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Abstract— Enhanced oil recovery techniques like polymer 

flooding are vital for maximizing hydrocarbon extraction, but 

predicting recovery factors remains challenging due to complex 

reservoir dynamics. Traditional artificial neural networks offer 

predictive power but lack interpretability, limiting their practical 

utility in engineering applications. This study introduces 

Kolmogorov–Arnold Networks (KANs) as an interpretable 

alternative for modeling recovery factors in polymer flooding. 

Using a synthetically generated dataset of over 160,000 samples 

with key reservoir parameters, we trained KAN models through a 

series of experiments, varying network architectures, grid sizes, 

learning rates, and optimizers (Adam and LBFGS) to evaluate 

performance and interpretability. The best-performing KAN 

achieved a Test Mean Squared Error (MSE) of 0.000597 and a 

Test coefficient of determination (�²) of 0.902 with only 1,885 

parameters, closely matching the performance of a previous deep 

neural network model that used 43,265 parameters (Test R² of 

0.908). While KANs did not surpass the DNN in predictive 

accuracy, they offered comparable results with significantly 

reduced complexity and enhanced transparency. The modular 

structure and learnable activation functions of KANs provide 

insights into the decision-making process. This work contributes 

to the EOR field by demonstrating that KANs can effectively 

model complex reservoir behaviors while being transparent in 

their decision making.  

Keywords— Enhanced Oil Recovery, Kolmogorov–Arnold 

Networks, Interpretability, Recovery Factor Prediction, Artificial 

Neural Networks. 

I. INTRODUCTION  

The global demand for hydrocarbons continues to 
necessitate innovative methods to maximize recovery from 
existing reservoirs. Enhanced oil recovery (EOR) techniques, 
particularly polymer flooding, have demonstrated significant 
promise in improving oil extraction efficiency by modifying 
reservoir properties to enhance sweep efficiency and 
displacement of oil [1].  

Despite its effectiveness, accurately predicting the recovery 
factor in polymer flooding is a complex task due to the nonlinear 
dynamics of fluid flow, reservoir heterogeneity, and the 
interplay of multiple physicochemical factors. Traditional 
numerical simulation methods, such as finite difference or finite 
element models, often involve computationally expensive 

calculations and may struggle to handle the variability of real-
world reservoir conditions [2-4]. 

Recent advancements in machine learning (ML) have 
opened new avenues for data-driven modeling in oil recovery 
predictions [5]. Unlike conventional simulation methods, ML 
models can efficiently learn complex relationships from large 
datasets, offering faster and often more accurate predictions. 
Techniques such as neural networks [6], XGBoost [7] and 
support vector machines have shown significant potential in this 
domain [8, 9]. 

Polymer flooding has been extensively studied both in 
experimental and computational frameworks [10]. Simulation-
based approaches, like those based on the Buckley–Leverett 
equations [11], have provided insights into the mechanics of 
polymer flooding.  

Artificial Neural Networks (ANNs) have been extensively 
applied to EOR problems due to their ability to model complex 
nonlinear relationships and handle high-dimensional datasets. 
For instance, Saberi et al utilized ANNs to predict the 
performance of polymer flooding by considering parameters 
such as polymer concentration, salinity, and reservoir properties. 
The model achieved a high coefficient of determination (��) of 
0.9990 indicating excellent predictive capability [12]. Similarly, 
Cheraghi et al. proposed a two-stage screening system 
employing ANNs to predict suitable EOR methods for candidate 
reservoirs [13]. Le Van and Chon developed ANN models to 
evaluate critical performances of ��₂ − EOR processes and 
demonstrated the models' effectiveness in capturing complex 
reservoir behaviors [14]. Vo Thanh et al. applied ANNs to 
predict the performance of ��₂ −EOR and storage in residual 
oil zones and they effectively highlighted the models' potential 
in optimizing ��₂ storage strategies [15]. Mohammadi et al. 
showcased the applicability of ANNs in simulating thermal 
recovery processes by employing cascade forward neural 
networks and the group method of data handling to model crude 
oil pyrolysis during thermal EOR [16]. 

The heavy usage of ANNs in this research field shows the 
versatility of the algorithm in addressing various EOR scenarios. 
However, despite their strengths, ANNs often function as 
“black-box” models – effectively making their predictions 
difficult to interpret [17]. Even if an ANN makes highly accurate 
predictions, it often leaves researchers questioning the 
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underlying decision-making process of the trained model. ANNs 
are therefore unreliable in scientific and engineering scenarios 
where transparency is crucial. 

Kolmogorov–Arnold Networks (KANs) offer a promising 
alternative to traditional ANNs by addressing their "black-box" 
nature. KAN, as implemented by Liu et al., represents a recently 
introduced and novel approach in machine learning, garnering 
growing interest for its strong theoretical foundation and 
potential to enhance interpretability in complex modeling tasks. 
Rooted in the Kolmogorov–Arnold representation theorem, 
KANs provide a mathematically robust framework for 
approximating any continuous multivariate function. The 
theorem states that any multivariate function can be represented 
as a finite sum of univariate functions composed with linear 
transformations [18]. Unlike standard ANNs, KANs have 
learnable activation functions. Their modular structure 
decomposes the complex relationships within a dataset into 
simpler, interpretable components, thereby making them more 
transparent in their decision-making process. 

Recent studies have highlighted the potential of KANs in 
tabular data modeling. Gao et al. introduced TabKANet, which 
integrates KANs with Transformer architectures to unify 
numerical and categorical feature encoding, achieving superior 
or comparable performance to Gradient Boosted Decision Trees 
across various datasets [19]. Similarly, Poeta et al. benchmarked 
KANs against Multi-Layer Perceptrons (traditional neural 
networks) and found that KANs excel in accuracy and F1 scores, 
particularly for larger datasets, albeit at a higher computational 
cost [20]. These studies underscore the growing interest in 
KANs for handling complex tabular data. 

Building on our previous work, where we applied various 
machine learning algorithms – including polynomial regression, 
dense neural networks, and cascade-forward neural networks – 
to predict oil recovery factors in polymer flooding scenarios 
[21], we now aim to explore the effectiveness of KANs in this 
context. Our earlier study demonstrated that polynomial 
regression achieved an ��  score of 0.909, while dense and 
cascade-forward neural networks attained R² values of 0.908 
and 0.906, respectively. These findings highlighted the potential 
of ML models in enhancing oil recovery predictions.  

In this study, we explore the potential of Kolmogorov–
Arnold Networks in predicting recovery factors for polymer 
flooding. By leveraging the inherent interpretability and 
flexibility of KANs, we aim to overcome the limitations of 
traditional ANNs, providing both high predictive accuracy and 
transparent decision-making insights. This novel application of 
KANs in the EOR domain represents a step toward integrating 
interpretable machine learning models in oil recovery research. 

In this paper, we investigate whether KANs can offer 
comparable or superior predictive performance, with the added 
benefit of improved interpretability, thereby addressing some 
limitations associated with traditional neural network models. 
By applying KANs in the EOR domain, we aim to advance the 
integration of interpretable machine learning models into oil 
recovery research 

II. METHODOLOGY 

A. Dataset 

The dataset used in this study consists of several key 
variables essential for modeling polymer flooding in EOR. 
These include absolute permeability (
), pressure (�), porosity 
(�), oil saturation (
�), water saturation (
�), oil viscosity 
(����), polymer concentration (��), and the oil recovery factor 
(��), which serves as the target variable. The dataset represents 
a diverse range of reservoir and operational conditions. 
Moreover, gaussian noise was added to the dataset to make the 
learning process challenging for the models and to promote 
generalization.  

To provide a comprehensive evaluation, the dataset contains 
more than 160,000 samples generated synthetically, simulating 
realistic EOR scenarios. For detailed information on the dataset, 
the data generation process, its distribution and statistical 
properties, we refer readers to our previous work [21].  

Normalization was applied using a Standard Scaler, which 
transforms each feature to have a mean of zero and a standard 
deviation of one. This step ensures that all features contribute 
equally to the learning process. The dataset was then split into 
training and testing sets with an 80:20 ratio to evaluate model 
performance.  

B. Implementation 

In this study, we utilized PyKAN, the official and open-
source Python library specifically designed for implementing 
KANs [22]. PyKAN provides a comprehensive framework for 
constructing and training KAN models, facilitating their 
application in various machine learning tasks. The library offers 
functionalities for defining network architectures, managing 
training processes, and evaluating model performance. 

Each KAN architecture is defined by several key parameters: 
the width, specifying the number of neurons in each layer as a 
list (e.g., [2, 3, 1] for 2 input neurons, 3 in the first hidden layer, 
and 1 output neuron); the grid size, determining the number of 
intervals for spline-based activation functions; and the spline 
order ( � ), representing the order of B-splines used in the 
activations. Activation functions are initialized to SiLU by 
default unless otherwise specified. The learning rate (��) varies 
depending on the optimizer. Regularization parameters include 
� (weight decay, set to 0.001 in all experiments) and �������  

(an entropy-based penalty set to 0.1) to encourage sparsity and 
enhance model interpretability.  

The evaluation metrics used are Mean Squared Error (MSE) 
and the �² score. MSE quantifies the average squared difference 
between observed and predicted values, providing a measure of 
the model's prediction accuracy; a lower MSE indicates better 
performance. �², on the other hand, represents the proportion of 
variance in the dependent variable that is predictable from the 
independent variables, offering insight into the model's 
explanatory power; values closer to 1 suggest a stronger fit. 
While both metrics are valuable, �² is often more informative in 
regression analysis, as it can be expressed as a percentage and is 
more robust in certain scenarios compared to MSE [23]. 
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C. Experiments 

To evaluate the performance of KANs in predicting 
recovery factors for polymer flooding, two sets of experiments 
were conducted, each employing a different optimizer to train 
the models. Specifically, the Adam optimizer and the Limited-
memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) 
optimizer were used to compare their effectiveness in 
minimizing the MSE loss and improving model accuracy. 
Hyperparameters were chosen via manual tuning and heuristics, 
balancing model performance and computational efficiency. 

All weights were initialized using a normal distribution. 
Spline parameters were initialized to approximate linear 
functions for faster convergence. Each experiment involved a 
fixed number of steps, specified below, to balance 
computational cost and convergence accuracy. Full-batch 
optimization was employed for both optimizers. 

 

1) Experiment A: Training with Adam Optimizer 

In the first set of experiments, the KAN models were trained 
using the Adam optimizer, which is well-suited for large 
datasets and adaptive learning rates. Adam was configured to 
use full-batch optimization rather than mini-batches, as it 
allows for consistency with the LBFGS optimizer and better 
convergence in this context. The experiments ran for 1000 steps 
because Adam typically requires more iterations to converge 
compared to LBFGS, which is compensated by its efficiency in 
handling noisy gradients. 

The experimental configurations involved variations in the 

network width, grid size, �, ��, and training steps. For each 
configuration, the number of trainable parameters was 
recorded, and the training time was measured. Model 
performance was evaluated using both the training and testing 

MSE as well as the ��  score. Learning rates were selected 

heuristically, with values ranging from 10$% &� 2 × 10$)  to 
ensure sufficient updates without overshooting the minimum. 
The hyperparameter configurations are shown in Table I.  

TABLE I.  ADAM OPTIMIZER HYPERPARAMETERS – EXPERIMENT A 

Case Width Grid * +, 

A1 [7, 5, 5, 1] 20 3 0.001 

A2 [7, 10, 5, 1] 15 2 0.0005 

A3 [7, 5, 5, 5, 1] 10 3 0.0001 

A4 [7, 5, 5, 1] 50 4 0.002 

A5 [7, 10, 10, 1] 5 3 0.001 

 

2) Experiment B: Training with LBFGS Optimizer 

The second set of experiments employed the LBFGS 
optimizer, a quasi-Newton method that is effective for tasks 
requiring highly precise convergence, particularly with smooth 
loss functions. LBFGS was chosen because of its ability to 
leverage second-order information for rapid convergence in 
fewer steps, making it ideal for the smooth MSE loss used in 
this study. 

The experiments were limited to 200 steps, as LBFGS 
generally achieves high convergence efficiency within a 

smaller number of iterations compared to Adam. Like Adam, 
LBFGS was also configured for full-batch optimization. This 
aligns with its inherent design to operate over entire datasets. 
The same dataset and preprocessing pipeline were used to 
ensure consistency and comparability between the two 
optimizers. 

Similar to the first experiment, variations in network width, 

grid size, � , �� , and training steps were explored. Learning 
rates for LBFGS were also selected heuristically, with values 

between 10$% &� 2 × 10$), as this range provided stable and 
consistent convergence during tuning. Training time, MSE, and 

�² were measured and recorded for each configuration. The 
hyperparameter details can be seen in Table II.  

TABLE II.  LBFGS OPTIMIZER HYPERPARAMETERS – EXPERIMENT B 

Case Width Grid * +, 

B1 [7, 5, 5, 1] 30 3 0.001 

B2 [7, 10, 5, 1] 20 2 0.0005 

B3 [7, 5, 5, 5, 1] 10 3 0.0001 

B4 [7, 5, 5, 1] 50 4 0.002 

B5 [7, 10, 10, 1] 5 3 0.001 

 
Both experiments utilized a high-performance NVIDIA 

RTX 4060Ti GPU to expedite training. For regularization, 

weight decay (�) and an entropy-based penalty (������� ) were 

applied to prevent overfitting and improve model robustness. 
Seeding was used to ensure reproducibility. 

III. RESULTS 

A. Experiment A: Adam Optimizer 

The performance of KAN models trained using the Adam 
optimizer is summarized in Table III. Training times varied 
between 124.328 seconds (Case A2) and 429.850 seconds (Case 
A4). The variation in training time was directly influenced by 
the number of trainable parameters, with larger configurations 
requiring more computation. Test MSE values were consistently 
low, ranging from 0.000597 (Case A1) to 0.001006 (Case A3), 
while Test �² scores spanned from 0.834 (Case A3) to 0.902 
(Case A1). 

Case A1 achieved the best Test MSE (0.000597) and the 
highest Test �²  (0.902), demonstrating that a balanced 
configuration with moderate grid size and network complexity 
can yield superior results. Case A5 also performed well, 
achieving a similar Test �²  (0.901) with slightly higher 
computational efficiency compared to Case A4. Larger grid 
sizes and increased neuron counts, as seen in Cases A4 and A5, 
generally led to better �² scores. This affirms the importance of 
model complexity in explaining data variability. 

Key insights from this experiment suggest that 
configurations with a grid size of 20-50 and moderate learning 
rates (~0.001) provide optimal performance, as they balance 
accuracy with training time. 
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TABLE III.  EXPERIMENT A RESULTS 

Case Parameters 
Training 

time(s) 
Test MSE Test �- 

A1 1885 158.693 0.000597 0.902 

A2 2875 124.328 0.000609 0.900 

A3 1710 147.418 0.001006 0.834 

A4 3900 429.850 0.000624 0.897 

A5 2520 137.841 0.000598 0.901 

 

B. Experiment B: LBFGS Optimizer 

The LBFGS optimizer demonstrated its strengths in rapid 
convergence with fewer training steps (200), but training times 
were longer overall compared to Adam due to the computational 
demands of the quasi-Newton method. As shown in Table IV, 
training times ranged from 482.973 seconds (Case B3) to 
2029.817 seconds (Case B4). Test MSE values ranged from 
0.000618 (Case B1) to 0.000692 (Case B4), while Test �² 
values remained high, mostly above 0.89, except for Case B4, 
which showed slightly degraded performance. 

Case B1 exhibited the best overall performance, achieving a 
Test MSE of 0.000618 and a Test �² of 0.898. Case B5 closely 
followed with a Test MSE of 0.000619 and an identical Test �² 
of 0.898. Interestingly, smaller grid sizes (e.g., Case B3 with a 
grid of 10) allowed LBFGS to perform efficiently, achieving 
reasonable accuracy with reduced training times. Conversely, 
larger grid sizes, as seen in Case B4, suffered from instability 
and overfitted, leading to lower accuracy despite extended 
training times. 

The results indicate that LBFGS excels with compact 
configurations, where its precision is leveraged to achieve fast 
convergence with minimal overfitting.   

TABLE IV.  EXPERIMENT B RESULTS 

Case Parameters 
Training 

time(s) 
Test MSE Test �- 

B1 2535 1029.793 0.000618 0.898 

B2 3500 566.849 0.000628 0.897 

B3 1710 482.973 0.000664 0.891 

B4 3900 2029.817 0.000692 0.886 

B5 2520 633.499 0.000619 0.898 

 

Across both experiments, the Adam optimizer emerged as 
the preferred choice for its ability to achieve lower training times 
with comparable accuracy. Case A1 demonstrated the best 
overall performance, with the lowest Test MSE and the highest 
Test �². Interestingly, the best performing model has one of the 
fewest parameters and balances grid size as well as � . This 
suggests that compact models are enough to reach a noteworthy 
predictive performance for KANs.  

For tasks requiring relatively high precision with fewer 
steps, the LBFGS optimizer showed promise, particularly with 

compact configurations. Case B1 delivered the best performance 
for this optimizer. 

In Fig 1, the predicted versus actual values demonstrate the 
strong predictive accuracy of the Case A1 model. The plot 
exhibits a close alignment of the points to the ideal reference line 
(y = x), which indicates a minimal deviation between the 
predicted and true recovery factor values. The relatively dense 
clustering of points along the diagonal in the plot speaks to the 
potential and reliability of KAN models in predicting recovery 
factors for polymer flooding scenarios. 

 

Fig. 1. Predicted vs. Actual Values: Case A1 model  

In addition, we can visualize the decision-making process of 
the best performing KAN model (Case A1), as seen in Fig 2.  

 

Fig. 2. Interpretable model plot for Case A1  
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The black lines in Fig 2 indicate active connections, with line 
thickness corresponding to the significance of the activation. 
Thinner, lighter lines represent less significant contributions, 
while the thicker connections highlight the critical pathways for 
the prediction. This hierarchical and interpretable architecture 
provides insights into how input features influence the output. 
This emphasizes the model’s ability to integrate both sparse and 
dense relationships. 

Moreover, it is possible to study the activation functions in 
the model. Fig 3 dives deeper into the individual activation 
functions of the first layer for three selected connections: (0, 0, 
0), (0, 0, 1), and (0, 0, 2). These coordinates indicate the first 
layer, the first neuron in that layer, and its connections to the 
first, second, and third input features, respectively. Each subplot 
demonstrates how the network transforms input values through 
the activation function of a specific connection. For example, 
the first activation function exhibits a sinusoidal behavior, while 
others display distinct nonlinear transformations.  

 

Fig. 3. Visualization of Activation Functions for the First Layer in Case A1 
model 

The feature attribution analysis, as illustrated in Fig. 4, 
demonstrates how we can directly extract feature importance 
from the model itself using the built-in attribution mechanism in 
KAN. As seen in the visualization, 
�  emerges as the most 
critical feature, with a significantly higher attribution score 
compared to others. Meanwhile, ��, 
�, and � show moderate 
contributions, while 
, �, and ���� have minimal impact. 

 

Fig. 4. Feature attribution scores of Case A1 model 

It is also possible to extract the specific impact of each 
feature on individual neurons within its architecture. This is 
done by quantifying how much each input feature influences the 
activations of particular neurons in a given layer. For instance, 
it is possible to examine how features contribute to the activation 
of specific pathways within the network. This neuron-level 
feature attribution provides insights into how it interacts with the 
hierarchical structure of the model. For instance, the feature 
attributions for neuron 3 in layer 1 are displayed in Fig 5. 

 

Fig. 5. Feature attribution scores for neuron 3 in layer 1 (Model Case A1) 

To visually assess the model's important features and 
activation functions further, we can prune the model, a process 
that involves removing less significant input features and 
connections based on their contribution to the output. This 
approach simplifies the model and retains only the dominant 
pathways that are critical to its decision-making process. As 
shown in Fig. 6, the pruned KAN model focuses on the most 
influential features, such as 
�, ��, and 
�, while eliminating 
features like � that contribute minimally to the predictions of 
��. By removing these weaker connections, pruning enhances 
the interpretability of the model and makes it easier to 
understand which features and pathways are most impactful.  

 

Fig. 6. Pruned  model plot for Case A1 

IV. CONCLUSION 

In this study, we explored the application of KANs for 
predicting oil recovery factors in polymer flooding scenarios. 
Compared to our previous work using a Deep Neural Network 
(DNN) with 43,265 trainable parameters, the KAN models 
demonstrated comparable predictive performance with 
significantly fewer parameters. The best-performing KAN 
achieved a Test MSE of 0.000597 and a Test �²  of 0.902, 
closely matching the DNN's performance (Test �²  of 0.908) 
while utilizing only 1,885 parameters. 
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Although KANs did not surpass the predictive accuracy of 
the DNN, they offer the distinct advantage of improved 
interpretability due to their modular structure and learnable 
activation functions. This interpretability allows for greater 
insight into the decision-making process of the model, which is 
particularly valuable in scientific and engineering applications 
where transparency is crucial. By analyzing activation functions 
and hierarchical representations, we can better understand how 
input features influence the output and thereby facilitate more 
informed decision-making in the EOR field. 

This work contributes to the EOR domain by introducing an 
interpretable variant of ANNs, demonstrating that KANs can 
effectively model complex reservoir behaviors with reduced 
model complexity. The ability to achieve high predictive 
accuracy with fewer parameters while being interpretable 
(through feature attribution, learnable and observable activation 
functions, and pruning) highlights the efficiency of KANs and 
their potential to bridge the gap between predictive performance 
and model transparency. 

Future research will focus on studying the interpretability of 
KANs to better understand the decision-making process and 
underlying patterns in predictions. Additionally, integrating 
domain-specific physics-based constraints and priors into the 
learning process could further improve model reliability and 
accuracy in capturing complex reservoir dynamics. To ensure 
their robustness and adaptability in diverse scenarios, expanding 
the application of KANs to other EOR techniques and validating 
their performance on real-world datasets will also be key areas 
of exploration.  
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