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Abstract—Diffraction of a plane wave on two opposite stag-
gered perfectly conducting half-planes is considered using the
Wiener-Hopf method. The Neumann boundary value problem is
reduced to solving a system of Fredholm integral equations of
the second kind, the solution to which is expressed analytically
through the integral operator in the form of the sum of the
Neumann series.
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I. INTRODUCTION

It is well known that the exact solution to the problem of

diffraction on a perfectly conducting half-plane was obtained

by Sommerfeld in his famous work [1]. The method and results

of his paper were considered in details in the books of D.

Jones, B. Noble and L. Weinstein [2]–[4] and K. Kobayashi

[5]. The classical problem of diffraction of a plane wave at the

open end of a waveguide consisting of two ideally conducting

parallel half-planes was rigorously solved by Weinstein using

the Wiener-Hopf method [4]. An explicit solution to the

scattering of a plane wave by three parallel equidistant semi-

infinite planes was derived by a matrix factorization method

by Jones [6]. Recently, this method has been generalized as

the so-called Fredholm factorization method, which belongs

to the semianalytic methods and, in fact, reduces the problem

of factorization of Wiener–Hopf matrix equations to Fredholm

integral equations of the second kind, described by V. Daniele

and G. Lombardi [7].

This paper proposes a rigorous analytical Wiener-Hopf

method in the spirit of Weinstein’s double equations [4]

without the use of factorization of matrix equations. Therefore,

to compare modifications of the W-H methods, the authors

consider a boundary value problem on the diffraction of H-

polarized plane wave by two opposite staggered perfectly

electrically conducting half-planes, which coincides with the

title of the article [8]. It should be noted that the new key

problem is solved using the technique previously proposed by

the authors for the problems of diffraction on a strip [9]–[11].
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II. PROBLEM STATEMENT AND ITS SOLUTION

Let a plane wave with a single magnetic field component

(H0
x(y, z), 0, 0)

H0
x(y, z) = H0 exp

{
i
(
y
√

k20 − h2 + hz
)}

, h = k0 cos θ0

fall normally on the edges of opposite staggered perfectly

conducting half-planes, where its direction with respect to the

z axis makes an angle θ0 (see Figure 1). Then the electric

field of the incident wave is defined as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

E0
z =

√
k20 − h2

k0

√
μ0

ε0
H0

x,

E0
y = − h

k0

√
μ0

ε0
H0

x, E0
x = 0.

(1)

.

It is necessary to find the scattered field Hx of a plane wave

of H-polarization, which is a solution to the Neumann problem

∂2

∂y2
Hx +

∂2

∂z2
Hx + k20Hx = 0 (2)

with boundary conditions

∂

∂y
Hx = −ik0

√
ε0
μ0

E0
z

for z < 0, y = d; z > 0, y = −d.

(3)

To complete the formulation of the diffraction problem,

and to ensure the uniqueness of its solution, the above wave

equation and the boundary conditions are supplemented by the

edge (Meixner condition) and Sommerfeld radiation condition

for the scattered field. According to the Meixner condition,

the component of current density normal to the edge (or Hx)

vanishes at the edge as ρ1/2 and the field components Ey , Ez

vary as ρ−1/2, where ρ is the distance from the edge [12].

The electric field of the scattered wave⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ez = − i

k0

√
μ0

ε0

∂

∂y
Hx,

Ey =
i

k0

√
μ0

ε0

∂

∂z
Hx, Ex = 0
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can be expressed in terms of the magnetic field component

Hx according to Maxwell’s equation −iε0ωE = ∇ × H.

-

-

Fig. 1. Plane wave diffraction on half-planes.

�

�

Fig. 2. Integration contours.

To solve the Neumann problem (2) we must have an integral

representation of the magnetic field

Hx(y, z) = sgn(y + d)

∫
C−

ei(wz+v|y+d|)F1(w)dw+

sgn(y − d)

∫
C+

ei(wz+v|y−d|)F2(w)dw, v =
√
k20 − w2,

(4)

created by surface currents (see (26), Appendix A), where F1

and F2 are the desired Fourier components of surface currents

induced on the corresponding half-planes, C− and C+ are

integration contours (IC), located parallel at a distance iδ → 0
(δ < |k0|) from the real axis and consisting of an infinitely

narrow loop enclosing the point u = h (Im(h) > 0) below or

above (Fig. 2).

In the figure, the values of h are fixed as ±h in the UHP

and LHP w, respectively, as h = k0 cos θ0 is an algebraic

quantity depending on θ0. Therefore, it should be kept in

mind that integration over the loop of the contour C− actually

corresponds to a residue at point h.

Taking into account the boundary conditions (3) and the

integral representation (4), the boundary value problem can

be reduced to a system of integral equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
C−

ei(wz+2dv)vF1(w)dw +

∫
C+

eiwzvF2(w)dw +

√
k20 − h2H0

xe
i
(
hz+d

√
k2
0−h2

)
= 0, z < 0, y = d; (5a)∫

C−

eiwzvF1(w)dw +

∫
C+

ei(wz+2dv)vF2(w)dw +

√
k20 − h2H0

xe
i
(
hz−d

√
k2
0−h2

)
= 0, z > 0, y = −d; (5b)∫

C−

eiwzF1(w)dw = 0, z < 0, y = −d; (5c)

∫
C+

eiwzF2(w)dw = 0, z > 0, y = d. (5d)

The first pair of equations of the system provides fulfillment

of the condition (3) about the absence of the tangential

component of the electric field on the surfaces of an ideally

conducting half-plane. The second pair corresponds to the

absence of current density on the continuation of conducting

half-planes or, in other words, the continuity of the magnetic

field Hx.

Using the Wiener-Hopf technique for planar structures given

in [9]–[11], we present the solution as

F1(w) =
e−iz0w

√
k0 − w

(
A1(w) +B−(w)

)
(z0 → 0), (6)

F2(w) =
eiz0w√
k0 + w

(
A2(w) +B+(w)

)
. (7)

From this follows, that the functions A1 and A2 have a

simple pole at the point w = h, which corresponds to the

amplitude of a plane wave incident on a half-plane edge. The

function B+ is regular in the upper half-plane (UHP), and

B− in the lower half-plane (LHP) of the complex variable w
[13]. Their physical meaning corresponds to the amplitudes of

secondary cylindrical waves reradiated from the edges of the

half-planes.

The required functions are represented in the form of

meromorphic functions

A1(w) =
a1

w − h
, A2(w) =

a2
w − h

, a1, a2 = const, (8)

as well as Cauchy-type integrals [13]

B+(w) =
1

2πi

∫
C−

b2(u)

u− w
du, B−(w) =

i

2π

∫
C+

b1(u)

u− w
du,

(9)

which are regular in the UHP and the LHP u, respectively.

It should be noted that the equations (5c), (5d) are satisfied

automatically, thanks to Jordan’s lemma, since F1 and F2 are

regular, respectively, in the LHP and the UHP of the complex

variable w.

It’s noted that the current densities satisfy the usal Meixner

condition F w−3/2 at |w| → ∞.
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The integral over the narrow loop of the contour C+ in

(5a) corresponds to the amplitude of a plane wave incident on

the edge of the half-plane (y = d). Therefore, the tangential

component of the electric field E0
z (d) on the conducting plane

in (5a) must be canceled out by the integral over the contour

loop C+. Thus, by eliminating the pole w = h corresponding

to the plane wave in (5a), we find the constant

a2 = H0
x

√
k0 + h

2πi
ei(d

√
k2
0−w2−z0h),

hence, the sought function in (8)

A2(w) =
H0

x

2πi

√
k0 + h

(w − h)
ei(d

√
k2
0−h2−z0h). (10)

Having calculated the second integral in (5a), we use the

residue at the pole w = u, with the closed integration contour

in the lower half-plane (LHP) w, according to Jordan’s lemma,

and reduce the equation (5a) to the form∫
C−

eiuz
[
ei(2vd−z0u)

√
k0 + u

(
A1(u) +B−(u)

)
+

eiz0u
√

k0 − u b2(u)
]
du = 0.

(11)

It is obvious that this equation does not contain the function

A2, which became possible due to the loop integral C+.

In order to satisfy the above equation, it is sufficient to

require that the integrand function be regular throughout the

entire LHP u, i.e., all its remaining singular points in the LHP

must be completely compensated by the function

b2(u) = −ei2(vd−z0u)

√
k0 + u

k0 − u

(
A1(u) +B−(u)

)
. (12)

Substituting (12) in (9), we find the sought function

B+(w) = − 1

2πi

∫
C−

ei2(d
√

k2
0−u2−z0u)

u− w

√
k0 + u

k0 − u(
A1(u) +B−(u)

)
du.

(13)

Similarly, we calculate the residue at the pole w = h,

substituting F1 into the first integral of Eq. (5b), as a result of

which the field of the incident plane wave will be compensated

on the half-plane z > 0 (y = −d) due to the function

A1(w) = −H0
x

2πi

√
k0 − h

w − h
e−i(d

√
k2
0−h2−z0h).

Further, in order to fully satisfy the equation (5b), first, it is

necessary to calculate the integral using the residue at the pole

w = u from the integral representation of the function B−,

then compensate all the singularities of the integrant along the

contour C+ on the UHP u using the function

b1(u) = −ei2(vd+z0u)

√
k0 − u

k0 + u

(
A2(u) +B+(u)

)
. (14)

Thus, the system of singular integral equations (5) is re-

duced to a system of Fredholm integral equations of the second

kind⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B−(w) =
1

2πi

∫
C+

ei2(d
√

k2
0−u2+z0u)

u− w

√
k0 − u

k0 + u(
A2(u) +B+(u)

)
du, (15a)

B+(w) =
1

2πi

∫
C+

ei2(d
√

k2
0−u2+z0u)

u+ w

√
k0 − u

k0 + u(
A1(−u) +B−(−u)

)
du. (15b)

It should be noted that the technique of asymptotic solution

of a system of this type with a given accuracy can be found

in [9].

Introducing, for convenience, the integral operator

I(w, u) =
1

2πi

∫
C+

du
ei2(d

√
k2
0−u2+z0u)

u− w

√
k0 − u

k0 + u
, (16)

we can write a system of functional equations (15){
B+(w) = I(−w, u)

(
A1(−u) +B−(−u)

)
, (17)

B−(w) = I(w, u)
(
A2(u) +B+(u)

)
. (18)

Its solution can be obtained in the form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

B+(w) =

∞∑
n=1

I2n−1(−w)A1(−w0) +

I2n(−w)A2(w0), (19)

B−(w) =
∞∑

n=1

I2n−1(w)A2(w0) + I2n(w)
(
A1(−w0), (20)

thanks to recursive equations where the following operator is

used

Im(w) = I(w,wm−1)
1∏

i=m−1

I(−wi, wi−1), m > 1,

1∏
i=m

ai = amam−1 · · · a1, I1(w) ≡ I(w,w0).

(21)

III. CONCLUSIONS

The boundary value problem of the diffraction of a plane

wave on two opposite staggered perfectly conducting half-

planes is reduced to solving a system of Fredholm integral

equations of the second kind by the W-H method. The solution

is presented as a sum of an infinite series (19) where, as it is

shown in [9], it can be found with any accuracy.

It should be noted that the resulting solution turned out to

be identical in appearance to the solution to the problem of

diffraction by a strip. This confirms the fact that the solutions

to these problems actually describe the same wave diffraction

processes occurring in similar planar structures in the form

of multiple reflections of cylindrical waves from the edges of

half-planes.
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It is even easier to find an asymptotic solution to a system

of Fredholm integral equations if we reduce it directly to a

system of two algebraic equations by integrating it using the

saddle point method [11]. The advantage of this approach is

the presence of the Fredholm denominator, which is of interest

for discrete spectrum problems.

The proposed method for solving the key problem can

be useful in solving new boundary value problems of wave

diffraction by finite planar structures

REFERENCES

[1] A. Sommerfeld, “Mathematische theorie der diffraction: Mit einer tafel,”
Mathematische Annalen, vol. 47, no. 2, pp. 317–374, 1896.

[2] D.S. Jones and J.D. Achenbach, “Acoustic and
electromagnetic waves,” 1986. [Online]. Available:
https://api.semanticscholar.org/CorpusID:209835838

[3] B. Noble, Methods based on the Wiener-Hopf technique for the solution
of partial differential equations. University Microfilms, 1962, vol. 7.

[4] L. Weinstein, The Theory of Diffraction and the Factorization Method.
Golem Press, Boulder, Colorado, 1969.

[5] K. Kobayashi and P. D. Smith, Advances in mathematical methods for
electromagnetics. Institution of Engineering and Technology, 2020.

[6] D. S. Jones, “Diffraction by three semi-infinite planes,” Proceedings of
the Royal Society of London. A. Mathematical and Physical Sciences,
vol. 404, no. 1827, pp. 299–321, 1986.

[7] V. G. Daniele and G. Lombardi, Scattering and Diffraction by Wedges
1: the Wiener-Hopf Solution-Theory. John Wiley and Sons, 2020.

[8] V. Daniele, G. Lombardi, and R. Zich, “The scattering of electromag-
netic waves by two opposite staggered perfectly electrically conducting
half-planes,” Wave Motion, vol. 83, pp. 241–263, 2018.

[9] M. Sautbekova and S. Sautbekov, “Solution of the Neumann Problem
of Diffraction by a Strip Using the Wiener–Hopf Method: Short-Wave
Asymptotic Solutions,” IEEE Transactions on Antennas and Propaga-
tion, vol. 65, no. 9, pp. 4797–4802, 2017.

[10] S. Sautbekov, “Factorization method for finite fine strucrures,” Progress
In Electromagnetics Research B, vol. 25, pp. 1–21, 2010.

[11] ——, “Diffraction of plane wave by strip with arbitrary orientation of
wave vector,” Progress In Electromagnetics Research M, vol. 21, pp.
117–131, 2011.

[12] J. Meixner, “The behavior of electromagnetic fields at edges,” IEEE
Transactions on Antennas and Propagation, vol. 20, no. 4, pp. 442–
446, 1972.

[13] R. Mittra and S. Lee, Analytical Techniques in the Theory of Guided
Waves, ser. Macmillan series in electrical science. Macmillan, 1971.
[Online]. Available: https://books.google.kz/books?id=R-c8AAAAIAAJ

APPENDIX A

INTEGRAL REPRESENTATION OF THE MAGNETIC FIELD OF

SURFACE CURRENTS

The solution to the Helmholtz equation

(k20 +�)Hx = − ∂

∂y
jz(y, z) (22)

for an H-polarized wave is

Hx = − ∂

∂y
jz(y, z) ∗ ψ = −i F−1[ky j̃zψ̃], (23)

where F[·] is the Fourier transform operator

j̃z = F[jz], ψ̃ = F[ψ] =
1

k20 − k2
, ψ = − 1

4π

eik0r

r
. (24)

Surface currents Jz(z) induced on the plane y = y0
correspond to the current density jz(z)

jz = −4πδ(y − y0)Jz(z), j̃z = −8π2δ(kx)e
−ikyy0F (kz),

where F (kz) = Fz[Jz(z)] is a Fourier component of the

surface current density.

Taking into account the representation of the delta function

and calculating the integral with respect to ky

F−1[ky j̃zψ̃] = − 1

π

∞∫
−∞

∞∫
−∞

ei(ky(y−y0)+kzz)

kyF (kz)

k20 − k2y − k2z
dkydkz

(
kz = w, ky =

√
k20 − w2

) (25)

using the theory of residues, from (23) we obtain the integral

representation of the magnetic field

Hx = sgn(y − y0)

∞∫
−∞

eiwzeiv|y−y0|F (w)dw (26)

of surface currents flowing parallel to the z axis on the plane

surface y = y0.
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