10]. For λ1 = λ2 = λ our result from [2] was dealing with
a trivial noncomposite generalization of dilatonic dyon black hole solutions in the model with
one 2-form and one scalar field which was considered in [1], see also [7, 8, 11–14] and references
therein.

The solutions with one scalar field from [2, 3] may be imbedded to the solutions under
consideration by considering the case of collinear dilatonic coupling vectors:

~λ1 = λ1~e, ~λ2 = λ2~e, (2)

where ~e2 = 1, λ1 + λ2 6= 0.
Here we find relations for the physical parameters of dyonic-like black holes, e.g. bound on

the gravitational mass M and the vector of scalar charges ~Qϕ. We note that in [2] the bound
on the gravitational mass was found (in theory with one scalar field) up to a conjecture, which
states a one-to-one (smooth) correspondence between the pair (Q2

1, Q
2
2), where Q1 is the electric

charge and Q2 is the magnetic charge, and the pair of positive parameters (P1, P2), which appear
in decomposition of moduli functions at large distances.

2. Black hole dyon solutions
Let us consider a model governed by the action

S =
1

16πG

∫
d4x
√
|g|
{
R[g]− gµν∂µ~ϕ∂ν ~ϕ

−1

2
e2
~λ1~ϕF (1)

µν F
(1)µν − 1

2
e2
~λ2~ϕF (2)

µν F
(2)µν

}
, (3)

where g = gµν(x)dxµ ⊗ dxν is the metric, ~ϕ = (ϕ1, ϕ2) is the vector of scalar fields belonging

to R2, F (i) = dA(i) = 1
2F

(i)
µν dxµ ∧ dxν is the 2-form with A(i) = A

(i)
µ dxµ, i = 1, 2, G is the

gravitational constant, ~λ1 = (λ1i) 6= ~0, ~λ2 = (λ2i) 6= ~0 are the dilatonic coupling vectors obeying

~λ1 6= − ~λ2 (4)

and |g| = |det(gµν)|.
We present a dyonic-like black hole solution to the field equations corresponding to the action

(3) which is defined on the manifold

M = (2µ,+∞)× S2 × R, (5)

and have the following form

ds2 = Ha

{
−H−2a

(
1− 2µ

R

)
dt2 +

dR2

1− 2µ
R

+R2dΩ2
2

}
, (6)

ϕi = νi lnH, (7)

F (1) =
Q1

H2R2
dt ∧ dR, F (2) = Q2τ. (8)

Here Q1 and Q2 are (colored) charges - electric and magnetic, respectively, µ > 0 is the
extremality parameter, dΩ2

2 = dθ2 + sin2 θdφ2 is the canonical metric on the unit sphere S2

(0 < θ < π, 0 < φ < 2π), τ = sin θdθ ∧ dφ is the standard volume form on S2,

H = 1 +
P

R
, (9)
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with P > 0 obeying

P (P + 2µ) =
1

2
Q2 (10)

or

P = −µ+

√
µ2 +

1

2
Q2, (11)

a =
(~λ1 + ~λ2)

2

∆
, (12)

νi =
λ1i~λ2(~λ1 + ~λ2)− λ2i~λ1(~λ1 + ~λ2)

∆
, (13)

∆ ≡ 1

2
(~λ1 + ~λ2)

2 + ~λ21
~λ22 − (~λ1~λ2)

2, (14)

i = 1, 2, and

Q2
1 =

~λ2(~λ1 + ~λ2)

2∆
Q2, Q2

2 =
~λ1(~λ1 + ~λ2)

2∆
Q2. (15)

Here the following additional restrictions on dilatonic coupling vectors are imposed

~λi(~λ1 + ~λ2) > 0, (16)

i = 1, 2.
Due to relations (16) and (17) the Q2

s are well-defined. We note that the restrictions (16)

imply relations ~λs 6= ~0, s = 1, 2, and relation (4).
We note that

∆ > 0, (17)

is valid for ~λ1 6= −~λ2. Indeed, in this case we have the sum of two non-negative terms in (14):

(~λ1 + ~λ2)
2 > 0 and

C = ~λ21
~λ22 − (~λ1~λ2)

2 ≥ 0, (18)

due to the Cauchy-Schwarz inequality. Moreover, C = 0 if and only if vectors ~λ1 and ~λ2 are
collinear. Relation (18) implies

0 < a ≤ 2. (19)

For non-collinear vectors ~λ1 and ~λ2 we get 0 < a < 2 while a = 2 for collinear ones.
This solution may be verified just by a straightforward substitution into equations of motion.
The calculation of scalar curvature for the metric ds2 = gµνdx

µdxν in (6) gives us

R[g] =
a(2− a)P 2(R− 2µ)

2R4−a(R+ P )1+a
. (20)

Non-collinear case. For non-collinear vectors ~λ1 and ~λ2 (0 < a < 2) we obtain

R[g]→ −∞, (21)

as R→ +0 and hence we have a black hole with a horizon at R = 2µ and singularity at R = 0.
Collinear case. For collinear vectors ~λ1, ~λ2 from (2) obeying ~λ1 +~λ2 6= ~0 we obtain νi = 0,

a = 2 and

Q2
1 =

λ2
λ1 + λ2

Q2, Q2
2 =

λ1
λ1 + λ2

Q2, (22)
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where λ1λ2 > 0. By changing the radial variable, R = r − P , we get a little extension of the
solution from [2]

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
2, (23)

F (1) =
Q1

r2
dt ∧ dr, F (2) = Q2τ, ~ϕ = ~0, (24)

where f(r) = 1− 2GM
r + Q2

2r2
, Q2 = Q2

1 +Q2
2 and GM = P + µ =

√
µ2 + 1

2Q
2 > 1√

2
|Q|.

The metric in these variables coincides with the well-known Reissner-Nordström metric
governed by two parameters: GM > 0 and Q2 < 2(GM)2. We have two horizons in this
case. Electric and magnetic charges are not independent but obey eqs. (22).

3. Physical parameters
Here we consider certain physical parameters corresponding to the solutions under consideration.

3.1. Gravitational mass and scalar charges
For ADM gravitational mass we get from (6) (and g00 = −(1− 2GM/R+ o(1/R))

GM = µ+
a

2
P. (25)

The scalar charge vector ~Qϕ = (Q1
ϕ, Q

2
ϕ) just follows from (7) and the definition: ϕi =

Qiϕ/R+ o(1/R):
~Qϕ = ~νP. (26)

By using relations (25) and (26) we obtain the following identity

2(GM)2 + ~Q2
ϕ = Q2

1 +Q2
2 + 2µ2. (27)

This formula does not contain the vectors ~λs.
The identity (27) may be verified by using (12), (15) and the following relation

~ν2 =
(~λ21 + ~λ22)(

~λ21
~λ22 − (~λ1~λ2)

2)

∆2
. (28)

3.2. The Hawking temperature and entropy
The Hawking temperature corresponding to the solution (9) with P > 0 has the following form

TH =
1

8πµ

(
1 +

P

2µ

)−a
. (29)

In this case the Hawking temperature TH does not depend upon λs, when µ and P (or Q2) are
fixed.

The Bekenstein-Hawking (area) entropy S = A/(4G), corresponding to the horizon at
R = 2µ, where A is the horizon area, reads

SBH =
4πµ2

G

(
1 +

P

2µ

)a
. (30)

It follows from (29) and (30) that the product

THSBH =
µ

2G
(31)

does not depend upon ~λs and the charges Qs. This product does not use an explicit form of the
moduli functions Hs(R).
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3.3. PPN parameters
Introducing a new radial variable ρ by the relation R = ρ(1 + (µ/2ρ))2 (ρ > µ/2), we obtain the
3-dimensionally conformally flat form of the metric (6)

g = Ha

{
−H−2a (1− (µ/2ρ))2

(1 + (µ/2ρ))2
dt⊗ dt+

(
1 +

µ

2ρ

)4

δijdx
i ⊗ dxj

}
, (32)

where ρ2 = |x|2 = δijx
ixj (i, j = 1, 2, 3)

The parametrized post-Newtonian (PPN) parameters β and γ are defined by the following
standard relations:

g00 = −(1− 2V + 2βV 2) +O(V 3), (33)

gij = δij(1 + 2γV ) +O(V 2), (34)

i, j = 1, 2, 3, where V = GM/ρ is Newton’s potential, G is the gravitational constant and M is
the gravitational mass (for our case see (25)).

The calculations of PPN (or Eddington) parameters for the metric (32) give

β = 1 +
1

4(GM)2
(Q2

1 +Q2
2), γ = 1. (35)

These parameters do not depend upon vectors ~λs.

3.4. Bound on the mass
Here we outline the following proposition.

Proposition. Let Q1 6= 0, Q2 6= 0 and µ > 0. Then the following bounds on the mass are
valid for all µ > 0, P > 0 and ~λs obeying (16):

1

2

√
hm(Q2

1 +Q2
2) < GM. (36)

Here hm = (12 + |~λ|2max)−1, where |~λ|max = max(|~λ|1, |~λ|2).
Proof. The inequality (36) may written as

hm(Q2
1 +Q2

2) < (2GM)2 = (2µ+ aP )2. (37)

Due to relations (10), (12) and (15) we obtain

Q2
1 +Q2

2 =
(~λ1 + ~λ2)

2

2∆
Q2 = aP (P + 2µ). (38)

Hence the inequality (37) reads as

hmaP (P + 2µ) < (2µ+ aP )2, (39)

or, equivalently,
(a− hm)aP 2 + 2µa(2− hm)P + 4µ2 > 0. (40)

This relation is valid due to inequalities: a) 0 < hm < 2 and b) hm < a. The first inequality
is trivial while the second one may be redily verified. The proposition is proved.

In the case of collinear vectors ~λ1 and ~λ2 ( ~λ1 6= − ~λ2) the Proposition was proved in fact (up

to certain conjecture) for general setup in [2]. The case ~λ1 = ~λ2 was considered earlier in [1]
and also in [13] (BPS-like inequality), where the bound on mass was proved in general setup by
using certain spinor techniques.
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4. Conclusions
In this paper we have presented a non-extremal black hole dyon-like solution in a 4-dimensional
gravitational model with two scalar fields and two Abelian vector fields. The model contains two
vectors of dilatonic coupling constants ~λs 6= ~0, s = 1, 2, obeying relations (16) (e.g. ~λ1 6= −~λ2).
In fact this is a special solution with dependent electric and magnetic charges, see (15). In

case of non-collinear vectors ~λ1, ~λ2 the metric of the solution describes a black hole with one
(external horizon) and singularity hidden by it. For collinear vectors ~λ1, ~λ2 the metric coincides
with the Reissner-Nordström metric possessing two horizons and hidden singularity.

Here we have also calculated some physical parameters of the solutions: gravitational mass
M , scalar charges Qiϕ, Hawking temperature, black hole area entropy and post-Newtonian

parameters β, γ. The PPN parameters γ = 1 and β do not depend upon ~λs, if the values
of M and Qiϕ are fixed.

We have also obtained a formula, which relates M , Qϕ, the dyon charges Q1, Q2, and the

extremality parameter µ for all values of admissible ~λs. This formula does not contain ~λs and
coincides with that of [2] in case of collinear dilatonic coupling vectors. As in the case of [2],
the product of the Hawking temperature and the Bekenstein-Hawking entropy does not depend
upon vectors ~λs.

Here we have proved the lower bound on the gravitational mass, which is in agreement with
our previous results from [2] for collinear coupling vectors. For ~λ1 = ~λ2 the lower bound on the
gravitational mass is in agreement with that obtained (for composite case) earlier by Gibbons
et al. [13] by using certain spinor techniques, see also [1].
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