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Abstract—The paper considers the boundary value problem
of the diffraction of a symmetric TE-wave by a semi-infinite
pin located coaxially inside a circular waveguide. The problem
is reduced to a system of singular integral equations, which is
solved by the Wiener-Hopf method in the class of meromorphic
functions. Based the factorized Bessel functions and the entire
function, a technique for constructing a solution in the form of the
Fourier component of the surface current density is developed.
The Meixner condition is satisfied by shifting the zeros of the
entire function. The correctness of the solution was verified
using the stitching method. The solution also provides a limiting
transition to a thin pin, where a semi-infinite pin and a hollow
cylinder of the same radius are physically equivalent. In the case
of the limiting transition, when the radius of the pin approaches
the radius of the waveguide, the solution provides a complete
reflection of the oncoming mode, which is the only mode of the
waveguide propagating in the opposite direction.

Index Terms—Factorization, Wiener-Hopf method, diffraction,
circular waveguide, pin

I. INTRODUCTION

The problem of diffraction of a symmetrical wave by a semi-

infinite pin in a circular waveguide was previously considered

in [1], where the solution of the linear initial problem was

reduced to the solution of a system of nonlinear algebraic

equations, which is very time-consuming for numerical cal-

culations. A similar problem was considered in [2] with the

use of the interpolation method of factorization [3], related to

the Wiener-Hopf (W-H) method, where the systems of linear

algebraic equations are solved using a numerical-analytical

method of generalized stitching, the cumbersomeness and

complexity of which increases significantly with the accuracy

of the resulting solution, especially in the multi-wave mode.
The main obstacle in solving the problem analytically by the

W-H method, in our opinion, was that it was difficult or even

impossible to find such a combination of factorized functions

in the class of meromorphic functions that the integrand

did not contain either poles or branching points inside the

integration contour.
In this work, based on the W-H method, an analytical

solution to the key problem of a symmetrical TE-wave on

a semi-infinite pin in a circular waveguide is proposed. The

boundary value problem is reduced to solving a system of

paired singular equations, which is solved by selecting com-

binations of factorized functions or by applying a special
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procedure to the entire function, so that inside the integration

contour the integrand is regular according to the Jordan lemma

and has no more than a power-law growth for w → ∞
according to the Meixner condition.

The second section is devoted to the mathematical formula-

tion of the boundary value problem, where the electrodynamic

boundary conditions are formulated in the form of a system

of integral equations. In the third section the methodology for

solving a system of integral equations is considered. In the

fourth section, using the theory of residues, the fields inside

the waveguide are presented in the form of series of natural

waves in each region. The fifth section provides factorization

formulas for the kernels of integral equations. The fifth and

sixth sections include discussion and conclusion.

II. STATEMENT OF THE PROBLEM

Let a TE-wave with the longitudinal wave number h and the

amplitude A0 arrive at the left end of a semi-infinite circular

pin of the radius a1, coaxially located inside an infinite circular

waveguide of radius a. This event is described by the formula:

Ei
φ(r, z) = A0J1(V r)eih(z−z0), h =

√
k2 − h2, (1)

where z0 < z1 is location of the emitter, z1 is the coordinate

of the end of the pin, V is one of the roots of the first-order

Bessel function J1(V a). The walls of the waveguide and pin

will be considered ideally conductive.

The boundary value problem must satisfy the boundary

conditions of the absence of a tangential component of the

electric field on the surface of the pin and on the infinite

circular waveguide of the radius a:

Eφ(r, z) + Ei
φ(r, z) = 0, 0 ≤ r ≤ a1, z1 ≤ z;

r = a, −∞ < z < ∞, (2)

where

Eφ(r, z) = −kW

2πi

∞∫
−∞

eiwzL(r, w)F (w)dw (3)

is the azimuthal component of the electric field of secondary

waves re-emitted by the semi-infinite pin, W = (μ0/ε0)
1/2 is

the wave impedance, F (w) is the Fourier component of the
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density of surface currents induced on the side surface of the

pin. The following notations are used here:

L(r, w) =
1

J1(va)

{
J1(vr)(a

′
1, a

′), r ≤ a1,

J1(va1)(r
′
1, a

′), r ≥ a1,
(4)

for the combinations of Bessel functions

(r′, a′) = J1(vr)Y1(va)− J1(va)Y1(vr), v =
√
k2 − w2,

�(v) > 0, Y1 is the Neumann function of the first order.

Components of a magnetic field

Hr(r, z) =
1

2πi

∞∫
−∞

eiwzwL(r, w)F (w)dw, (5)

Hz(r, z) = − 1

2π

∞∫
−∞

eiwzvL(r, w)F (w)dw. (6)

are also expressed in terms of the desired function F (w).

A. Integral equations

After rewriting the boundary conditions (2) using the inte-

gral representation of the field (3), and taking into account the

continuity of the magnetic field on the extension of the lateral

surface of the pin along z, we can reduce the boundary value

problem to solving the paired W-H equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−kW

2πi

∞∫
−∞

eiwzL(r, w)F (w)dw + Ei
φ(r, z) = 0,

0 ≤ r ≤ a1, z1 ≤ z; r = a, −∞ < z < ∞,

(7a)

∞∫
−∞

eiwzF (w)dw = 0, z < z1. (7b)

III. SOLVING INTEGRAL EQUATIONS USING THE W-H

METHOD

The functional relations in (7) are fulfilled if F satisfies the

following requirements:

I. The function L(r, w)F (w) is regular for ≤ r ≤ a1 and

has no singular points in the upper half-plane (UHP) w,

except for a simple pole w = h, which causes extinction

of the incident wave to the right of the end of the pin,

and has no more than a power-law growth w−5/3 at

infinity.

II. The function F (w) is regular and has no singular points

in the lower half-plane (LHP); at infinity it behaves as

w−2/3, according to the Meixner condition [4].

The function F (w), determined by requirements I and

II, can be represented as:

F (w) = K
L−1
− (a1, w)

(w − h)
Ψ(w)e−iwz1 ,

Ψ(w) =
J1(va1)

v(w + h̃)J(v)
,

(8)

where K − const, h̃ =

√
k2 − (V a/a1)

2
,

(a′1, a
′)− =

(a′1, a
′)

(a′1, a′)+
, J1(va)− =

J1(va)

J1(va)+
.

Here, the factorized functions with the subscript ’−’ are

regular and have no zeros in the LHP w, whereas the functions

with the subscript ’+’ have no zeros in the UHP.

The function J(v) must have the asymptotic behavior ∼
exp(−iva1). Let us assume that it is an entire function, as

it has an apparent advantage over a function with a branch

point when calculating integrals. However, the entire function

J(v) should not contain zeros, at least inside the integration

contours, since they are poles of the function F (w). Therefore,

we will need a procedure that removes all zeros to infinity, but

does not change its asymptotic behavior.

Prior to performing this procedure, let us express the entire

function J̃(v, a1)

∞∏
n=1

(
1− ṽ2

v2n

)
=

Γ2(� +1)

Γ(ṽ+ � +1)Γ(−ṽ+ � +1)
=

1

π

Γ2(� +1)Γ(ṽ− �)
Γ(ṽ+ � +1)

sinπ(ṽ− �) (�< ṽ) ∼
1

π
Γ2(� +1)ṽ−1−2� sinπ(ṽ− �), vn =� +n

(9)

in terms of sine, where ṽ = va1/π, �= 2/3 is a shift of

zeros, which ensures that the Meixner condition is satisfied in

the solution F (w).
After partitioning the radius of the pin

0 = b0 < b1 < b2 < · · · < bN−1 < bN = a1 (10)

into N intervals, we can remove zeros of the entire function

J̃(v, a1) at large distances using the transformation

J(v) = (−2i)Ne−iπ�N
N∏

m=1

J̃(v, bm − bm−1). (11)

Finally, taking into account the transition of sine into (9)

sinπ
(va1

π
− �

)
→ 2N exp

(
−iπ(� + 1

2 )N
)

(
sinπ

(va1
πN

− �
))N

∼ exp(−iva1), ka1 � N,
(12)

we obtain the asymptotics of the entire function J(v) in (11)

J(v) ∼ (va1)
−1−2� exp(−iva1). (13)

As the number N → ∞ increases, all roots of the func-

tion J(v) will be moved at large distances and have larger

values. Since the zeros of J(v) on the complex plane w are

imaginary, the contributions of residues to the integral from

the corresponding poles can be considered extremely small.

Having calculated the residue at the point w = h in the

UHP w, we find the constant

K =
A0

kW

J1(V a1)

L+(a1, h)Ψ(h)
exp{ih(z1 − z0)}. (14)
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It should be noted that the solution F (w) satisfies all

the boundary conditions of the boundary value problem; the

reliability of fulfillment of equations in (7) is directly verified

using the theory of residues.

IV. FIELD CALCULATION

Expressions for fields, for example, for the electric field,

can be obtained from (3) using the theory of residues for each

region of the waveguide

(a) 0 ≤ r ≤ a, z < 0.

Eφ = kW
∞∑

n=1

e−iwa
nzwa

nL
∗(r,−wa

n)

F (−wa
n) +A0J1(V r)eih(z−z0), (15)

L∗(r,−wa
n) = lim

w→−wa
n

(w + wa
n)L(r, w);

(c) a1 ≤ r ≤ a, 0 ≤ z.

Eφ = −kW

∞∑
n=1

eiw
c
nzwc

nL(r, w
c
n)F

∗(wc
n),

F ∗(wc
n) = lim

w→wc
n

(w − wc
n)F (w),

(16)

where wa
n =

√
k2 − va2n , van (n = 1, 2, . . . ) are the roots of

the first order Bessel functions J1(va), and wc
n =

√
k2 − vc2n ,

vcn correspond to zeros of the combination of Bessel functions

(a′1, a
′).

The magnetic field components Hr and Hz are calculated

similarly in the form of exponentially convergent series.

V. DISCUSSION

The resulting solution F (w) for the system of singular

integral equations (7) satisfies the Meixner condition or the

so-called sharp edge condition, which is achieved by shifting

the zeros of the entire function J(v) by 2/3.

The expression F (w) is also a solution to the systems of

infinite algebraic equations obtained by the stitching method

with respect to the coefficients of the series of field expansion

in eigenwaves An and Bm

∞∑
n=1

An
wa

nJ1(v
a
na1)

wa2
n − wc2

m

−A
hJ1(V a1)

h2 − wc2
m

=
Bm

2
(a′1, a

′)∗m,

∞∑
n=1

An
J1(v

a
na1)

wa2
n − wc2

m

+A
J1(V a1)

h2 − wc2
m

=
−Bm

2wc
m

(a′1, a
′)∗m,

∞∑
n=1

An
J1(v

a
na1)

wa2
n − wb2

n

+A
J1(V a1)

h2 − wb2
m

= 0.

(17)

Indeed, these equations can be obtained using contour

integrals over an infinite circumference through the Fourier

component of the current density F (w)∮
w
L(a1, w)F (w)

w2 − wc2
m

dw = 0,∮
L(a′1, w)F (w)

w2 − wc2
m

dw = 0,∮
L(a′1, w)F (w)

w2 − wb2
m

dw = 0,

(18)

which are expressed as sums of residues

∞∑
n=1

wa
n

L∗(a1,−wa
n)F (−wa

n)

wa2
n − wc2

m

− h
L∗(a1, h)F (h)

h2 − wc2
m

=

1

2
L(a1, w

c
m)F (wc

m),

∞∑
n=1

L∗(a1,−wa
n)F (−wa

n)

wa2
n − wc2

m

+
L∗(a1, h)F (h)

h2 − wc2
m

=

1

2wc
m

L(a1, w
c
m)F (wc

m),

∞∑
n=1

L(a1,−wa
n)F (−wa

n)

wa2
n − wb2

n

+
L∗(a1, h)F (h)

h2 − wb2
m

= 0.

(19)

Thus, the unknown coefficients of the series can be ex-

pressed in terms of F (w)

Bm =
L(a1, w

c
m)F (wc

m)

(a′1, a′)∗m
,

An =
L∗(a1,−wa

n)F (−wa
n)

J1(vana1)
, A =

L∗(a1, h)F (h)

J1(V a1)
.

(20)

As a thin semi-infinite pin (a1 → 0) and a hollow cylinder

of the same radius are equivalent from the physical point of

view, this solution allows us to pass to the limit a1 → 0, �→ 0,

where the previously known expression for a thin semi-infinite

cylinder obtained by the W-H method follows directly from

(8), as the function Ψ(w) in (8) tends to a constant value due

to the limit

lim
a1→0

Ψ(w)/Ψ(h) = 1. (21)

Finally, the obtained solution also enables us to make a

transition to the limit when the waveguide is locked (a1 → a),

and the incident spatial mode is completely reflected from

the end of the pin. In this case, all reflected spatial modes

with longitudinal wave numbers −wa
n, (n = 1, 2, · · · ), except

for the only reflected harmonic −h̃ = −h at a1 → a are

completely canceled out by the Bessel function J0(va1) in

Ψ(w) contained in the analytical source F (w) (8).

By calculating the residue at the single pole w = −h in the

LHP w of the integrand of the function L(r, w)F (w) in (3),

and passing to the limit a1 → a we obtain the field of the

reflected wave

Eφ(r, z) = −A0J1(V r)eih(2z1−z0−z), (22)

where it is seen that the imaginary source of the reflected wave

and the radiator at z0 are located symmetrically with respect

to z1.

VI. CONCLUSIONS

The boundary value problem of the diffraction of a TE

wave by a semi-infinite pin located coaxially inside a circular

waveguide is reduced to a system of singular integral equa-

tions. In the class of meromophic functions, the solution to

paired integral equations (7) was constructed using the W-H

method. The solution F (w) in (8) was constructed so that the

integrand had no poles other than those at infinity or the pole
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of the incident wave w = h, when the integration contour is

closed along the real axis along the infinite semicircumference

in UHP or LHP w, according to Jordan’s lemma.

For this purpose, a sequence of the entire function J(v)
depending on the parameter N with a given behavior at infinity

and all zeros removed to infinity was constructed. As on the

complex plane w the zeros of J(v) are imaginary and their

absolute values tend to infinity, the sum of residues of the

integrand at these points can be considered vanishingly small

or all remote poles are beyond the integration contour.

The Meixner condition in solving the problem is satisfied

due to the shift of the zeros of the function J(v) in (9) by

�= 2/3.

The solution F (w) is verified using the stitching method.

It is shown that a system of infinite linear algebraic equations

obtained by the stitching method can be derived by integrating

the function L(r, w)F (w) along an infinite circumference. All

coefficients of the series of the stitching method are found

through the function L(r, w)F (w).

This solution allows us to pass to the limit when the radius

of the pin is small a1 < 4/k or when the pin completely

blocks the waveguide a1 = a. In the first case, it is shown

that the solutions for the pin and the hollow semi-infinite pipe

are the same, as they are equivalent from the physical point of

view. In the case of a locked waveguide a1 → a, the solution

contains only a single pole in the LHP w = −h, corresponding

to a mode completely reflected from the end of the waveguide.

In this case, the locations of the sources for the incident and

reflected modes turn out to be mirror-symmetrical with respect

to the end.
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APPENDIX A

FACTORIZATION OF BESSEL FUNCTIONS

Here we present the expressions for the factorized Bessel

functions Q(w) = Q(w)−Q(w)+

Q(w)+ = (k + w)νQ0e
−χ(w)

∞∏
m=1

(
1 +

w

wm

)
e

iw
mp ,

Q(w)+ ∼ (k + w)ν
(w

ip

)−(Δ+ 1
2 )

e
iw
p ln

2w
k , w → ∞,

χ(w) =
w

ip
(1− γ)− i

w

p
ln

2ip

k
, Q(wm) = 0,

(23)

where γ = 0, 577 is Euler’s constant, Q0 =
√
Q(0),

p =

(
π/a → J1(va)
π/(b− a) → (a′, b′)

)
, wm 	 ip(m+Δ),

Δ =

(
1/4 → J1(va),
0 → (a′, b′)

)
, ν =

(
1/2 → J1(va)
0 → (a′, b′)

)
.

(24)

The formula in (23) leads to the expression for factorization

of the function in (8)

L−1
− (a1, w) = P0

∞∏
m=1

(
1− w

wa
m

)
exp

{
i
wa1
π

T
}

(
1− w

wb
m

)(
1− w

wc
m

) ,

T = a
a1

ln a
a1

−
(

a
a1

− 1
)
ln
(

a
a1

− 1
)
,

(25)

where P0 = const, wb
m are zeros of the function J1(va1).

It should be noted that when calculating factorized functions

it is convenient to use the formula

L−(a1, w) =

√
L(a1, w)

L−(a1, w)
L+(a1, w)

. (26)
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