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INTRODUCTION

Discovery of exotic (neutron� or proton�excess)
nuclei has posed fundamental problems to nuclear
physics in relation to determination of nucleon drip
line, evolution of nuclear shells, explanation of new
structural formations (halo), and synthesis of super�
heavy elements at accelerators and space objects.

These radioactive (unstable in β� and other decay
channels) nuclei have been in great demand for recent
decades (since 1985 [1–4]) and are widely studied in
many research centers in Russia (Nuclotron, FLNR,
JINR, Dubna), the United States (NSCL, MSU
Michigan, ORNL Berkeley), Canada (TRIUMF,
Vancouver), Germany (GSI, Darmstadt), France
(SPIRAL, GANIL, SATURN�II, Saclay), CERN
(ISOLDE, SPS,), Japan (SBL, RIKEN), Brazil
(FSU, RIBRA, Sao Paolo), etc.

Evidence of the steady interest in exotic nuclei
includes the design and construction of new facilities
for studying them. The huge accelerator complex
FAIR (Facility for Antiproton and Ion Research) in
Darmstadt (GSI) has already been approved (with
construction beginning in 2010) with heavy ion syn�
chrotron (HIS) SIS100 [5], which will be the basic
facility necessary for a complex of research programs
including the electron�ion collider in the intersecting

beams ELISe (Electron�Ion Scattering) and produc�
tion of exotic nuclei induced in light�ion reactions
(EXL). The projects SCRIT RIBF (Self Confining
Radioactive Isotope Target at Radioactive Isotopes
Beam Factory) in RIKEN, Japan [6], ISF MSU (Iso�
tope Science Facility at Michigan State University) in
the United States [7], and SPIRAL�2 GANIL in France
[8] are at different stages of decision�making; the con�
struction of a new fragment separator ACCULINNA�2
at JINR (Dubna) is under discussion. At these facili�
ties, radioactive nuclear beams with large intensity
shall be obtained for use in nuclear reactions and the
first electron�nuclear experiments with unstable
nuclei will be carried out, making it possible to supple�
ment and refine the data on their properties with
experiments studying the scattering of proton and
nuclear targets.

Currently, nucleon�stable isotopes are obtained, in
which the number of neutrons is more than twice as
many as the number of protons; these are 40Mg
(12 protons and 28 neutrons) and 42Al (13 protons and
29 neutrons) [9]. The availability of these isotopes
expands the boundary of neutron stability. Exotic
nuclei play an important and sometimes dominant
role in many phenomena observed in space, such as
new stars, supernovas, γ flares and other astrophysical
phenomena. It has been shown recently [10] that the

Study of the Structure of Light, Unstable Nuclei 
and the Mechanism of Elastic Proton Scattering 

E. T. Ibraevaa, M. A. Zhusupovb, O. Imambekovb, and S. K. Sakhievc 
aInstitute of Nuclear Physics, National Nuclear Center of the Republic of Kazakhstan, Almaty, Kazakhstan

bAl�Farabi Kazakh National University. Almaty, Kazakhstan 
cGumilev Euro�Asian National University, Astana, Kazakhstan

Abstract—The review presents calculations of elastic p6He�, p8Li�, p9Li� and p9C scattering in the framework
of the Glauber theory of multiple diffraction scattering at intermediate energies of 70 and 700 MeV/nucleon.
The most significant result of the calculations is that we have utilized realistic three�body wave functions
obtained within modern nuclear models. The relation is found between differential cross sections and inter�
cluster potentials, where the nuclear wave functions are calculated. Conclusions are made concerning the
types of potentials which describe most realistically the available experimental data. The method for calcula�
tion of three�body wave functions in α–n–n�, α–t–n�, 7Be–p–p�, α–t–2n�, and 7Li–n–n models is
described with discussion of inter�cluster potentials and the quantum�number configurations taken into con�
sideration. It is revealed how the wave functions and the nuclear electromagnetic characteristics calculated
using these wave functions depend on the choice of intercluster potentials. The derivation of matrix elements
(amplitudes) of pA scattering in the framework of the Glauber approach with three�body wave functions is
presented by an example of 6He nucleus. Discussing the results of calculation of differential cross sections and
the analyzing power (Ay), we established how the calculated characteristics depend on a wave�function struc�
ture and dynamics of the process determined by a Glauber operator of multiple scattering. The calculated dif�
ferential cross sections and analyzing powers are compared with available experimental data and calculations
by other authors performed for different formalisms, which allows us to make justified conclusions.

DOI: 10.1134/S1063779611060037



848

PHYSICS OF PARTICLES AND NUCLEI  Vol. 42  No. 6  2011

IBRAEVA et al.

formation of the ultra neutron�excess and superheavy
nuclei is possible in relativistic jets, γ flares, and super�
nova jets near the neutron star in the process of its
birth. The sources creating these nuclei are nuclear
reactions and reactions of synthesis in space objects.

Experimental data on nuclei near the nucleon drip
line is extracted from the elastic and inelastic scatter�
ing of nuclei by the proton and heavier targets, as well
as from the reactions of one� and�many�nucleon
transfers and Coulomb dissociation (breakup) of a
light, unstable nucleus in the field of a heavier one.
The most comprehensive information is gathered for
integral observables such as total cross sections of elas�
tic and inelastic scattering, reactions, and breakup.
There are data on differential cross sections (DCS),
angular and momentum distributions of fragments,
and excitation spectra of reaction products. New
experiments are aimed at measuring the polarization
observables as well as at measuring different correla�
tions (energetic, angular, and combined ones) in
motion of fragments during the exotic�nuclei breakup.
Kinematically complete experiments, where all frag�
ments are recorded simultaneously and which contain
the most exhaustive information on the nuclear struc�
ture and interaction dynamics, are needed for these
measurements. However, detecting a large number of
fragments in the kinematically complete experiments is
difficult due to the (currently) low intensity of radioac�
tive beams; therefore, there is an urgent need for con�
structing new facilities with the higher beam intensity.

Data on the reaction total cross sections, the inter�
action and charge�exchange cross sections of light and
intermediate (from 4He to 32Mg) exotic nuclei in their
interaction with protons and the heavier targets (Be,
C, Al), measured and calculated using different meth�
ods before 2000, were reviewed in [11, 12]. There, the
theoretical models for calculation of these quantities
are described (that of strong absorption, the macro�
scopic and semimicroscopic optical models, and the
Glauber model). The analysis of sizes of unstable
nuclei, their derivation from the measured total cross
sections of interaction and reactions, as well as the
effective density distributions of protons and neutrons,
and the determination of the neutron skin thickness
and core sizes were performed in [12].

Once Tanihata discovered the anomalously large
cross section of p11Li scattering and drawn the subse�
quent conclusion about the halo�like structure of 11Li
nucleus [1–4], the search for nuclei with the similar
structure was pursued rather intensively. However, not
all neutron� and proton�excess nuclei have the halo
structure. For some of them, the excess of the nucle�
ons does not lead to the anomalous increase in sizes,
only to the concentration of excess nucleons in the
nucleus surface layer, which is termed “skin” (we shall
call the skin�nuclei by analogy of halo�nuclei because
the Russian translation of “fur coat” is related to the
fur coat of virtual mesons around the nucleons, whileπ

the term “skin” is not commonly�used). The halo is
the low�density distribution of valence nucleons at a
certain (on the order of 0.5–0.9 fm) adequate distance
from the dense (frequently �particle) core of a
nucleus. The skin is the excess concentration of a sin�
gle type of nucleons (neutrons or protons) in the sur�
face region of a nucleus without substantial increase in
its size. By definition [12] the skin describes the neu�
tron (or proton) excess on the nuclear surface, while
the halo describes the same excess, plus the tail from
the neutron (or proton) density.

Three reviews [13–15] on neutron excess isotopes
of light elements are written with somewhat different,
experimental bias. The first one [13] considers meth�
ods for producing radioactive nuclei, the mechanisms
of several�nucleon transfer reactions, and the feasibil�
ities of studying the exotic nucleus structure in reac�
tions with radioactive beams. The remaining reviews
contain the accumulated experimental data that
mainly include the energy spectra of neutron excess
nuclei produced in transfer reactions to Z ≤ 5 (He, Li,
Be, B) [14] and Z ≥ 6 (heavy isotopes of C, N, O, F, Ne)
[15]. Based on the nuclear energy spectra measured
and calculated using different models, conclusions are
drawn about their properties. Information available by
the time of writing was collected and analyzed.

The latest data on the total cross sections of exotic
nuclear reactions (from He to C) during their colli�
sions with heavy targets (Pb, U), the binding energies,
and the rms charge radii, calculated in the context of
Glauber formalism, are published in [16]. The densi�
ties of the standard relativistic mean field (RMF) or
the densities obtained in RMF with effective
Lagrangian (E�RMF) were used as input parameters.
Additionally, the comparison of the calculated values
is given with new experimental data for light nuclei
(from 4He to 11Li) [17 –20] with the earlier�measured
data for the heavier nuclei (up to Pb, U) [21].

The breakup reactions of 6He and 11Li nuclei with a
two�neutron halo, in their collisions with electrons,
protons, and with 12C and 208Pb nuclei were studied in
detail in [22]. The calculation of nucleon densities in
nuclei was performed within the microscopic multi�
particle model based on hyperspherical functions,
which made it possible to consistently describe the
structure peculiarities of 6He and 11Li nuclei, in both
the ground and excited states, as well as in the contin�
uous spectrum. Cross sections, excitation spectra,
momentum distribution of residuals, the energy and
angular correlations of breakup fragments, and charge
form factors were calculated for different mechanisms
of breakup reactions: Coulomb and nuclear reactions,
their combination, and the elastic and inelastic frag�
mentation. The microscopic four�body method in the
context of the distorted wave Born approximation
(DWBA), used for the calculations, allows one to con�
sistently consider the Coulomb and nuclear dissocia�
tions, and the Coulomb�nuclear interference, as well

α
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as recoil effects in the breakup of light nuclei. The
developed calculation method may also be applied to
the analysis of observables in kinematically complete
experiments where various correlations in motion of
fragments are measured for the extraction of data on
the nuclear structure and the nature of continuous
spectrum of excitations. 

We shall dwell briefly on the review of models in
which the nuclear structure is calculated; it is neces�
sary for the further discussion and comparison of the
results obtained from different models. For light
nuclei, these are the shell model [23] and its modern
modifications: the large�scale shell model (LSSM)
without a core [24–27] and the cluster�orbital shell
model approximation (COSMA) [28–31]; potential
cluster model [32–35]; model of antisymmetrized
molecular dynamics (AÌD) [36–38]; different micro�
scopic models in which the effective or free NN inter�
actions are specified, e.g., the resonating group model
(RGM) [39–44] and its approximate methods (gener�
ator coordinate method (GCM) [45] and variation
stochastic method [46–52]), which simplify solving of
RGM equations.

The nuclear�shell model was developed from the
reasoning that provides the unified description of
empirical data on nuclear systematization and makes
it possible to calculate some nuclear characteristics
individually for any particular nucleus. The model is
based on a suggestion that the interaction of all nucle�
ons in a nucleus with each other averaged as a result of
their motion leads to the mean one�body spherically
symmetric potential V(r). In this self�consistent mean
field, nucleons move in independent orbits. The
many�body model of shells (MBMS) takes into
account the interaction of nucleons with each other in
the unfilled shell in addition to the interaction of
nucleons with the mean field. These are the so�called
residual interactions. The successes of the MBMS in
describing the structure of light stable nuclei of
1p�shell (A = 6–14) [53] are widely�acknowledged.
However, as is noted in [22], “the qualitative picture of
the structure of nuclei with halo is different. It is char�
acterized by coexistence of two nuclear subsystems:
the core nucleons forming the strongly�bound nucleus
and the halo nucleons moving with respect to the cen�
ter�of�mass of the core and creating a cloud of rarefied
nuclear matter around the core. In loosely bound sys�
tems, the potential energy of the mean field is almost
completely compensated by the kinetic energy of
motion of nucleons.” Therefore the standard model of
shells needs modification for describing halo�nuclei.
The contribution of the great number of shells is taken
into consideration within LSSM, e.g., the g�matrix
NN interaction with the Reid potential (Reid93) is
used for 6He in [24] and the calculation is performed
in the full (0 + 2 + 4 + 6)  model space. This model
has an advantage in many calculations because, as
compared to others, it yields the realistic exponential

ω�

asymptotic behavior of the nuclear wave functions
(WFs).

In COSMA, the WFs of the bound�state and con�
tinuous spectrum are expanded in the hyperspherical
basis, which allows one to calculate the three�body
functions by taking into account the antisymmetriza�
tion in interchange of neutrons.

There is no initial assumption in AMD on exist�
ence of clusters, a WF of the system is described by the
linear combination of Slater’s determinants with
Gaussian wave packets and is a particular case of the
Brink cluster WF, where each cluster is constructed
from separate nucleons in the same way as a WF in the
fermion molecular dynamics. The calculation of WFs
for Li, Be, B, C within AMD revealed large structural
changes of these isotopes with an increase in the neu�
tron numbers. The WFs in AMD adequately repro�
duce the static observables, especially magnetic and
electric quadrupole moments, and predict a large
deformation of the neutron skin for certain isotopes.

In RGM, the WFs of the system are written as the
antisymmetrized product of the subsystem WFs and
their relative motion, the latter are found as a result of
solving the integral equations. The oscillator or Gaus�
sian functions in the translation�invariant shell model
(TISM) serve as basis WFs in description of fragments.

The RGM algebraic version, which is based on the
expansion of the WFs of the cluster relative motion
into a series in functions of the oscillator basis, is
actively used for the description of the structure of
light neutron�excess nuclei, and for studying the role
of the Pauli exclusion principle in forming WFs of the
bound state and continuum for three�cluster systems
and nuclear reactions with their participation [43, 44].

In GCM, the effective NN interactions are speci�
fied (phenomenological or self�consistent), which
makes it possible to bypass difficulties of calculations
with the realistic free NN interactions. The effective�
interaction parameters are fitted to the static charac�
teristics of stable nuclei, which is not necessarily effec�
tive for unstable nuclei. In stochastic methods, a WF
of the cluster system is decomposed in the nonmini�
mal Gaussian basis with searching for optimal compo�
nents on the basis of trial�and�error method, which
also simplifies solving the RGM equations.

The cluster models are the commonly�accepted
method of describing the structure of light nuclei and
are widely used in different formalisms. The idea of
clusterization consists of the fact that nucleons in
nuclei can form the stable associations named clusters
which may be approximately considered as structure�
less particles (d, t, 3He, α, and others). A relation
between the cluster and shell models and the algebraic
methods applied in the theory of nuclear reactions are
considered in detail in [32]. There, (as early as in the
1960s) the available powerful mathematical apparatus
of genealogic expansions, Talmi transformations, gen�
erator coordinates (Jacobi’s coordinates), etc. was
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successfully applied to description of cluster struc�
tures. Using group�theoretical methods, the genea�
logic coefficients and the reduced widths for clusters
(with A = 1–4) in TISM were calculated, the general�
ized Talmi transformations were derived, the tech�
nique of matrix element calculation in TISM was
developed, which was applied to the description of the
nuclear reactions (actual for that time): stripping
(p, t), (t, α), substitution (α, d), (α, t), quasielastic
knockout (p, 2p), (p, pd), (p, pα), (π+, 2p) and others
on light clusterized nuclei: 6,7Li, 10B, 12C, 14N. The
development of cluster ideas continued in the direc�
tion of dynamical forming of clusters, which are
present in a nucleus not only in the ground state in the
internal motion, but can be in excited states (the so�
called de�excitation). In the process of interaction
with the incoming particle, the de�excitation is
removed and the cluster is formed and emitted in the
ground state [33–35]. The consideration for de�exci�
tation of virtual clusters leads to increase in the widths
of form factors and an effective number of associa�
tions. Further, with account for the interference of two
potential amplitudes corresponding to different Young
orbital schemes [f], the potential cluster model was
applied to the systems d + d, d + t, t + p, d + p with the
nonzero total spin S and named the supermultiplet
potential model (SPM) [54]. The modern analysis of
SPM is given in [55]. This potential model that takes
into account the Pauli exclusion principle “creates the
unified physical picture connecting different available
experimental data and makes it possible to form new
problems” [55], such as producing the supermultiplet
scattering phase shifts and the supermultiplet cluster�
interaction potentials on their basis.

The particular (but important) case of clusteriza�
tion is the α�clusterization, because α�particle has the
largest binding energy (Ebin = 28.3 MeV) as compared
to other light particles. Nuclei with the mass number A,
multiple of four: 8Be, 12C, 16O, 20Ne and others, can be
most naturally treated in this model. The α�cluster
model of light nuclei and its applications are discussed
in many works, of which we shall mention [56–58],
where the α�cluster model with projection (or Brink
model, in which the antisymmetrization of the many�
body WF is taken into account) was applied to the cal�
culation of charge form factors of electron scattering
by 12C [56], 16O, 24Mg and others, up to 40Ca [57, 58]
and successfully described the experimental data. The
minima of form factors which are not described by a
typical α�cluster model with Gaussian functions are
rather exactly reproduced in the Brink model with the
symmetrized functions of nucleons up to transferred
momenta q ~ 3 f –1. The enhancement of the cluster�
ization is also shown in inelastic scattering (in com�
parison with the elastic scattering), when the initial
nucleus goes into the excited states.

Let us also note the works of the Khar’kov group of
theoreticians which has very fruitfully developed the

model (α�cluster model with variance, in which the
relative oscillations of α�particles in the nucleus are
taken into consideration) and applied it to processes of
elastic and inelastic scattering of nuclei [59] in the
context of Glauber theory of multiple scattering. In
recent works [60, 61], α�cluster model is extended to
such nuclei as 9Be, 13C, 13N, under the assumption
that they consist of the deformed core with the number
of nucleons a multiple of four and one nucleon inside
the core. The calculated rms radii and the charge form
factors of these nuclei are in a good agreement with
experimental values. The DCS and polarized charac�
teristics of elastic scattering of protons by 4He, 9Be,
12,13C, 13N, 16O, 20Ne nuclei, calculated within the the�
ory of multiple scattering at E = 0.5, 0.8, and 1.0 GeV,
also demonstrate the agreement with experiment, with
α�particle model with dispersion often providing the
better description of the precision polarization char�
acteristics of scattering than it is feasible in the mod�
ern, many�body shell model [60]. At present, there are
calculations in the α�cluster model for nuclei, consist�
ing of seven (28Si) and thirteen (52Fe) α�clusters [62].

New aspects of clusterization (molecular and clus�
ter gas�like states in light unstable nuclei) are studied
within AMD [38]. For example, the gas�like and crys�
talline states of α�clusters in excited states have been
recently suggested for describing the structure of
C isotopes. In particular, 3α�gas in 12C in 0+ state
attracts a broad interest in connection with the Bose�
Einstein condensate in the nuclear system.

With development of computing technology, the
numerical methods of solving the few�body equations
are improved. At the present time, the WFs have been
obtained not only for three� and four�, but also for
five� and six�body nuclear systems with realistic NN
interactions, three�body forces and consideration for
antisymmetrization for all nucleons [63–66]. The
exact microscopic WFs of few�body nuclei are com�
puted using the quantum Monte Carlo method
(MCM) [64–66] or obtained from solving Faddeev’s
equations [67]. The quantum MCM includes the vari�
ational MCM and the Monte Carlo Green’s Function
Method (MCGFM). The Monte Carlo Green’s
Function Method is a stochastic method systemati�
cally improving the WF, found initially using the vari�
ational MCM, in which a trial function is constructed
with the specified angular momentum, parity and isos�
pin. However, using these WFs in different formalisms
is difficult due to their extreme complexity, therefore
the alternative methods are developed which combine
the necessary accuracy and relative simplicity that
makes it possible to use them in particular calcula�
tions. These are few�body models of light nuclei with
realistic potentials of nucleon–nucleon and nucleon–
cluster interactions with consideration for antisym�
metrization due to the Pauli exclusion principle,
which are calculated using the stochastic variational
method [46–52] as expansions in the Gaussian basis,
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or using the hyperspherical harmonic method imple�
mented in the COSMA code [28]. These models fruit�
fully develop the potential cluster model and allow one
to describe properties of the ground and low�lying
excited states not only for the He, Li, Be, B, and C sta�
ble light nuclei, but for their unstable isotopes as well.
Thus, in the multicluster dynamical model (MDM),
the WFs were constructed for the 6He, 6Li and 9Be
light nuclei [68, 69]. Further, in the antisymmetrized
version of MDM [70–73] the method of group�theo�
retical analysis of contribution of exchange effects
arising due to the WF antisymmetrization was devel�
oped and the significant progress was achieved in
description of both static and dynamic observables
(DCS, form factors and polarization characteristics)
in processes of the elastic scattering of protons, elec�
trons, π�mesons, the photoabsorption of pions by the
6Li, 6He, and 9Be nuclei.

The absence of strong�interaction theory and exact
solution to few�body problems together with “exist�
ence of physical situations in which the interaction
dynamics is simplified” [22] leads to development of
approximate methods for calculation of the measured
quantities and extraction of data on the structure and
properties of interacting nuclei, with which we shall
mention the coupled channel (CC) method [74], its
modern extension for the continuous spectrum
(method of coupled channels with continuum discret�
ization (CDCC) [75]), relativistic impulse approxi�
mation (RIA) [76], high�energy approximation
(HEA) [77–83], optical model (OM) [84–87] with
the plane (PWIA) and distorted (DWBA) waves with
the optical [84] or folding potential [85–87], and the�
ory of Glauber multiple diffraction scattering [88, 89].

The CC approach and the modified CDCC
method are used for multichannel problems for small
collision energies. The relativistic impulse approxima�
tion is applied at high energies; the HEA is the some�
what simplified Glauber theory variant that is based on
eikonal approximation, but does not take into account
the expansion of multiple scattering into a series,
restricting itself, in essence, to the single scattering
alone. The most widely�used are the OM and Glauber
theory, which are adapted to calculating the character�
istics of reactions with exotic nuclei. Each of these
approximations has advantages of its own, and we shall
briefly touch upon them in discussion of results when
we compare values calculated in different approxima�
tions.

The macroscopic OM based on the standard phe�
nomenological optical potential with radial depen�
dence of Woods–Saxon appeared to be of little use for
describing the scattering of light, exotic nuclei by sta�
ble targets at relatively high energies, as it is shown,
e.g., in [90] for elastic p6He scattering at 717 MeV and
in [91] for p11Li scattering at 800 MeV/nucleon.

New OM modifications use either the phenome�
nological optical potential [84], based on effective

forces of interaction between clusters and nucleons
(different from the shape of the Woods�Saxon poten�
tial), or the potential calculated in the double folding
model [85–87], the initial parameters of which are the
matter distribution densities in the colliding nuclei
and the effective NN interactions. The M3Y forces
[92] based on the Paris or Reid–Elliott potential or the
alternative JLM forces [93, 94] are typically used as
effective NN forces. The total M3Y interaction has the
exchange and direct, isoscalar and isovector compo�
nents, i.e., takes into account the Pauli Exclusion
Principle. The imaginary part of potential is typically
introduced phenomenologically. The complex JLM
interaction is based on the Brueckner–Hartree–Fock
approximation, depends both on energy and density
and implicitly takes into account the Pauli Exclusion
Principle. It leads to the complex optical potential in
double�folding models. Since it has only the central
part, the spin–orbit M3Y forces are added to calculate
the spin–orbit part of the optical potential. The merit
of the folding model is that it directly connects the
nuclear density distribution of nucleons with the total
cross section of elastic scattering. However, the folding
model potential needs in substantial renormalization
(NR = 0.6–0.7 for 6He and NR = 0.4–0.5 for 11Li) [87]
in order that it successfully describes the DCS of scat�
tering at relatively low energies (tens MeV/nucleon).
In the CDCC method, it was shown [75] that the cou�
pling of the elastic scattering channel with the low�
lying channels of decay of the loosely bound channels
is responsible for renormalization. When the energy of
oncoming particles rises, the effect of coupled�chan�
nel breakup typically decreases and the quantity NR

tends to unity. Thus, through the quantity NR, the
analysis in the folding model can provide the estima�
tion of the effect of coupled�channel breakup in the
elastic channel.

The attractiveness of Glauber formalism [88, 89] is
that (1) there are almost no free varied parameters in it
(input quantities are parameters of elementary
nucleon–nucleon amplitudes, which are extracted
from independent experiments, and the WFs calcu�
lated with the fixed potentials of intercluster interac�
tions); (2) it allows one to separate the scattering
mechanism and nuclear structure and consider the
contributions to the observable quantities both from
the structure constituents (the simulated WFs) and
from the scattering mechanism (determined by the
operator of multiple collisions).

Since the Glauber approximation is widely�used
and the range of its application increases, it is sub�
jected to various improvements. Let us look upon sev�
eral examples.

The first example is associated with the expansion
of the field of Glauber formalism action which is
restricted by the relatively high energies (on the order
of hundreds MeV) and small scattering angles. For a
correct description of experimental data obtained for
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proton scattering in inverse kinematics by the 11Li and
8He [95] halo�nuclei at energies of 62, 68.4, and
74.5 MeV/nucleon (for 11Li) and 32, 66, and
72.5 MeV/nucleon (for 8He) and scattering angles up
to 60°, the method was used in [96, 97], in which the
amplitude is expanded into a series in inverse powers

of momentum  along the fixed direction of the
mean momentum vector . The first term of

the expansion  coincides with Glauber approxima�

tion; the next terms  yield corrections to the
eikonal, which allows one to extend the initial “classi�
cal” approximation for the region of large scattering
angles. Upon calculating DCS of the p�11Li and p�8He
scattering, it was shown that corrections for non�
eikonality decrease insignificantly the cross section at
large angles ( ) and their contribution increases
with the increase of both the scattering angle and
energy of the scattered particles.

The second example is concerned with the theory
extension to the nucleus–nucleus collisions are more
complicated than the proton–nucleus ones. Since the
major part of experimental data on the structure of
neutron�excess nuclei is obtained from nucleus–
nucleus collisions, Glauber formalism (in the optical
limit approximation when the many�body operator of
scattering is substituted for the simple two�body one,
taking into account only single collisions) became
applied to nucleus–nucleus interactions. A new
method of reconstruction of nucleus–nucleus optical
potential on the basis of Glauber theory is proposed in
[79–82]. Presenting the eikonal phase shift of scatter�
ing as the overlap integral of point densities of the
incoming nucleus, nucleus�target, and form factor of
amplitude of NN scattering, calculating it and com�
paring with the phenomenological expression for the
phase shift specified with using the optical potential,
we may find the parameters of the latter. If we compare
the eikonal phase shift with the microscopic phase
shift of HEA, then we can obtain the optical potential
of HEA. These potentials contain only two fitting
parameters normalizing their real and imaginary parts
in distinction to other phenomenological and semi
microscopic potentials involving no less than four
parameters. Thus, the microscopic optical potential of
HEA nucleus–nucleus interaction is obtained, which
reconstructs the Glauber amplitude in its optical limit.
These potentials are applied to the scattering of the
relatively light nuclei (13C and 16O) by heavy targets
(28Si, 54Fe, 66Zn, 208Pb, and others) and they showed
good agreement with the experimental total and DCS
at energies of tens MeV/nucleon [79–82].

The third example of Glauber model moderniza�
tion is presented in [98]. In this work, DCS and polar�
ization observables are calculated for pd scattering
(vector and tensor analyzing powers of proton and
deuteron) at energies of 0.25, 0.44, and 1 GeV, which
are compared with the exact Faddeev’s calculation

1k −

( ') 2+k k
0k

1 2, ,...k k− −

40θ > °

and with the experiment. The following factors were
taken into account in the context of Glauber formal�
ism: (1) spin dependence of NN amplitudes,
(2) D�wave in deuteron, and (3) isospin dependence of
NN amplitudes, i.e., the contribution of double
charge�exchange to pd scattering. Here the spin and
isospin dependences of NN amplitude are deduced
from the modern analysis of phase shifts, while the
deuteron WFs are obtained from two alternative mod�
els of NN forces. The modernizations have not
touched the fundamentals of the original Glauber the�
ory because it is well known to the authors “at least
qualitatively that different corrections to Glauber
model tend to reduce each other to a substantial
degree, so it is difficult to improve the Glauber model
significantly by introducing unilateral corrections”
[98]. It found “the surprisingly good agreement” of
polarization characteristics calculated in the modified
Glauber model, obtained in the exact Faddeev’s cal�
culation, and measured in the experiment in the for�
ward hemisphere at  (GeV/c)2. The conclu�
sion of the work is that the modified form of Glauber
approximation appears to be competitive as compared
to the Faddeev’s calculation and quite exact within the
wide angular domain even for such a loosely bound
nucleus as deuteron, which is the direct consequence
of domination of inelastic processes in the total pd
scattering. Elastic nd scattering is studied in [99],
where the total cross section and DCS are calculated
in Glauber and Faddeev’s formalisms at E = 100–
2000 MeV and after comparing results the former is
preferred.

A question on the relation between the reaction
mechanism and the structure of loosely bound nuclei is
studied by many authors. An interesting idea is imple�
mented in [100, 101]. Analyzing the α6He elastic scat�
tering at El.s. = 19.6 MeV, the authors associated the
mechanism of reaction proceeding through exchange
by dineutron (corresponding to the pole diagram) and
independent (with delay) transfer of two neutrons (cor�
responding to the square diagram) with two different
configurations of the 6He WF: dineutron and cigar�like.
The contribution of the dineutron configuration to the
DCS of the α6He elastic scattering leads to the occur�
rence of maxima at large angles (θ > 60), the cigar�like
configuration makes the contribution to the scattering
DCS, which is comparable with that of potential, in
the whole angular range. Although the dineutron con�
figuration in the 6He WF dominates over the cigar�like
one (95% and 5% in the total cross section), contribu�
tions of these WF components to the backward angle
cross section are comparable in magnitude. Analogous
conclusions were made earlier [102–106]. For exam�
ple, when studying the p3He elastic backward scatter�
ing [102, 103], the sequential transfer of unbound

np�pair (in  state, i.e., in the same state as in which a
dineutron may be) makes the dominating contribution to
the cross section at backward angles for all energies rang�

0.04t ≤

1
0S
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ing from tens of MeV to 1 GeV. When studying the 6He +
4He process at E = 25.1 MeV/nucleon and the
1H(6He,4He)3H process at E = 21.6 MeV/nucleon
[104–107], it was found that the dineutron configura�
tion dominated over the cigar�like one and they both
make the dominating contribution to DCS at back�
ward angles (  > 100°) where the potential scattering
has the value smaller by several orders of magnitude.
Based on the correct determination of the contribu�
tion of the four�angle diagram to DCS, it became pos�
sible to reconstruct the WFs of the relative motion in
the α–2n, n–5He, and n–α channels in the ground
state of the 6He nucleus. The distance is calculated
between α�particle and neutron in the cigar�like con�
figuration: Rnα = 3.8 fm [100].

The recent measurement of momentum correla�
tions of neutrons in the 4He(6He, 2α)2n reaction of
quasifree scattering of α�particles, performed at the
fragment�separator ACCULINNA at JINR [108], is
also in a good agreement with theoretical predictions
about the existence of dineutron and cigar�like com�
ponents in the 6He nucleus.

The 6Li((γ, π+)6He reactions [73] of charged pions
with γ�quanta emission and reactions of transfer of
one or two nucleons [101, 104, 105, 109] may serve as
the useful additional study of halo structures, because
they are also sensitive to the WF of the nucleus that is
created in a final state. For example, it was revealed in
[101], after the analysis of the 9Be(d, p)10Be reaction
cross section, that at scattering angles below 50° the
dominating contribution to it comes from the square
mechanism of the neutron pick�up and dineutron
stripping and the 10Be structure is determined by the
core and ill�defined halo from one neutron. The anal�
ysis of the 10Be(t, p)12B reaction cross section has
shown that the main contribution to DCS in all angle
range (from 0 to 160°) comes from the pole mecha�
nism of stripping of the dineutron cluster and the 12B
nucleus has halo structures, the excess neutrons form
“skin” in the nucleus surface region. Thus, it is
revealed that the correct determination of contribu�
tions from two mechanisms to cross sections of the
(d, p) and (t, p) reactions on the 9Be and 10Be nuclei
allows one to find the WF of relative motion 8Be–2n,
10B–2n, n1–

8Be–n2, n1–
10B–n2 in the ground state of

the 10Be, 12B nuclei and thus to determine their spatial
structure. 

This review is aimed at studying the characteristics
of elastic scattering of protons by the 6He, 8,9Li, and
9C nuclei at energies of 0.07 and 0.7 GeV/nucleon in
inverse kinematics. Furthermore, we shall place
emphasis upon the linkage between the scattering
mechanism and nuclear structure, which is particu�
larly urgent for loosely bound halo and skin nuclei.

The review consists of introduction, conclusion
and two sections. The first section reviews briefly pub�

θ

lications concerning the latest calculations of few�body
WFs of nuclei in question; the method of calculation of
three�body WFs is given schematically with the detailed
discussion of intercluster potentials and weights of WFs
in different configurations (Tables 1, 4–6, 9). The
results are presented as densities of WFs and their iso�
lines; the calculated static characteristics are summa�
rized in Tables 2, 3, 4, 5, 7–9 together with the exper�
imental data and calculations from other authors. The
second part gives the derivation of matrix elements
(amplitudes) of the pA scattering within Glauber
approximation with three�body WFs by example of the
6He nucleus. Discussing the results of the calculation
of cross sections and analyzing powers (Ay), we tried to
show how the calculated characteristics depend on the
WF structure, which in turn is determined by the
intercluster�interaction potentials, and upon dynam�
ics of the process defined by Glauber operator of mul�
tiple scattering. The performed comparison of the cal�
culated WFs and analyzing powers with the available
experimental data and calculations from other authors
allowed us to formulate the conclusions.

1. WAVE FUNCTIONS 
AND STATIC CHARACTERISTICS OF 6He, 8,9Li 
AND 9C NUCLEI IN THREE�BODY MODELS

The multicluster models of light nuclei are success�
fully applied in calculations of different nuclear char�
acteristics, both static and dynamic ones. The grounds
for creating these models were the strong clusteriza�
tion of light nuclei in some separated channels and the
unsatisfactory description of the spectrum and proper�
ties for exotic nuclei in alternative models (shell
model, collective model, etc.).

In this section we shall touch upon the brief
description of the method for calculating WFs of the
6He, 8Li, 9C, and 9Li nuclei in the α–n–n�, α–t–n�,
7Be–p–p�, α–t–2n�, and 7Li–n–n models, by means
of solving the three�body Schrödinger equation using
the stochastic variational method proposed in [46, 47].
A trial function is expanded into a series in the multi�
dimensional nonminimal nonorthogonal basis, and its
optimal parameters are found using the trial�and�error
method. The stochastic approach has a number of
advantages over the standard variational method: the
fast convergence; introduction of many radial scales in
the basis and the automatic procedure of their search;
obtaining trial functions with correct asymptotics,
and, in case of using Glauber basis for the WF expan�
sion, the matrix elements of interactions can be calcu�
lated analytically, which improves the accuracy of cal�
culations. This approach was modified by introducing
the orthogonalyzing pseudopotentials, allowing one to
exclude contribution of the states, forbidden by the
Pauli exclusion principle, to the total WF [68–73] and
was successfully applied for studying the structure of
nuclei with A = 5 [69], 6 [73], 9 [72].
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For description of a system of interacting clusters in
a nucleus in the dynamic multicluster models, a trial
function is constructed in the form of a product of
internal WFs of clusters with different cluster particles
configurations which are connected with intercluster
Jacobi coordinates :

(1.1)

where  and  are internal WFs of clusters
(which are assumed to be identical to WFs of free par�

ticles;  is the WF of their relative motion.
The subscript 1 denotes α�particle (in the α–n–n�,
α–t–n� and α–t–2n models), n or p (â the 7Li–n–n�
and 7Be–p–p models); subscript 2 designates t (in α–t–
n� and α–t–2n models), n (in the α–n–n� and 7Li–
n–n models), and p (in 7Be–p–p model); subscript 3
stands for n (in the α–n–n� and α–t–n models), 2n
(in α–t–2n model) and 7Li or 7Be (in the 7Li–n–n�
and 7Be–p–p models). The coordinate  describes the
relative α–t� (in the α–t–n� and α–t–2n models),
n–n� (in the α–n–n� and 7Li–n–n models), and p–p�
(in 7Be–p–p model) motion, it is conjugated by the
orbital angular momentum λ with projection μ; the
coordinate  describes the relative motion between
the α–t� (in the α–t–n� and α–t–2n models), n–n�
(in the α–n–n� and 7Li–n–n models) and p–p� (in
7Be–p–p model) centers of masses and the remaining
cluster (α, n, 2n, 7Li, 7Be), it is conjugated by the
orbital momentum l with projection m. Schematic
representation of the 6He nucleus with the one�body
and Jacobi coordinates is presented in Fig. 1.

,r R

, 1 2 3 ( , ),j JJM JM
i fΨ = Ψ Ψ Ψ Ψ r R
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The WF of relative motion is expanded into a series
in partial waves:

(1.2)

Each partial function is factorized in the radial and
spin�angular parts:

(1.3)

The WF radial part is approximated with linear com�
binations of Gaussian functions:

(1.4)

Weights of the  components are found as a result of
numerical solving of the Schrödinger equation using
the variational method, the  coefficients are
specified on the tangential grid, the initial parameters
of which  are varied for better reaching the
energy minimum, corresponding to the nucleus
ground state. The WF spin�angular part

(1.5)

is the product of Clebsch–Gordan coefficients, deter�
mining the scheme of summing the angular momenta
(  are the orbital , spin, and total
nuclear angular momenta and their projections), by
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Fig. 1. Schematic diagram of the 6He nucleus in the α–n–n model with the one�body (dashed lines) and Jacobi (solid lines) coor�
dinates.
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the spherical functions  and the spin
function

(1.6)

where  are the internal spin WFs of the
valence particles.

The main problem of the WF calculation is a
choice of intercluster�interaction potentials, because
they are input parameters of the calculation and the
WF quality (i.e., how exactly the static characteristics
obtained using these WFs will be appropriate to the
experimental data) depends on them.

1.1. The Wave Function of the 6He Nucleus

The reason for the α–n–n model of the 6He
nucleus is as follows: (i) a small binding energy in the
α–2n channel, which is only equal to E

α�2n = 0.973 MeV
(for comparison Et�t = 12.3 MeV, Et�dn = 18.6 MeV),
(ii) the spectroscopic factor of this channel close to 1
(S

α�2n ~ 1) [109], and also (iii) the measurement of
DCS of high�energy 6He scattering by light nuclei;
from this the incontestable proofs are derived for its
well�defined clusterization to the α�particle core and
the two�neutron halo (or skin) [94, 110–113]. The
question of whether the 6He nucleus structure is
reduced to the α–n–n�configuration alone is dis�
cussed in many works, of which we shall mention the
latest ones [108, 109]. In [109], the cluster structure of
the 6He ground state in the α–2n and t–t channels is
investigated in the 6He(p, t) 4He transfer reaction at
E = 25 MeV/nucleon. The experimental data are ana�
lyzed in DWBA and with the use of the CDCC
method, including the direct transfer of two neutrons
and a triton and the sequential transfer of a triton (t =
2n + p). The reaction DCS data at backward angles are
reconstructed only with the spectroscopic factor St�t =
0.08, which is much less than it was theoretically predicted
earlier (e.g., St�t = 0.44 in [114]). The 4He(6He, tα)t
and 4He(6He, tα)dn reactions of quasifree scattering at
E = 25 MeV/nucleon at the fragment separator
ACCULINNA at JINR are studied in [108]. The
experimental data processing was conducted in PWIA.
The effective numbers are obtained for tritons in the t–t
(Ntt = 0.06) and t–d–n (Ntdn = 0.18) channels. Their
comparison testifies to the dominating weight of the
latter configuration. The effective number of α�parti�
cles, measured in the 4He(6He, 2α)2n reaction in the
whole energy range is equal to N

α = 0.03, which is
fairly small and is somewhat doubted.

We use the WFs of 6He nucleus obtained in [68, 71]
in the three�body α–n–n model. It supposes the inert
α�particle core, but completely takes into account all
interactions of two valence neutrons between each
other and with the core. The intercluster interaction
potentials, and the considered WF configurations and

( ), ( )lmY Yλμ r R

1 1 2 2

1 2

1 1 2 2 ,
SSM S s m s m

m m

s m s m SMχ = χ χ∑

1 1 2 2
,s m s mχ χ

their weights are presented in Table 1. The Saka–
Biedenharn–Breit (SBB) potential [115] of Gaussian
shape and the deep attracting potential with even�odd
splitting of phase shifts [71] were used as α–n�poten�
tial. This is an improved α–n�potential, taking into
account the Pauli Exclusion Principle more ade�
quately and reconstructing the data on scattering the
waves with the low orbital angular momentum (L < 3).
It contains the exchange Majorana component both in
the central and spin–orbit terms, which leads to the
even�odd splitting of phase shifts. The even�odd split�
ting by the orbital angular momentum approximately
takes into consideration the exchange effects in the
pair potential. The Reid potential with soft core
(RSC) [116] was chosen as n–n�potential. As a whole,
the calculations showed the weak sensitivity of the
results to parameters of the n–n�potential.

The WF configuration is determined by combina�
tion of quantum numbers λ lLS, where l is the angular
momentum of relative motion of α�particle and cen�
ter�of�mass of two neutrons, λ is the angular momen�
tum of relative motion of two neutrons, L and S are the
total orbital and spin angular momenta of a nucleus.
Since the total spin of two valence nucleons can be
only 0 or 1, the condition L = S imposes a constraint
on the ground�state WFs to the S� and P�configura�
tions: λ = l = L = 0, S = 0 (S�wave) and λ = l = L = 1,
S = 1 (P�wave).

On the basis of Eqs. (1.1) and (1.2), we write down
the WF of the 6He nucleus with the total angular

momentum J (for the ground state ) and
its projection  in the α–n–n model:

(1.7)

where , ,  are the WFs of α�
particle, neutron (n) and relative motion in the Jacobi
coordinates. 

The weights of the 6He nucleus configurations are
given in Table 1. There we can be seen that the maxi�
mal contribution in the α–n–n model is made up of

0 , 0J Sπ +

= =

JM

, 1 1 2 2( ) ( ) ( ) ( , ),j JJM JM
i f n n lLS

lLS

α α λ

λ
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( )
α α

Ψ R 1,2 1,2( )nϕ r ( , )JJM
lLSλΨ r R

Table 1. The interaction potentials and the considered con�
figurations of WFs of the 6He nucleus in the α–n–n model

Potential Model 1 [68] Model 2 [71]

α–n Saka–Bieder�
harn–Breit (SBB) 
[115]

Deep, with FS, split in 
parity of orbital angu�
lar momentum 

n–n Reid with soft core 
(RSC) [116]

 RSC [116]

Configuration Configuration weight (P)

 l L S

0  0  0 0  0.957 0.869 

1 1 1 1 0.043 0.298 

λ
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two components, to which we restrict ourselves in the
calculation:

(1.8)
where

(1.9)

(1.10)
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Table 1 presents the interaction potentials, the con�
sidered configurations of the 6He nucleus WFs in two
models. The basic difference between models 1 and 2
is that the Pauli Exclusion Principle is taken into con�
sideration in the three�body nuclear model. The pro�
cedure of taking into account the Pauli Exclusion
Principle for many�nucleon systems correctly is pretty
involved and is not performed here, within the used
three�cluster model with projection on the forbidden
states (FS). Researchers usually resort to different
approximate methods: adding a hard core to the typi�
cal nucleon–nucleon of cluster–cluster interactions
or introducing the operator of projection on FS into
the dynamic equations. The following exclusion of
these states from the WFs creates the effective repul�
sion at small distances between the clusters which acts
as a soft core. Wave functions of the relative motion of
clusters are suppressed in this region, and the higher
the FS number the stronger the suppression. The Pauli
Exclusion Principle in [70–73] is effectively taken into
account by introducing the deep attraction potential
with FS. The WFs with a node in the region of cluster
overlap are characteristic of the deep attracting poten�
tials with FS. The WFs vanishing in the cluster overlap
region are characteristic for potentials with the repuls�
ing core. The antisymmetrization effect is small for the
6He nucleus; therefore, as is shown in [73], it exerts
almost no influence on its rms radius and other char�
acteristics.

The parameterization of a nuclear WF in the con�
venient form (see (1.4)) allows one to analyze the geo�
metric form of nuclear states so that, having seen the
individual details of their structure, one could under�
stand what influence the structure exerts on the scat�
tering characteristics. Figures 2 and 3 (at the top)
demonstrate the density profiles

(1.11)

and isolines (Figs. 2 and 3 (at the bottom)) of WF
components of the 6He nucleus, calculated with the
SBB α–n�potential and the RSC NN potential
(model 1) from [68]. As is seen from Fig. 2, the S�state

 includes two geometric configurations:
the dineutron α–(2n)� and cigar�like n–α–n�config�
urations with α�particle between two neutrons. These
configurations are characterized by the following
intranuclear distances: for the α–(2n) configuration

= 1.7 fm and  = 3 fm; for the (n−α−n ) configura�
tion  = 4 fm,  = 1 fm, where  and are the mean
distances between two neutrons and between the cen�
ter�of�mass of two neutrons and α�particle, respec�
tively (see Fig. 1). From the fact that in the α–(2n)
configuration  = 1.7 fm, it follows that the dineutron
cluster in the nucleus is strongly compressed as com�
pared to the free deuteron whose radius  = 4.3 fm. The
configuration  of the P�state is close to the
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Fig. 2. The density profiles (at the top) and isolines (at the
bottom) of WFs of the 6He nucleus with , cal�
culated in model 1 (Table 1) from [68].
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isosceles triangle with  = 2.3 fm and  = 1.8 fm, which
rotates around the common center�of�mass of the
nucleus (Fig. 3).

The calculation of the three�cluster correlation
function (defined as in (1.11)) in the context of alge�
braic version of RGM [43] for the 6He nucleus (and
the 8He nucleus) confirmed the presence of two con�
figurations of WFs, called by the authors as triangular
(similar to dineutron configuration) and linear (anal�
ogous to cigar�like configuration). The probability of
revealing a nucleus in the first configuration is four
times higher than that in the second one. In recent
work [117], with “microscopic” consideration of
geometry of Borromean nuclei, an estimation of the
full geometry of two valence halo�nucleons was
obtained. Analyzing B(E1) from the electromagnetic
breakup of the 6He nucleus jointly with the analysis of
the Hanbury–Brown–Twiss (HTB) correlations of
two neutrons, the authors found that an angle between
the valence neutrons in the 6He nucleus is 83°. These
results fit the data of both [28, 29] and [43, 68, 100, 101],
though WFs are calculated using different methods: on
the hyperspherical basis in [28, 29], on the many�body
oscillator basis in [43], on the Gaussian function basis
in [68], and in DWIA [100, 101]. The calculated con�
figurations of relative position of the clusters for the
6He nucleus are compared to the configuration for 8He
[43]. It is found that the dominating configuration in
8He forms an isosceles triangle with an angle close to
the right angle, at the vertex of which there is an
α�particle, and with dineutron clusters in its base, i.e.,
a certain configuration that is intermediate between
the dineutron and cigar�like configurations takes
place. A difference in geometry is explained by imple�
mentation of the Pauli Exclusion Principle: the effec�
tive repulsion between the dineutron clusters takes
place in 8He, as a result of which they are located on
the opposite sides of the α�particle core; in 6He, the
neutrons with opposing spins in the presence of the
massive core form a compact dineutron (its rms radius
in the nucleus is 2.52 fm, which is less than a radius of
a free deuteron).

The size of a nucleus and also the distribution of
nuclear matter density are the most important charac�
teristics in determining the WF extent, nuclear poten�
tial, and one�body orbitals. At present, the laser�spec�
troscopic method is most accurate, in which the
ultrafine structure and isotope shift of atomic transfer
between two isotopes, cooled and caught in the mag�
netic�optical trap, are measured, from which a differ�
ence between charge radii of the investigated isotopes
is determined. Based on the absolute magnitude of the

charge radius  = 1.676(8) fm [118], measured
using the spectroscopy of muonic 4He atoms, the rms

nuclear charge radius of the 6He nucleus  =
2.054(14) fm [119] was found using laser spectroscopy.
Thus�determined rms point�proton radius, which is

r R

He4
chR

He6
chR

usually referred to, has a value of  1.91(2) fm [119].

A little bit later the  value was refined:  =
2.068(11) and the charge radius of 8He was determined

as  = 1.929(26) fm [120].

The comparison of the rms matter and charge radii
of the 6He and 8He isotopes, performed in [120], dem�
onstrates an interesting picture: the matter radius of
8He exceeds that of 6He, whereas its charge radius is

less than that of 6He. The fact that  is
understandable and explained by the higher number of
nucleons. However, the opposite inequality for the
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Fig. 3. The same as in Fig. 2 for the P�state with
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charge radii  needs the explanation. The
larger charge radius of 6He (in comparison to that of
8He) is determined by its internal structure: two excess
neutrons are correlated in such a manner that their
location is more probable on the same side of the core
(dineutron configuration) than on its opposite sides
(cigar�like configuration). As a result, the α�like core
motion with respect to the correlated pair of neutrons
smears the charge distribution over the larger volume.
On the contrary, four excess neutrons in 8He are dis�
tributed in the more spherically�symmetrical manner
in halo and the charge smearing in the core is corre�
spondingly less, which leads to reduction in charge
radius [120]. Thus, the comparison of 6He and 8He
shows that the addition of the larger number of valence
nucleons to the α�particle core hinders the additional
spatial “swelling” of the nucleus, which is determined
by the charge radii ratio. The radii values extracted
from the experimental data are given in Table 2.

The rms matter radius  can be obtained
using different methods, but not all of them are in
agreement with each other, leading to different results.
Performing calculations within Glauber formalism, it
is possible to obtain  both from the slope of the DCS
curve and from the total cross section. These methods
are matched and yield identical results.

Tanihata [3, 4] was one of the first to estimate the total
matter density of 6He from the data on total cross sections
and obtained  = 2.33(4) fm (Table 2). The calculation
of the rms radius , performed by Alkhazov from the
experimental data at E = 0.700 GeV/nucleon within the
Glauber theory with assumption that the 6He nucleus
density is a product of the one�body densities of nucle�
ons, resulted in a value of 2.30 fm [110] (see Table 2).
Furthermore, from the analysis of the same experi�
mental data as in [110, 121] but with the use of four
phenomenological density distributions: (1) SF (sym�
metrical Fermi), (2) GH (Gaussian with halo),
(3) GG (Gaussian with Gauss, the first letter deter�
mines the nucleon distribution in the core, the second
one denotes the same in the halo), (4) GO (Gaussian
with oscillator), the rms radii of the core, halo, and the
entire matter of the 6He nucleus have been calculated,

He He8 6
ch chR R<

2
m rmsR R=

mR

mR

mR

whose values are somewhat larger than those obtained
earlier (Table 2, line 4) [122, 123].

Initially, in the experiment carried out at GSI [110,
121], the DCS was measured to  0.05 (GeV/c)2. In
the experiment [124] on measuring the DCS of pro�
tons on the 6,8He nuclei, carried out at GSI at the same
IKAR facility at E = 0.717 MeV/nucleon, the range of
transferred momenta  0.2 (GeV/c)2 was substan�
tially expanded. From the measured DCS with five
different densities (WS (Woods–Saxon), SF, GH,
GG, and GO), the radii , ,  were obtained. Their
averaged values for 6He are given in Table 2 under
number 3.

The rms radii from the calculations, based on the
few�body model [26, 28, 68, 71, 87, 111, 125, 126],
LSSM [78], the Monte Carlo method (the variational
MCM (VMCM), Green’s function (GMCM)) with
realistic two� and three�body interactions [65] and in
the algebraic version of RGM [43], are given in Table 3.
From comparing the data obtained using different
methods, we may draw the following conclusion: the
calculation with the few�body WFs (three�body α–n–n)
results in the rms radius by 0.1–0.2 fm larger than the
calculation with the one�body densities performed in
[1, 110]. The analysis carried out in [111] showed that
the increase in radius is due to the internal compound
structure inherent in the many�body WFs and their
realistic (extended) asymptotics. As it is noted by the
authors who performed calculations in the different
three�body models with realistic or effective pair inter�
actions [111, 123, 125], they have the common prob�
lem of energy underboundness, i.e., E2n = –0.4 MeV

instead of = –0.973 MeV [127]. Therefore, in
order that the radii and binding energy should be
described consistently, the shape of effective potential
is varied [128], the other close channel (t–t) or the
α�like core polarization [50] is taken into consider�
ation. For example, in [126], in order that the binding
energy should be fitted, the Minnesota (MN) poten�
tial, used in the calculation, was renormalized with
increasing the force of long�wave region, and it was
named MMN (modified MN). As it was expected, the
calculation using the MMN potential resulted in the
decrease of  from 2.63 to 2.49 fm and in the E2n

value agreed with the experimental data.

As is seen from Table 3, the matter radius  and
the halo/skin radius  calculated with the
WFs of 6He in the MDM [68] or in AMDM [71],
which we use in the further calculations, agree with
both experimental value, and with calculations of
other authors in few�body models. Let us also note
that the antisymmetrization influences (insignifi�
cantly) the rms matter radius and skin size, as well as
the binding energy of two neutrons: in both models it
is underbound (E2n = –0.14 MeV).

t ≤

t ≈

mR cr hr

exp
2nE

mR

mR

np n pr rδ = −

Table 2. The rms values of the matter (Rm), neutron (rn), pro�
ton (rp), “halo” (rh), and core (rc) radii for 6He, extracted
from experiments published in literature

No. Rm (fm) rn (fm) rh rp (fm) rc
δnp = rn – 

rp (fm) Reference

1 2.33(4) 2.59(4) 1.72(3) 0.87(6) 3, 4

2 2.30(7) 2.97(26) 1.88(12) 105

3 2.36(6) 2.97(8) 1.97(9) 121

4 2.45(10) 3.23(31) 1.88(12) 122, 123
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1.2. The Wave Function of the 8Li Nucleus

The 8Li nucleus, unstable in  and in , decays
with a lifetime of 0.838 s, is of interest for nuclear, both in
and of itself and for astrophysics, because the 7Li(n, γ)8Li
radiation�capture reaction fills the gap (at A = 8) in
the chain of thermonuclear synthesis reactions of
CNO�elements in the nonstandard model of nucleo�
synthesis after the so�called inhomogeneous Big Bang.
A rate of this reaction is important for understanding
the primary synthesis of elements. It appears to be also
necessary for solving the problem of high�energy solar
neutrinos which are produced in the 7Be(p, γ)8B mir�
ror reaction (after β�decay of 8B). Since its cross sec�
tion is not measured experimentally at low solar ener�
gies (on the order of 20 keV) due to the presence of the
Coulomb barrier, then it is to be extrapolated from the
cross section at the higher energies (on the order of
hundreds keV). The constants required for the extrap�
olation (model parameters) are extracted from the
well�measured (to 10–3 eV) cross section of the
7Li(n, γ)8Li reaction. In [129, 130], with WFs in
the α–t–n model, the basic spectroscopic characteris�
tics (the rms charge radius, the quadrupole and mag�
netic moments) are calculated and the total cross sec�
tions and rates of the 7Li(n, γ)8Li reaction are found in
a range from 10–5 keV to 1 MeV. Let us note that the
energy range comprises eight orders in energy and the
calculated total cross sections coincide with the exper�
imental data available in the entire range.

The modern WFs of the 8Li nucleus are calculated
in the three�body α–t–n models with realistic poten�
tials of intercluster interactions. The arguments in
favor of the α–t–n model are as follows: the smallness

−

β 2−β α

of the three�body energy threshold of decay in this
channel (E = 4.501 MeV) with respect to other nearest
three�body channels, e.g., 6Li–n–n (E = 9.283 MeV)
or 5He + d + n (E = 11.653 MeV); the dominating
contribution (with a weight of 0.981) to the WFs of the
nucleus ground state in the MBMS [52] yields the
configuration with the Young scheme [431], and, as is
shown in [131], this scheme corresponds to the α–t–n
configuration. The reaction of proton knockout from
the 9Be nucleus may serve as another argument in
favor of the α–t–n model of the 8Li nucleus. As is
known, the properties of the 9Be nucleus are most suc�
cessfully described now in the three�body α–α–n
model [72]. The reaction of proton knockout from the
α–α–n system can be explained by the proton knock�
out from the α�cluster, which should result in forma�
tion of the 8Li nucleus with the α–t–n structure. In
using the WFs of the MBMS, it is shown in [132] that
the spectroscopic factor for the proton separation
from the ground state of the 9Be nucleus has a large
value of S = 1.07 in good agreement with the experi�
ment [127]. 

The 8Li nucleus and the 8B nucleus which is a mir�
ror one with respect to the latter have been intensively
investigated in recent decades both experimentally
and theoretically. We shall dwell upon several theoret�
ical works. The first one was [133], in which the 8Li
nucleus was considered in the context of one of the
RGM modifications (using the linear amplitude
method). The 7Li–n, 7Li*–n, 5He–t, and 5He*–t two�
body channels were taken into account. The main
contribution to the ground and first excited states were
made by the first two. The calculated energy spectrum
of levels reproduced the experiment as a whole; how�

Table 3. The rms values (in fm) of the matter ( ), neutron ( ), proton ( ), “halo” ( ), and core ( ) radii for 6He, cal�
culated using different methods

No.   Reference Note

1 2.54–3.75 3.39–5.84 1.6–2.0 26, 28 Few�body WF

2 2.32–2.66 1.84–2.05 83, 106 Few�body WF

3 2.43–2.44 
2.44–2.61 
2.36–2.46 

120 Gaussian basis
Hyperspherical basis
Few�body WF

4 2.51 
2.56 
2.61 

61 Cluster WF
VMCM
GMCM

5 2.69 2.96 2.06 0.9 42 Algebraic version of RGM

7 2.62 2.90 1.945 Rch = 2.147 74 LSSM

9 2.56 
2.63 
2.49 

Rch = 2.07 121 G3RS
MN
MMN

10 2.43 0.74 64 MDM

11 2.44 0.8 67 AMDM

mR nr pr hr cr

mR nr hr pr cr np n pr rδ = −
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ever, the obtained WFs were not tested in the descrip�
tion of static electromagnetic characteristics. More�
over, the model suggested in [133] predicted the levels
with negative parity, the existence of which is not yet
established with certainty. 

In the next work [134], the RGM algebraic version
was applied in studying the 8Li nucleus. This approach
avoided some of the drawbacks of the previous [133];
it has also the advantage that the Hamiltonian matrix
elements were calculated analytically. The 8Li nucleus
was considered as the 7Li–n system. The energy spec�
trum alone was investigated. The ground state
appeared to be underbound approximately by 1 MeV;
additionally, the model predicted the second excited
level with quantum numbers of Jπ, T = 1+, 1 and some
other levels, experimentally unobservable; the nega�
tive�parity levels were not mentioned. The authors
explained the quantitative discrepancy between the
obtained spectrum and experimental data by disre�
garding the cluster structure of the 7Li nucleus, vital
for resonant states of the 8Li nucleus, the 4He–t–n
three�cluster channel and tensor forces. 

In [135], in the RGM context, the two�body cou�
pled channels were substituted for three�body single�
channel α–t–n model; however, this was a modified
version of the two�body model with two channels
(7Li–n and 7Li*–n), where the 7Li and 7Li* sub�
systems were considered as the αt systems. This work
was directly devoted to studying the 7Li(n, γ)8Li and
7Be(p, γ)8B reactions. The Volkov NN forces were used
in the calculations; the Coulomb interaction was con�
sidered exactly. The ground state was precisely fitted
though the magnetic moment was undervalued by
30%. The first excited state 1+ appeared overbound by
0.7 MeV. The calculations predicted the second level
1+ with an energy of 0.12 MeV, whereas the experi�
ment yielded a value of 1.18 MeV. The well�known
level 3+ was not reproduced by the model; the authors
associated this with disregard for the 5He–t channel,
however the level 0+ was predicted, which was not
experimentally determined at the time. The calcula�
tions yielded no levels of negative parity. 

In [136], the characteristics of low�lying levels,
corresponding to resonances in the 8Li and 8B systems
were used. The reliability of the obtained results was
verified by finding the poles of the matrix of the 7Li–n
and 7Be–p scattering and describing the first excited
level Jπ, T = 1+, 1. The previously�used Minnesota
forces that did not describe the first excited level were
substituted for the modified Hasegawa–Nagata
potential. The model failed to reproduce the two�body
threshold of breakup into the 7Li–n and 7Be–p sub�
systems. It was found that the commonly accepted
order of levels Jπ, T = 2+, 1; 1+, 1; 3+, 1; 1+, 1 was
added by the state Jπ, T = 1+, 1 with the energy E =
1.278 MeV and the level width Γn = 0.564 MeV, which

was located between the first excited level Jπ, T = 1+, 1
and the level Jπ, T = 3+, 1.

In [137], the authors applied the shell model
embedded in the continuum (SMEC) for the micro�
scopic description of the 8Li–8B nuclear spectrum as
well as of the 7Li(n, γ)8Li and 7Be(p, γ)8B radiation�
capture reactions. The coupling between channels of
the continuous spectrum and the bound states takes
place in the SMEC. The coupling of channels is
implemented by the residual nucleon–nucleon inter�
action. This model allows one to self�consistently cal�
culate the averaged potential of the 7Li–n interaction
and the integral of overlapping of the continuous spec�
trum and the bound states. The energy spectrum and
electromagnetic characteristics of the ground state
were investigated. The ground and first excited states
of the 8Li nucleus appeared to be underbound by
0.5 MeV. The resonant states, corresponding to the
second and third excited levels, were reproduced
almost exactly. The quadrupole moment of the 8Li
nucleus appeared equal to Qtheor = 27.8 mb (for Qexper =
32.7(6) mb). 

In [138], the 8Li and 8B nuclei are considered
within the three�body problem on the hyperspherical�
harmonic basis as the α–t–n and α–τ–p systems,
respectively. The authors stress that in the three�body
approach, the main effects of strong deformation and
dynamic polarization of a nucleus and also the effects
of the core excitation are simultaneously taken into
account, as distinguished from the two�body problem.
At the same time, the four� and five�body configura�
tions are only corrections to the three�body channel.
The data on the β�decay of the 8He nucleus to the first
excited state of the 8Li nucleus made it possible to esti�
mate the contribution of the five�body configuration.
It proved to be small in comparison with that for the
three�body configuration. The pair interaction poten�
tials were used in the calculations, in which the Pauli
Exclusion Principle was taken into account by intro�
ducing the repulsive core. The Coulomb interaction
was considered exactly rather than as a perturbation.
The ground state proved to be overbound by 0.14 MeV.
The first excited state differed slightly from its experi�
mental value. The remaining levels were not consid�
ered. The magnetic moment was obtained smaller
than its experimental value by 18%; the quadrupole
moment, by 35%.

Almost all the works in one way or another deal
with the two�body model, therefore all multiparticle
effects inherent in the three�body problem drop out of
consideration. In all works, except for [138], the
nucleon–nucleon potential was varied, therefore
there is no full consistency of calculations. In [138],
the method of taking into account the Pauli Exclusion
Principle by introducing the repulsive core is not quite
correct because, as it is well�known at present, poten�
tials with the repulsive core poorly describe the Cou�



PHYSICS OF PARTICLES AND NUCLEI  Vol. 42  No. 6  2011

STUDY OF THE STRUCTURE OF LIGHT, UNSTABLE NUCLEI 861

lomb excitation reactions in comparison with the deep
potentials containing the FSs. 

1.2.1. Choice of the intercluster interaction potentials
and the considered configurations. For description of the
8Li nucleus the three�body α–t–n model is used with
three pair α–t, α–n and t–n interactions including the
states forbidden by the Pauli Exclusion Principle. 

The interaction Hamiltonian takes into account
only central and spin–orbit forces, containing the
orbital splitting, while for the t–n potential the split�
ting in the total spin is included. The influence of ten�
sor interactions on the characteristics of the ground
state of the 8Li nucleus is additionally considered. The
Pauli Exclusion Principle is approximately taken into
account by means of orthogonalization of the total WF
to the forbidden states of pair subsystems. The Cou�
lomb interaction is taken in our calculations exactly,
which allows us to check a number of fine effects con�
nected with the potential barrier and is particularly
important in astrophysical problems. In a more rigor�
ous approach based on the Faddeev’s equations, the
exact consideration for the Coulomb interaction is
such an involved problem that it was performed only in
isolated works.

Any physical nuclear model contains some param�
eters. For instance, the main input parameter in
MBMS and RGM is the NN interaction. A strong sen�
sitivity of results to the form of the NN forces is the
general RGM drawback because the best results are, as
a rule, achieved with NN potentials which are not the
best ones. There are parameters in our model which
may be conventionally divided into two types:
(a) parameters of the variational basis; (b) parameters
of clusters and their interactions.

The first type of parameters is chosen, as a rule, in
such a manner that with the least dimensions of the
basis, the WF internal and peripheral parts would be
better reconstructed. Let us note that the correct
description of the periphery in the MBMS and RGM
is almost impossible because, although the WF inter�
nal part is correct owing to the complete antisymme�
trization, the self�consistence is lost in the NN inter�
action due to the core removal.

The second type of parameters is fixed in such a
way that the observable properties of free cluster and
systems consisting of two clusters could be recon�
structed most completely. Therefore the static electro�
magnetic characteristics of virtual clusters were cho�
sen identical to the experimental values for free parti�
cles. Parameters of cluster interaction potentials are
fitted from the condition of the most complete
description of properties of the two�cluster system
both in the bound state and in the state of scattering.

The interaction potentials in this model are chosen
in such a manner that they would describe phase shifts
of elastic scattering for waves with the small value of
the relative orbital angular momentum and the char�
acteristics of bound states of the pair subsystems

(if such are available). The deep potentials of Gaussian
shape with FSs [139, 140] were mainly used as the two�
body interaction potentials. For more extensive inves�
tigation, a Woods–Saxon potential was also used. 

Table 4 presents the summary of potentials of inter�
cluster interactions, used in calculations of the WFs,
and the basic static characteristics of the nucleus. The
model WFs of the 8Li nucleus were calculated with dif�
ferent α–t potentials, because its impact on the prop�
erties of the ground state of the nucleus is stronger
than that of the α–n and t–n potentials.

The following potentials were used as the α–t
interaction.

Models 1 and 2. The 8�parameter potential of
Gaussian shape with FSs [139] is constructed for the
adequate reconstruction of both the partial scattering
phase shifts split in parity of the orbital angular
momentum and spin–orbit interaction and the char�
acteristics of bound states. Additionally, the potential
satisfactorily describes the electromagnetic form fac�
tors and the αt → 7Liγ radiation�capture reaction.

Model 3. The Buck attractive potential, whose
radial part has a Gaussian form, contains two parame�
ters and includes the spin–orbit and the Coulomb
terms [141]. The potential is calculated on the basis of
the double folding model, where the nucleon densities
of clusters obtained from the data on electron scatter�
ing are averaged. Then the potential parameters were
refined by matching them to phase shifts of scattering
and characteristics of bound state. It reproduces both
the known low�energy phase shift of the α–t scattering
and the binding energy, and the low�energy spectrum
of the 7Li nucleus levels and basic spectroscopic char�
acteristics of this nucleus. Here, the radial function of
the ground state of the 7Li nucleus contains an internal
node, i.e., has the form of the oscillator function
R3p(r). The Buck potential reliably describes the total
cross section and astrophysical S�factor for the αt →
7Liγ radiation�capture reaction.

The potentials of Gaussian shape have the advan�
tage from the computing standpoint. Their matrix ele�
ments include the combinations of factorials and pow�
ers of Gaussian parameters. However, these potentials
rapidly drop on asymptotics, and the practice showed
that the potentials of Woods–Saxon shape describe
better the elastic scattering data.

Model 4. The deep attractive potential of Woods–
Saxon shape, to which the spin–orbit and Coulomb
terms are added. The potential is sufficiently deep to
contain the forbidden 1p�state in the p�wave in addi�
tion to the allowed 3p�state. The Woods–Saxon
potential completely reproduces the known low�
energy phase shifts of the α–t elastic scattering and at
the same time correctly describes the binding energy
and the spectrum of low�lying state of the 7Li nucleus
and its basic spectroscopic characteristics. The ade�
quate description of the 7Li (γ, t)α reaction of two�
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body photosplitting [142] was achieved precisely with
this potential.

The potential of the α–n interaction was initially
chosen as the Saka–Biedenharn–Breit (SBB) poten�
tial [115], whose central part has the Gaussian shape.
The SBB potential reasonably describes the basic P1/2

and P3/2 phase shifts of the α–n elastic scattering, and
it describes the S�phase shifts up to an energy of
14 MeV with poorer accuracy. A main drawback of the
SBB potential is the strong overestimating of the theo�
retical D5/2 and D3/2 phase shifts with respect to exper�
iment. The improved α–n potential, containing the
splitting of phase shifts in parity of the orbital angular
momentum [70, 143], describes the S and especially
D5/2 and D3/2 phase shifts more accurately than that of
initial variant. The potential has one FS in the S�wave.
The Coulomb term is added for the α–p system,
which has the form of the Coulomb interaction of
point proton with the Gaussian distribution of the
charge with the width a = 1.34 fm.

The potential of the n–t interaction was chosen in
the form of linear combination of the Gaussian and
the repulsive exponent [140]. The exponential repul�
sive addition is present in order to describe the behav�
ior of phase shifts when the total spin is zero. Such a
parameterization corresponds to the strong spin
dependence of the potential of the fermion interac�
tion; moreover, it is in agreement with the virtual

exchange by deuteron that (being a boson) can be the
carrier of interaction. Parameters of the n–t interac�
tion were taken the same as for p3He, because their
quantum states coincide. It should be noted that this is
not a potential with a hard core, but a deep attractive
potential with FSs. The potential has two forbidden
S�states with the total system spin being 0 and 1. For
the p–t system, the Coulomb potential is added in the
form of interaction of two point charges.

The procedure of the WF calculation within the
variational approach consists in finding the Hamilto�
nian matrix�elements and further solving of the matrix
problem on eigenvalues and eigenfunctions.

While choosing the basic configurations for the WF
calculation, it is necessary to take into account the
7Li–n two�cluster structure. This is caused by the fact
that a neutron in the 8Li nucleus is loosely bound (E =
2.26 MeV), while the spectroscopic factor of the 7Li
nucleus in the α–t channel is almost equal to unity.
The 7Li nucleus in the ground state has the quantum
numbers Jπ, T = 3/2–, 1/2 [144]. In the context of the
MBMS, the main contribution to the WF comes from
the [3]22P configuration with a weight of 0.986 [53].
Consequently, the dominating contribution to the
ground state and several first excited states of the
nucleus will yield the configuration with λ = 1. Since
the parity of the 8Li nucleus is π = +1, while that of the

Table 4. The interaction potentials, the considered WF configurations used in the calculations of static characteristics of
the 8Li nucleus in the α–t–n model; experimental data:  = 2.37(2) [1–3], 2.50(6) [123] fm, E = –4.501 MeV, Q = 24(2)
[144], 32.7(6) mb [145],  = 1.65  [146]

Potential Model 1
 [129]

Model 2 
[130]

Model 3 
[130]

Model 4 
[130]

Model 5
 [147]

Model 6 
[147]

α–t Gaussian 
potential, 
containing 
eight parame�
ters [134]

The same as 
in model 1, 
with 
expanded 
basis [134]

Gaussian potential in 
the Buck form [136], 
with supersymmetric 
repulsive part at small 
distances 

Standard 
potential of 
Woods–
Saxon shape

The same as in 
model 3

The same as 
in model 3 
including 
tensor inter�
action

α–n Gaussian potential, split in parity of orbital angular momentum [115]
t–n Gaussian potential, split in total spin [140] The same as in 

model 1 including 
tensor interaction 

The same as 
in model 1

Configuration Configuration weight (P)
 l L S

1 1 1 1 1.00 0.9935 0.9880 0.9940 0.8721 0.8818
1 1 2 1 0.0015 0.0024 0.0014 0.0281 0.0712
3 1 2 1 0.0022 0.0045 0.0018 0.0580 0.0378
3 1 2 0 0.0015 0.0032 0.0016
3 1 3 1 0.0268

Static character�
istics

, fm
2.36 2.355 2.348 2.279 2.34 2.38

E, MeV –3.82 –4.267 –4.406 –4.883 –5.7 –4.657
1.473 1.44 1.408 1.442 1.607 1.624

Q, mb 16.55 18.45 18.94 16.69 30.75 30.36

mR
µ 0µ

λ

1
2 2

mr

0,µ µ



PHYSICS OF PARTICLES AND NUCLEI  Vol. 42  No. 6  2011

STUDY OF THE STRUCTURE OF LIGHT, UNSTABLE NUCLEI 863

7Li nucleus is π = –1, and a neutron is loosely bound
in the 8Li nucleus, then l = 1; it also follows from the
fact that in the 7Li – n two�cluster structure there is a FS
in the S�wave and the first allowable state with l = 1.
Since we work in the LS coupling, in the t–n system
the low�lying states in the 8Li nucleus have the total
spin equal to unity; consequently, the spin for the basic
configuration of the 8Li nucleus is S = 1.

The possible values of quantum numbers LS in this
case are 11, 21, 20, and 31. The noticeable contribution
to the total WF can be made by the configurations,
whose orbital angular momenta of relative motion λ
and l are 1 or 3 (the configuration with λ = l = 1 is con�
nected with the ground state in the α–t and 7Li–n sub�
systems, the one with λ = 3 is associated with the res�
onant state in the α–t subsystem). However, we have
included all possible configurations permitted by the
quantum�mechanical selection rules in our calcula�
tions. Then, the configurations which make the con�

tribution less than 1% to the ground�state WF, were
excluded from the further consideration.

As it should be expected, the dominating contribu�
tion to the total WF comes from the configuration with
λlLS = 1111 (λ = 1 is related with the ground state of
the 7Li nucleus in the α–t channel; l = 1 because the
8Li nucleus is a 1p�shell nucleus, i.e., the p�shell is
filled). Contributions from the remaining configura�
tions in total do not exceed 4% for the potentials disre�
garding the tensor interaction (model 1–4 in Table 4) and
10% for those taking it into consideration (models 5 and
6 in Table 4). Nevertheless, these small configurations
have a substantial impact not only on nucleus charac�
teristics, but also on the basic configuration λlLS =
1111. For example, if only the configuration λlLS =
1111 is taken into account, the obtained quadrupole
moment is 30% smaller than that for all configurations
taken into consideration.

Figures 4–6 present the density profiles of radial
parts of configurations (see (1.11)) depending on rela�
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Fig. 4. The density profiles (at the top) and isolines (at the bottom) of WFs of the 8Li nucleus of configuration with λlLS = 1111,
calculated in model 3 (Table 4).
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tive distances r, R for model 6 (the 3�D plots are shown
at the top; isolines, at the bottom).

For the configuration with λlLS = 1111, the WF in
Fig. 4 has two maxima and one node at  = 1.766 fm,

 = 2.0 fm (the radial WF of the shell type R3p(r)). In this
case there is a node in the 7Li nucleus at  = 1.771 fm for
the ground state. The rms radius of the α–t pair in the
8Li nucleus  = 3.25 fm, while in the 7Li nucleus

= 3.48 fm. We may suggest that a valence neutron
compresses 7Li inside the 8Li nucleus by 6.6 % in com�
parison with the free 7Li nucleus. The similar situation
is observed in the 6He nucleus (α–n–n model), where
the configuration dominates, in which the dineutron
cluster is compressed as compared to a free deutron.
There is no WF node in coordinate , which corre�

r
R

r

mR

mR

R

sponds to the shell model (the radial WF of the shell
type R1p(r)).

The profile of the λlLS = 1121 configuration in
Fig. 5 is similar to the previous one. The first maxi�
mum is somewhat displaced to the nucleus center in
coordinate , while positions of the second maxima of
the λlLS = 1121 and λlLS = 1111 configurations
almost coincide. In coordinate r, the sharper displace�
ment of maxima of the λlLS = 1121 configuration as
compared to those of the λlLS = 1111 configuration is
observed to the inside of the nucleus.

Unlike the first two profiles, the profile for the
λlLS = 3121 configuration in Fig. 6 has one maximum
at a point with the coordinates ( ) = (2.5, 2.0) fm.
This WF component at small distances from the
nucleus center�of�mass is zero and drops rather fast on
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Fig. 5. The same as in Fig. 4 for configuration with λlLS = 1121.
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the periphery, already at r, R ~ 5.5 fm. It is localized in
the intermediate region of the nucleus.

1.2.2. Calculation of static characteristics of the 8Li
nuclei and comparison with experimental data. The fol�
lowing static characteristics have been calculated with
the obtained WFs: the rms charge radius, the binding
energy, the quadrupole and magnetic moments (see

Table 4). The values of rms radii of clusters  =

1.71 fm,  = 1.68 fm were taken from [144]. Matrix
elements from different configuration are not mixed,

therefore the  is determined by the values of rms
charge radii of clusters and by the λlLS = 1111 domi�
nating configuration. The other configurations make
small corrections to the value of the rms charge radius.
The information on the nuclear matter distribution,
extracted from the DCS measured in [123] within the
diffraction theory, yielded the value Rm = 2.50(6). The
use of the charge radius data, obtained from the inde�
pendent laser�spectroscopic experiments [148], made

mRα

t
mR

mR

it possible to determine both the neutron radius and
the skin width , which proved to be
0.52 fm and close to that calculated using the other
approaches: stochastic variational method [65] and
Monte Carlo method [64]. The rms radius has an
approximately identical description in all models and
is in agreement, within errors, with the experimental
data.

The experimental value of the magnetic moment is
determined with a sufficiently high accuracy. The
magnetic moments of clusters μt = +2.978643μo and
μn = –1.913148μo were borrowed from the experiment
[146].

In the preliminary calculation variant [129], the
dominating  configuration alone was
taken into account in the WF of the 8Li nucleus
(model 1 in Table 4). With its use, the consistent rms
radius and magnetic moment were obtained; however,
the authors could not reproduce correct values of the
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binding energy in the channel in the ground state (it is
underbound by 0.7 MeV) and of the quadrupole
moment. Thus, if the basic λlLS = 1111 configuration
alone is considered, Q = 16.55 mb (model 1 in Table 4).
With respect to the latter, we shall give the explanation:
the value Q = 24(2) mb is given in [144], but new mea�
surement methods increased it to Q = 32.7(6) mb
[145], so that quadrupole moment, calculated in
[129], is almost twice as small as the experimental
value. With the purpose of improving these results, it
was attempted in [130] to increase the number of the
considered configurations (in particular, to include
configuration with λ = 3, because namely in this state
there is a low�energy resonance in the α–t system) and
to perform the calculation with three more α–t poten�
tials (variants 2–4 in Table 4), on which the properties
of the ground state of 8Li depend stronger than on the
α–n and t–n potentials. However, weights of the
included configurations proved to be too small (by two
orders of magnitude smaller than that of the dominat�
ing  configuration) for the substantial
influence on results of characteristic calculation,
therefore this procedure yielded only the insignificant
increase in the quadrupole moment. Let us note that
the presence of configurations with small weight but
with large orbital angular momenta can make both
destructive and constructive contributions to this
characteristic. Thus, the configuration with LS = 20
was destructive; as it is shown in [149], it though insig�
nificantly decreases the quadrupole moment. The
inclusion of configurations with LS = 11 slightly
increases the quadrupole moment, it is equal to Q =
18.45 and 18.94 mb (models 2 and 3 in Table 4). In the
one�body model, the value of quadrupole moment in
the 8Li system is directly connected with characteris�
tics of the α–t subsystem. The loosely bound charge�
less neutron influences the quadrupole moment indi�
rectly, deforming the WF of the relative motion of the
α–t subsystem. It is also interesting to note that in the
one�body models the quadrupole moment value is
proportional to the value of rms charge radius, as the
matrix elements of these characteristics are equal to
each other up to some factor. This is not the case in the
three�body approach because the calculation is con�
nected with taking into account many configurations,
due to which the direct relation between Q and  dis�
appears. Additionally, there are included configura�
tions corresponding to resonant states of the α–t sub�
system, which, despite the small contribution to the
total WF influence, substantially influences the qua�
drupole moment value.

Only in the last work [147], by means of taking into
account the tensor forces in the interaction potentials,
the acceptable (within 10%) agreement of the calcu�
lated quadrupole moment with experimental value
(variants 5 and 6 in Table 4) was achieved. Although
the tensor forces are small as compared to the central
ones and exert no influence on phase shifts of elastic

1111lLSλ =

mR

scattering at low energies, they lead to mixing in
orbital angular momentum, which increases the con�
tribution of WF small components, on which depend
such nuclear characteristics as the quadrupole
moment and binding energy. As preliminary estima�
tions have shown, for achieving the agreement
between the calculated quadrupole moment and that
of experiment, it was necessary to increase the contri�
bution from configurations with LS = 21. At first, the
calculations with the tensor interaction in the t–n sub�
system were carried out, because this was the two�fer�
mion system. The tensor interaction in the form

 was chosen for the calculations,

where  is the tensor interac�
tion operator,  are the Pauli matrices for a triton
and neutron. As is seen from Table 4 (model 5), as the
quadrupole moment increases, the binding energy and
magnetic moment increase as well. 

The tensor interaction in the α–t subsystem was

chosen as , , 
is the operator of triton spin. This form of tensor inter�
action is often used in the â α–d interaction. As is seen
in Table 4, the tensor interaction slightly changes the
binding energy, whereas the quadrupole moment value
is nearing its experimental value. Thus, the mere vari�
ation in the interaction potential allows one to com�
pletely describe characteristics of the 8Li nucleus.

As is shown in [147, 149], by varying the potential
parameters V0 and α, it is possible to achieve almost
full coincidence of the calculated and measured Q val�
ues: at  MeV and  ôì–2 (for t–n
interaction) Qtheor = 33.26 ìb. However, with these
parameters the binding energy in the channel becomes
–6.32 MeV, which is by 1.82 MeV less than the exper�
imental value. With account for the fact that the
energy was calculated using the variational approach,
this value suggests that the chosen potential is more
overbound (i.e., more attractive) than it should be in
reality. The most optimal description of characteristics
is achieved in model 6, on which we dwelt.

Based on Eqs. (1.1) and (1.2), we write down the
WFs of the 8Li nucleus with the total angular momen�

tum J (for the ground state ) and its pro�
jections  in the α–t–n model:

, (1.12)

where , , ,  are the
WFs of the α�particle, triton (t), neutron (n) and of
their relative motion in the Jacobi coordinates.

Relative weights of configurations of the 8Li
nucleus are given in Table 4. It can be seen from it that
the maximal contribution to the α–t–n model comes
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from three components, by which we restrict ourselves
in the calculation:

(1.13)

1.3. The Wave Functions of the 9Li and 9C Nuclei 

The 9Li and 9C nuclei in the ground state have the

nonzero spin and among the nuclei of the
1p�shell stand out because of nonstandard properties.
The 9Li nucleus (β–unstable with a half life time of
0.18 s) is interesting as an exotic neutron�excess
nucleus and as a core of the widely�investigated 11Li
nucleus, when it is considered in the 9Li–n–n model.
As it was shown in [22, 25, 31], the p11Li elastic scat�
tering is mainly determined by the proton scattering
on the 9Li core and is barely sensitive to the low�den�
sity neutron halo extending over the limits of the 9Li
core. The 9C nucleus (β+�unstable with a half life time
of 0.127 s) attracts substantial interest because of the
large proton excess. It is interesting to note that the 8B
nucleus, with a single excess proton, has a low energy
threshold of proton separation E = 0.137 MeV. The 9C
nucleus with larger proton excess has, by the order,
higher energy of proton separation E = 1.297 MeV. It
is obvious that clusterization and pairing of nucleons
in the 9C nucleus compete with each other.

The accurate microscopic calculation of the WFs
of the 9Li and 9Be nuclei is carried out in [64] using the
quantum Monte Carlo method. The obtained many�
body WFs were used in the calculation of static char�
acteristics: binding energies, radii, quadrupole and
magnetic moments, and energy spectrum of the
excited states.

A density of the 9Li nucleus, when it is considered
as a core of the widely�investigated 11Li nucleus, is
typically estimated as the one�body density in the
either Gaussian or oscillator form, which, although it
reproduces the empirical rms radius, is insufficient in
order to describe all its static characteristics. The more
adequate method is the construction of the density of
9Li as a sum of the densities of its constituent clusters:
α�particle core, four neutrons in the �shell with the

zero spin, and a proton in the �shell, as it is done in
[150, 151]. The description of the rms matter radius of
9Li (2.32 fm) was a success, but the DCSs of proton
scattering at E = 60 MeV/nucleon, calculated in the
optical model (taking into account the spin–orbit
component of the optical potential), do not reproduce
the experimental data for both 9Li and 11Li. It is con�
cluded from this that the shell model with the oscilla�
tor potential describes the 9Li structure unrealistically.

The substantial progress in numerical methods of
calculation of many�body systems is achieved as a
result of using the high performance computers and
development of new computational algorithms. For

1111 1121 3121( , ) ( , ) ( , ) ( , ).J J J JJM JM JM JM
lLSλΨ = Ψ + Ψ +Ψr R r R r R r R

3 2J π −
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3
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p

example, in [49, 51, 64, 65] the WFs of the 9Li and
9C mirror nuclei are constructed in the multi�cluster
α–t–n–n and α–3He–p–p models within the sto�
chastic variational method [49, 51] and quantum
Monte Carlo method [64, 65] using the realistic two�
or three�body potentials: Argonne (AV8, AV18),
Urbana IX (UIX), Illinois (Il1–Il4). The four�cluster
models of 9Li and 9C are formed by adding one
nucleon to the three�cluster ones, which is their natu�
ral extension. This description automatically includes
such configurations as 8Li–n, 7Li–n–n, and 6He–t for
9Li and the appropriate mirror constituents for 9C. In
this approach, the realistic NN forces are introduced
and the solution is sought on the basis of trial func�
tions, in which the two� and three�body correlations
are taken into account. After optimization, these vari�
ational trial functions are used to input Green’s func�
tions in energy calculations using Monte Carlo
method. The more complicated variational function
can be constructed by including the two�body spin–
orbit correlations and additional three�body correla�
tions. However, the computation time required for
taking into account these additional terms is substan�
tial, whereas their contribution to the variational
energy is relatively small. The two�body correlations
are considered when the coupled differential equa�
tions are solved with the embedded variational param�
eters. It was found that the averaged parameters are
close to the optimal ones which were used for light
nuclei of the p�shell. These WFs reproduce all static
nuclear characteristics, energies of the ground and
nine excited states, and the cross section  of the
9Li + 12C reaction at 800 MeV/nucleon [65]. The
model yields the total binding energy E = –33.7 MeV
when using the 18�parameter Argonne potential, while
Eexp = –45.34 MeV, the first excited state lies higher than
the ground state by 0.7 MeV. Let us note that the
8�parameter Argonne potential describes the binding
energy (for the ground state of 9Li E = –36.6 MeV [64])
somewhat better than the 18�parameter one, therefore
all calculations were carried out later with the trun�
cated 8�parameter one.

These facts indicate that even with the use of mod�
ern computers, the many�body problem cannot be
solved rigorously and therefore there is room for
model approaches.

In [123], the nuclear density of the 6,8,9Li isotopes
is described by four phenomenological distributions in
several models: SF (symmetrized Fermi), GH (Gaus�
sian with halo), GG (Gaussian with Gauss, the first
word relates to the distribution of nucleons in the core,
the second one denotes the same in halo), GO (Gaus�
sian with oscillator); all of them yield almost identi�
cally realistic values of the matter density of 9Li (differ�
ences are only observed for the smallest (r < 1 fm) and
large (r > 5.5 fm) distances) and DCSs at E =
700 MeV/nucleon. The difference, calculated here

reacσ



868

PHYSICS OF PARTICLES AND NUCLEI  Vol. 42  No. 6  2011

IBRAEVA et al.

Table 5. The interaction potentials, the considered WF configurations, and the static characteristics of the 9Li nucleus in
the 7Li–n–n model obtained with them; experimental data:  = 2.44(6) fm [123], E7Li–n–n = –6.096 MeV [157],  =
3.44  [144, 157], Q = –27.4(1) mb [157]

Potential 7Li�n�n model

7Li–n Deep attractive potential with forbidden states in the 
Buck a) form without exchange terms [149, 152]

Deep attractive potential with forbidden states 
in the Buck a) form with exchange terms with 
strong spin dependence [149, 152, 153]

Model 1 Model 2 Model 3 Model 4

n–n Volkov poten�
tial [149]

Hasegawa–Nagata potential [155] for 
odd waves, Afnan�Tang potential with 
repulsive core [156] for even waves

The same as in 
variant 2

The same as in 
variant 2

Configuration

 l  L S Configuration weight (P)

0 0 0 3/2 0.025 0.051 0.984 0.654

1 1 1 3/2 0.384 0.470 0.015 0.167

2 2 1 3/2 0.199 0.246

1 1 1 1/2 0.199 0.096 0.001 0.167

2 2 1 1/2 0.103 0.050

3 3 1 3/2 0.059 0.071

3 3 1 1/2 0.030 0.014

, fm 2.36 2.38 2.40  2.46

E, MeV –8.89 –9.01 –6.20 –5.906

0.93 0.94 1.31  1.33

Q, mb –35.93 –40.0 –23.98 –27.93

Note: a) Gaussian potential with central part  MeV,  fm–2 for even waves,  MeV,  fm–2 for odd
waves and spin–orbit part  MeV.

mR µ

0µ

λ

mR

0,µ µ

0 46V = − 0.172α = 0 53V = − 0.172α =

0 10V = −

too, between the proton and neutron radii (skin) for
9Li was 0.48 fm, which is in agreement with the value
0.42 fm [52], predicted in calculations using the sto�
chastic variational method, and the value 0.53 fm [64],
obtained using the quantum Monte Carlo method.
For the 9C nucleus, the skin width calculated in [49] is
0.48 fm, which resulted from the large proton excess.
Comparing the skin width predicted for other exotic
nuclei (e.g., for 6,8He, where it reaches 0.8 fm), the
authors [49] make a conclusion that the 9Li and 9C nuclei
do not demonstrate the extended halo structure.

1.3.1. Choice of potentials of intercluster interac�
tions and static characteristics of the 9Li and 9C nuclei.
For the 9Li nucleus, constructed in the 7Li–n–n
model [149, 152, 153], at the heart of calculations
were the pair deep n–n and 7Li–n potentials with FSs,
the contribution of which is excluded by introduction of
projectors in Hamiltonian, which creates the effective
repulsion at small distances between the clusters, acting
as a soft core. The applied potentials and the static char�
acteristics calculated with them in the 7Li–n–n model
are given in Table 5.

The potentials of NN interaction in the form of a
sum of Gaussians, the same as for calculations of the
structure of 6He–6Li–6B nuclei [68, 71], were used in
the calculations. The Volkov potential [154] was cho�
sen for simplicity in the first calculations. However, it
did not contain the splitting in the total spin and
poorly described all static characteristics, and further
the Hasegawa–Nagata potential was used for odd
waves [155] and the Afnan–Tang potential[156] for
even waves (see Table 5).

As in the 7Li–n interaction, the deep attractive
potential in the Buck [141] form was used, to which
the exchange terms were added. The potential has one
forbidden S�state. The Coulomb interaction was cho�
sen in the standard form corresponding to either point
interaction for the p–p case or the uniformly charged
ball for the other interactions.

The deep attractive 7Li–n potential without
exchange terms and two variants (1 and 2) of the n–n
potential (Table 5) do not reproduce static character�
istics of the 9Li nucleus. One of the methods for the
three�body model improvement is to take into account
the mixing of configurations in the nucleus (as it was
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shown by the calculation for the 8Li nucleus, when the
tensor forces were taken into consideration in the inter�
action potentials). Therefore the next step was the vari�
ation the 7Li–n�potential: the exchange terms with
strong spin dependence were included in it (models 3
and 4 in Table 5). The basic configuration in this case
will be . The calculations performed
with search for other configurations, distinguished from
the basic one, showed that next in contribution should
be the  and  configura�
tions. However, the small admixture of states with

 to the basic configuration does not yield the
correct value of quadrupole moment (model 3 â Table 6).
The correct weight distribution of the basic configura�
tion and the additional ones is found in model 4,
which resulted in the value of quadrupole moment in
agreement with the experimental value.

Figures 7 and 8 show the density profiles (at the
top) and isolines (at the bottom) of different compo�
nents (from Table 5) for WFs of 9Li in of the model 6.
The main peak of the state with the maximal weight

 is at r = 2.5 fm, R = 3.4 fm, the second
maximum (with the smaller amplitude) is at r = 4.3 fm,
R = 1.8 fm (see Fig. 7). The effective WF extension
(i.e., the range for which the WF does not yet become
infinitesimal) in coordinate r is 6 fm, in coordinate R
it is 5 fm. Here r is the coordinate of relative motion of
two nucleons in 9Li, R is the coordinate of relative
motion of 7Li and the center�of�mass of two nucleons.
Therefore the main maximum can be identified with
the configuration when two nucleons are on the core
surface close to one another (at a distance of 2.5 fm),
which is similar to dineutron configuration, while the
second maximum is like the figure with two nucleons
are at a large distance from each other (4.3 fm), which
is identified with the cigar�like configuration. The
next in weight configurations  differs only in
the S value  (see Table 5), and since the value
of the spin–orbit splitting is insignificant in this case
(for the 1p�shell), then these WF components are sim�
ilar to each other and only one of them (with S = 1/2)
is given in Fig. 8. Here the WF is also localized in two
maxima with the coordinates r = 2.3 fm, R = 2.3 fm
and r = 4.3 fm, R = 1.2 fm; the first maximum corre�
sponds to the component, for which all three particles
are located at vertices of the triangle close to the isos�
celes triangle, the second maximum is appropriate to
the component close to the cigar�like. This WF com�
ponent in coordinate r is extended to 8 fm, whereas in
coordinate R its extension is less than 4 fm, which
demonstrates the large extension of the neutron mat�
ter. The difference between the  (see
Fig. 7) and  (see Fig. 8) configurations
is that the nucleus in the first configuration is in the
dineutron state, while in the second configuration the
nucleus is in the state close to the cigar�like state, to
which the relation of WF density maxima corre�

0003 2lLSλ =

1113 2lLSλ = 1111 2lLSλ =

0lLλ ≠

0003 2lLSλ =

111lLλ =

( )и1 2 3 2

0003 2lLSλ =

1111 2lLSλ =

sponds: the maximum in Fig. 8, more distant from the
coordinate origin, is larger in magnitude than the first
maximum, while the relation of maxima in Fig. 7 is
reverse. As is shown in [152], where the WF is calcu�
lated with four types of intercluster interaction poten�
tials, only the WF that is obtained in the Buck poten�
tial, in which the spin�dependent terms are included
(models 3 and 4 in Table 5), provides the most ade�
quate description of static characteristics of the 9Li
nucleus. The calculation with the WFs constructed
with other potentials resulted in quadrupole (Q) and
magnetic (µ) moments, in poor agreement with exper�
imental data [157].

Since the mirror 9Li and 9C systems differ only in the
Coulomb interaction, then the same effective 7Li–n
interaction is used in the calculation, i.e., for 9C the
potential nuclear part is chosen the same as for 9Li, but
with consideration for the Coulomb interaction.

Three basic , , and
 components of the WF of 9C (Table 6)

are close to the analogous components of the WF of
9Li, which were considered above. The distinction is
that the contribution from the  config�
uration to the WF of the 9Li nucleus exceeds the cor�
responding contribution in the 9Li nucleus by 5%, the
contribution of the   to 9Li is 3% smaller
than to 9Li. It is known that the relation of contribu�
tions from configurations is determined by nondiago�
nal matrix elements of Hamiltonian. The Coulomb
interaction somewhat increases this overlap, which
results in the larger WF localization on the periphery

0003 2lLSλ = 1111 2lLSλ =

1113 2lLSλ =

0003 2lLSλ =

1111 2lLSλ =

Table 6. The interaction potentials, the considered WF con�
figurations and their weights for the 9B nucleus in 7Be–p–p
model

Potential

7Be–p Deep attractive potential with forbidden 
states in the Buck form, the same as for 
7Li + n in models 3 and 4 in Table 5

p–p Hasegawa–Nagata potential [155] for 
odd waves, Afnan–Tang potential with 
repulsive core [156] for even waves

Configuration Configuration weight

 l L S 

0 0 0 3/2 0.714

2 2  0 3/2 0.013

1 1 1  1/2 0.136

1  1 1 3/2 0.136

λ
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and this effect for configurations with small orbital
angular momenta l and l proved to be significant.

Let us consider the component ,
presented in Fig. 9. The WF density in it is concen�
trated in three peaks with the coordinates: r = 1.3 fm,
R = 2.3 fm; r = 3.1 fm, R = 2.0 fm; r = 4.9 fm, R =
1.0 fm. In the first maximum, two protons are at min�
imal distance from one another; in the third maximum
they are at maximal distance (it is most close to the
cigar�like configuration). The weight of this compo�
nent is small (0.013), accordingly small is its contribu�
tion to the calculation of static characteristics.

The comparison [49] of the 9Li density distribution
in the multicluster model with that in the purely shell
model, calculated in the harmonic�oscillator poten�
tial, shows that the density in the harmonic�oscillator

2203 2lLSλ =

potential drops very fast near the nuclear surface,
whereas in the multicluster model it is more extended,
with the tail slowly dying out, which is also confirmed
in our calculations.

The comparison of static characteristics following
the results of published works for 9Li is presented in
Table 7. It can be seen that values calculated with the
four�body WFs, obtained using the stochastic varia�
tional method [49, 52] and the quantum Monte Carlo
method [64], are approximately identical and close to
experimental values. Our calculation with the three�
body WFs [149, 152, 153] in model 1 correctly repro�
duces only the rms ; in model 4, the agreement is
achieved also for Q, but the magnetic moment is
smaller than the experimental value by a factor of 2.5,
which is the evidence that the contribution of the
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Fig. 7. The density profiles (at the top) and isolines (at the bottom) of WFs of the 9Li nucleus of configuration with 
in model 6 (Table5).
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Fig. 8. The same as in Fig. 7 for configuration with .1111 2lLSλ =

Table 7. Characteristics of the 9Li nucleus according to the results of published works

Character�
istics Experiment [49, 52] [64] IL4 [64] AV8 [149, 152] 

7Li + n + n Model 2
[149, 152] 

7Li + n + n Model 4

, fm 2.18 [3]
2.24 [148] 

2.10 1.94(1) 2.19(2)

, fm 2.39 [3] 2.52 2.39(1) 2.72(1)
, fm 2.32 [3]

2.44(6) [123]
2.39 2.38 2.46

Q, fm2 –2.74 [157] –2.74 –2.5(1) –3.1(1) –4.0 –2.79
µ, (µ0) 3.44 [157] 3.43 2.54(2) 2.91(1) 0.94 1.33

pr

nr

rmsr

inside of the nucleus, though this calculation is per�
formed with the WF, calculated in the Buck attractive
potential, in which the WF does not vanish out inside
the nucleus as in the potential with the repulsive core.

For the 9C nucleus, only Rm and μ are experimen�
tally measured (Table 8). The values calculated in [49]
are in agreement with the experimental data; the large
proton radius and quadrupole moment of this nucleus
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are predicted there as well. The magnetic moment cal�
culated in [64] with the AV8 potential is close to the
experimental value, while calculated with the IL4

potential, it is twice as small. Our calculation, cor�
rectly describing , underestimates the magnetic
moment almost by a factor of 2.5, which is explained
by the same reason as for the 9Li nucleus.

In the three�body α�t�2n model of the 9Li nucleus,
three λlLS configurations have been taken into
account; however, the binding energy in the channel
and the quadrupole moment are in poor agreement
with experimental data (see Table 9). In this case, no
reasonable variations in potential parameters could
reproduce the quadrupole moment. This may be evi�
dence that the chosen configuration is inadequate to
the real structure of the 9Li nucleus. Let us note, how�
ever, that a weight of the α–t–2n configuration in
MBMS exceeds 80% [53].
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Fig. 9. The density profiles (at the top) and isolines (at the bottom) of WFs of the 9C nucleus of configuration with
.2203 2lLSλ =

Table 8. Characteristics of the 9C nucleus according to the
results of published works

Charac�
teristics

Experi�
ment [157] [49] [64] IL4 [64] AV8 [153]

, fm 2.64

, fm 2.16

, fm 2.42 2.50 2.47

Q, mb –50.4 –31.5

µ, (µ0) –1.39 –1.5 –0.70(4) –1.08(3) –0.6

pr

nr

rmsr
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In the calculations, the potentials of α–t interac�
tion of Gaussian shape [139] were applied, which were
previously used for calculation of the 8Li nucleus
structure. Since there were no data on the α–2n and
t–2n interactions existing, the potentials of the α–2n
and t–2n subsystems were constructed on the basis of
the α–n and t–n interactions. In order to optimize the
selection of parameters of interaction potentials, we
attempted to construct a potential based on the bound
state of the 6Heα–2n system and the simplest folding�
potential α–(2n), where the resonant WF of the 2n
system was used. The WFs of the 5Ht–n–n system
have been also calculated. Unfortunately, the obtained
potentials did not correspond to any real systems.
Therefore, at the α–n and t–n interactions we applied
the potentials of Gaussian shape, containing spin–
orbit interaction, which were already used for calcula�
tions of the 8Li nucleus structure [139, 140, 149]. By
varying the potential depth, we chose the following
parameters: , where   is the var�
ied parameter.  MeV,  fm–2;

, where  is the varied parameter;
 MeV,  fm–2 for even waves;
 MeV,  fm–2 for odd waves.

The wave function of the ground state of the 9Li
nucleus has the negative parity. The clusters α and t are
believed unexcited and have the positive parity. Here,
for the WF of bineutron with isospin T = 1, two cases
are possible: either  or . The
preliminary WF calculations showed [149] that the
energy of the state with the  configuration
lies below the state with . It follows from
the fact that if the relative orbital angular momentum
of the n–n system is 1, that the potentials of the α–2n
and t–2n interactions have one forbidden S�state. If
the orbital angular momentum is zero, there are two
forbidden states in S� and Ð�waves. Therefore, the cal�
culations were carried out with usage of dineutron
configurations alone with .

Based on Eqs. (1.1) and (1.2), we write down the
WFs of the 9Li nucleus with the total angular momen�
tum J = 3/2 and its projection  in the 7Li–n–n
model:

(1.14)

where , and are the
WFs of 7Li, two neutrons, and the relative motion in
the Jacobi coordinates. According to Table 5, the WF
of relative motion in model 4 will consist of three com�
ponents:

(1.15)

2n nV CV
α− α−

= 2 1C> >

0 20V = − 0.11α =

2t n t nV CV
− −

= 2 1C> >

0 40V = − 0.38α =

0 40V = − 0.19α =

001LST =
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J J
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λΨ = Ψ

+ Ψ + Ψ

r R r R

r R r R

The wave function in the α–t–2n model

 (1.16)

where , , ,  are the
WFs of the α�particle, triton (t), dineutron (2n) and
the relative motion in the Jacobi coordinates. Accord�

ing to Table 9, the contribution to  will be
made by the following components: 

(1.17)

2. MATHEMATICAL APPARATUS 
AND ANALYSIS OF RESULTS

2.1. The Calculation of Matrix Element 
of Elastic Scattering

In line with the Glauber multiple scattering diffrac�
tion theory, an amplitude of proton elastic scattering
by a compound nucleus with mass A can be written,

, 1 2 3 2 4 5( ) ( ) ( ) ( , ),j JJM JM
i f t n lLS

lLS

α α λ

λ

Ψ = Ψ Ψ ϕ Ψ∑R r r r r r r R

( )
α α

Ψ R 1 2 3( )tΨ r r r 2 4 5( )nϕ r r ( , )JJM
lLSλΨ r R
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lLSλΨ r R

2121 2

1221 2 3221 2

( , ) ( , )

( , ) ( , )

J J

J J

JM JM
lLS

JM JM

λΨ = Ψ

+ Ψ + Ψ

r R r R

r R r R

Table 9. The interaction potentials, the considered WF
configurations, and static characteristics of the 9Li nucleus
in the α–t–2n model obtained with them

Potential Model 1 Model 2

α–t Gaussian potential, 
the same as in 
Table4, model 1

Gaussian potential 
in the Buck form, 
the same as in Table 
4, model 3

α–2n Potential, con�
structed on the basis 
of the Gaussian α–n 

The same as in 
model 1

t–2n Potential, con�
structed on the basis 
of the Gaussian t–n 

The same as in 
model 1

Configuration Configuration weight (P)

λ l L S

2 1 2 1/2  0.555 0.745

1 2 2 1/2  0.201 0.124

3 2 2 1/2  0.201 0.124

Static charac�
teristics

, fm 2.38 2.35

Eb), MeV –9.274 –8.998

 3.38 3.50

Q, mb –16.75 –17.4

Note: b) The experimental binding energy in the channel in α–t–
2n E

α–t–2n = –8.563 MeV [157].

mR

0,µ µ
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according to [88], as an integral over the impact
parameter 

(2.1)

where the index “ ” denotes two�dimensional vectors
lying in the plane perpendicular to the direction of the

incident beam,  is the matrix element

of transfer from the initial state   to the final
state of nucleus under action of the operator , in case

of elastic scattering ;  is

the coordinate of the nucleus center�of�mass;  is the
momentum of incident particles in the center�of�mass

system;  is the momentum transferred in

reaction; θ is the scattering angle.
The operator Ω is written as a series of multiple

scattering: 

(2.2)

where  is the two�dimensional analog of three�
dimensional one�body coordinates of nucleons . For
definiteness, let us carry out the matrix element calcu�
lation for the 6He nucleus presented in the α–n–n
models. We rewrite operator (2.2) in the optional form
based on the fact that the scattering takes place on α�
particle and two neutrons, composing the 6He
nucleus:

(2.3)

where each operator is expressed through the profile
functions  as follows:

(2.4)

(2.5)

As can be seen from Eqs. (2.3) and (2.4), α�particle
in our calculation is assumed structureless so the scat�
tering is to be considered on one particle. The com�
pound nature of α�particle is taken into account
dynamically when the potential with FSs is used in the
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α–n interaction. The central part of the elementary

 amplitude is written down in a standard way:

(2.6)

 is written down analogously with the index sub�
stitution . The parameters of the elementary

procedure  are the input parameters of the
theory, but they are determined from independent
experiments. Parameters of the pN�amplitude at E =
0.7 and 0.07 GeV/nucleon are taken the same as in
[113]. Parameters of the pα�amplitude are borrowed
from [158–160].

In order to calculate matrix element (2.1), one has
to substitute WFs (1.7)–(1.10) and operator (2.3)–
(2.5) in it and integrate over all variables, on which the
integrand depends. However, it is necessary before�
hand to pass in the operator  and in the WFs from
one�body coordinates (they are shown in Fig. 1 by
dashed lines) to the relative, i.e., Jacobi coordinates
(in Fig.1, they are shown by solid lines), on which

 depends. The relation between the one�
body and relative coordinates is as follows:

(2.7)

Substituting in (2.5) elementary amplitudbbe (2.6), we
shall integrate over :

(2.8)

where 

(2.9)

Analogously for  with the index substitution .

Then, changing over from the one�body coordi�
nates to the relative ones and performing certain trans�
formations, we can write down operator (2.3) as fol�
lows:

(2.10)

the summation in k means summation by the scatter�
ing multiplicities: k = 1–3 is the single collision, k =
4–6 is the double collision, k = 7 is the triple collision;
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in the plane xy, perpendicular to the axis z, along
which the impinging particles are moving). Here

,

,

,

,

,

where  are defined by Eq. (2.9) and depend on

parameters of the elementary  amplitude, 
are written down analogously, with substitution of α
for n, and depend on parameters of the elementary

 amplitude.

Substituting in (2.1) WFs (1.7) and (1.8), we write
down the matrix element

(2.11)

where

(2.12)

(2.13)

(2.14)

Using the explicit form of WFs (1.9) and (1.10), we
can see that all matrix elements can be calculated ana�
lytically because WF and operator (2.10) are written
down as expansions in Gaussians. Matrix elements
(2.12)–(2.14) are calculated in the Cartesian coordi�
nate system because the coordinates of the same name
in WFs are three�dimensional, while in operator 
they are two�dimensional (denoted by the index “ ”). 
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Let us give the example of  calculation. We
shall substitute in (2.13) WF (1.9): 

(2.15)

Integration over  is performed using δ�function in
passing from the one�body coordinates in WF to the
Jacobi coordinates using Eq. (2.7). In order to inte�
grate this expression over coordinates r and R in the
Cartesian coordinate system, we pass from the spatial
spherical harmonics to polynomials using the formula
[161]

(2.16)

where p, t, k are positive integers: p + t + k = l, p – t = m;
 are projections of vector  onto axes of the

Cartesian coordinate system.
Summing in (2.15) the terms depending on projec�

tions of momenta, with consideration for (2.16), we
derive the following polynomial:

(2.17)

Substituting in (2.15) operator  (2.10) and polyno�
mial (2.17) and separating the variables, we write down
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where 

.

The variables  enter in matrix element
(2.18) symmetrically, therefore integrals over y are
written down analogously. These are integrals of the
Euler–Poisson type, which are easily calculated ana�
lytically [162]. Here it is important to note that with
this approach (writing down the WFs and operators as
expansions in Gaussians) it is possible to calculate all
matrix elements analytically without any simplifica�
tions and, consequently, without accuracy loss as well.
The further calculation was carried out using a com�
puter. 

In order to calculate the polarization characteris�
tics, it is necessary to take into account in the elemen�

tary amplitude not only the central term  (2.6)

but also the spin–orbit term , after which the
amplitude will be written as

(2.19)

The spin part of the amplitude is parameterized as
follows:

(2.20)

where index . Parameters of spin–orbit ampli�

tudes for  were taken from [159, 160], for 
they were borrowed from [159, 163].

Now operator  (2.10), which depends on ele�
mentary px�amplitudes according to the dividing each
of them in the sum of the central and spin–orbit com�
ponents, will also present a sum of two terms:

 . (2.21)

The matrix element of scattering with consider�
ation for the spin dependence can be written as fol�
lows:
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The differential cross section is a square of the matrix
element modulus:

(2.23)

It is known that a matrix element of the spin�orbit
interaction is small and the main contribution to the
DCS comes from the first term.

The analyzing power, characterizing the depen�
dence of the scattering cross section on the direction
of the spin of the incoming proton, is expressed
through the matrix element as follows:

(2.24)

and calculating it, we cannot manage without the
spin–orbit matrix element.

2.2. The Analysis of Differential Cross Sections 
and Analyzing Powers 

Using the WFs in three�body models, discussed in
section 1, we calculated the characteristics (DCS and
analyzing power Ay) of the elastic p6He, p8Li, p9Li, and
p9C scattering in inverse kinematics for two energies:
0.07 and 0.7 GeV/nucleon, within Glauber multiple
scattering diffraction theory. While analyzing results,
we emphasize two issues: (1) how the structure pecu�
liarities of the considered nuclei influence the calcu�
lated characteristics; (2) what impact the mechanism
of interaction exert on the investigated characteristics.

Calculating the DCS, it is sufficient to take into
account the central part of the elementary pN�ampli�
tude (see (2.6)), because the spin–orbit part makes the
slight contribution to the cross section. While calcu�
lating the analyzing power, it is necessary to take into
consideration the spin–orbit interaction in the ele�
mentary pN�amplitude (see (2.20)) and the spin
dependence in WFs. Therefore the polarization char�
acteristics are more sensitive to the calculation details
(the WF structure and the interaction mechanism)
than DCSs.

The following data were involved for comparison with
experiment. The differential cross section of elastic scat�
tering of protons by 6He in inverse kinematics at low
energies was measured at facilities of the acceleration lab�
oratory at RIKEN [31] at E = 0.071 GeV/nucleon and at
E = 0.041 GeV/nucleon [164]. Elastic scattering of the
4,6,8He isotopes was measured at 0.70 GeV/nucleon by
Alkhazov [110, 121] using the hydrogen�filled ionization
chamber IKAR, which simultaneously was the gaseous
target and recoil detector to  < 0.05 (GeV/c)2, and fur�
ther at the same facility at the GSI laboratory the mea�
surements were extended up to  = 0.2 (GeV/c)2

[121]. The differential cross sections of p8Li and p9Li
elastic scattering at an energy of 0.70 GeV/nucleon
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were measured at GSI [122, 123] and at energy of
0.060 GeV/nucleon (for p9Li) the DCSs were mea�
sured at RIKEN [165].

The theoretical descriptions of elastic scattering of
exotic (neutron� and proton�excess) nuclei by differ�
ent targets (including the proton targets) were carried
out by many authors (see Introduction) in different
formalisms; with some of them we compare the results
of our calculations.

2.2.1. The dependence of the differential cross sec�
tion and analyzing power on nuclear structure. The
dependence of DCS of p6He scattering on model WFs
calculated with different potentials of intercluster
interactions (see Table 1) is shown in Fig. 10 for two
energies: E = 0.071 GeV/nucleon (panel a) and E =
0.717 GeV/nucleon (panel b). Curves 1, 2, and 3 from
[166] are calculated with WFs in models 1 and 2 and in
the shell model. Experimental data in Fig.10a are bor�
rowed from [31]; those in Fig. 10b are taken from
[110, 124].

The comparison of the calculation to the experi�
ment in Fig.10a indicates that at small scattering
angles (θ < 38°) the DCS with the three�body WFs is
in good agreement with experimental data, while at
large angles (θ > 38°) the calculated curves lie above
the experimental dots. The cross section, calculated

with the shell WF [53], i.e.,  = 0.973 [2]31S + 0.23
[11]33P, deviates larger from the experiment at small
angles than when calculated with the three�body WF,
the experiment�theory agreement at large angles may
be occasional. Differences in description of DCSs
with different model WFs are related to their behavior
inside the nucleus and on the periphery. In the case of
small scattering angles, the transferred momentum is
small (at θ = 2°, q = 0.011 GeV/c) and only the
peripheral nuclear region can be probed (i.e., the WF
asymptotics). It may be more extensive for the three�
body WF than for the shell WF, where it drops rapidly
and does not reproduce the real behavior of the
nuclear WF. At large scattering angles, the transferred
momentum increases (reaching the value q =
0.217 GeV/c at θ = 40°), the particles interact more in
the inner region of the nucleus, where the particle cor�
relation effects (which factually differ one model from
the other) are more pronounced, and we observe dif�
ferent behavior of angular distributions. Therefore, at
large angles, the DCS yields the important informa�
tion regarding the contribution from the core, while at
small angles, it provides data on the contribution from
the skin (nuclear periphery).

For comparing to our results [166], we presented in
Fig.10a the results from [81, 82], in which the calcula�
tion was performed in the folding model in the context
of HEA with three different densities of 6He: LSSM
(the calculation in it is shown by curve 4), COSMA
(the calculation in it is shown by curve 5), and the den�
sity used by Tanihata (it is close to COSMA and is not
shown in the figure). The microscopic optical poten�

JJM
Ψ

tial in the context of HEA with the real and imaginary
parts and with consideration for the spin–orbit inter�
action was applied in [81, 82]. It is seen from the figure
that the best agreement with experiment is achieved in
the calculation with the density in LSSM (this is the
microscopically calculated density obtained in the
complete  shell model using the basis Woods–
Saxon one�body WF with the realistic exponential
asymptotic behavior), whereas the calculation with
the COSMA density unsatisfactorily describes the
experimental data at all angles. Physical reasons for
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Fig.10. Dependence of DCS of p6He scattering on the
model WFs calculated with different potentials of inter�
cluster interactions for the energies (a) E = 0.071 and
(b) 0.717 GeV/nucleon. Curves 1, 2, and 3 are calculated
with WFs in models 1, 2 (Table 1) and the shell model. The
experimental data in this figure and in the other ones at
E = 0.071 GeV/nucleon are taken from [31], at E =
0.717 GeV/nucleon are borrowed from [110, 124]. In
panel a, curves 4 and 5 are taken from [81, 82], calculation
with WFs of LSSM (curve 4) and COSMA (curve 5); in
panel b, curve 4 is borrowed from [113], curve 5 is taken
from [67].
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preference of the LSSM density are in its more
extended exponential asymptotics as compared to the
density based on Gaussians (COSMA). 

It is seen in Fig.10b that the DCSs, calculated with
the three�body WFs, describe adequately the experi�
mental data at small angles and are very close to each
other (curves 1 and 2), which is the evidence of WF small
sensitivity to different potentials of intercluster interac�
tion. The cross section with the shell WF (curve 3) dif�
fers from the first two, which is especially noticeable in
the region of minimum and at large angles. For com�
parison to our results [166], we present the calculation
from [113] (curve 4) and from [67] (curve 5). The DCS
in these works is also calculated in Glauber approxi�
mation with total operator of multiple scattering with
the microscopic three�body WF. In [113], the calcula�
tion had been performed before experimental data at
θ > 12° had been obtained[124]; however, it is reason�
able agreement with experiment at least θ ~ 20°. Curve
5 is calculated with the Faddeev’s three�body WF,
which leads to the correct static characteristics: the

energy of separation of two neutrons and the rms mat�
ter radius of 6He. Since the ideology of [67] is close to
ours, then curves 1 and 5 merge in the figure. However,
if at small angles θ < 15° there is not only qualitative,
but also quantitative agreement of all calculated DCSs
with experiment, then at θ > 15° the calculation and
experiment diverge; none of the calculated curves is in
agreement with experimental data in the region of the
minimum of the cross section, though all of them
(except for curve 5, which is calculated only to θ ~ 18°)
predict a minimum in the region θ ~ 20°. The diver�
gence with experiment may be caused by both the WF
inadequacy and the inapplicability of Glauber approx�
imation for large angles.

Let us inspect how the analyzing power Ay behave
for p6He scattering depending on the same WFs, as in
Fig. 10. Iin Fig. 11, it is seen that at small angles (for
θ < 15°) all curves are close to each other (like DCSs),
but as the angle increases, their discrepancy grows.
The fact that at small angles (corresponding to small
transferred momenta) the calculated curves behave
identically is an evidence of the weak influence of the
peripheral region of the nucleus (scattering by neutron
skin) on Ay. Although in comparison to the DCSs (for
which all calculated curves merge at small angles), the
polarization characteristics even in the region of for�
ward angles somewhat differs from each other. The
increase in the scatter of curves for larger angles (and
for the increased transferred momentum) testifies to
the different contribution of the high�momentum WF
components. The spread in question shows the sub�
stantial sensitivity of the analyzing power to distribu�
tion of nucleons in the central region of the nucleus.
Significantly differing from each other in the value of
oscillations, all calculated curves reach maximal and
minimal values at the same angles, and with the energy
increase (from 0.07 to 0.7 GeV/nucleon) the number
of oscillations increases. At E = 0.7 GeV/nucleon, the
correlations between the minima are observed in DCS
and in Ay (Fig. 11b).

In [167], the DCSs and Ay of elastic scattering of
the 4,6,8He isotopes by the polarized proton target are
calculated at 297 MeV. The calculation is carried out
in the optical model using the optical potential expan�
sion into the series of multiple scattering in the KMT
formulation (in the impulse approximation to the sin�
gle scattering). In Fig. 12a, which is borrowed from
[167], the DCSs of the p4He (curve 1), p6He (curves 2
and 3), and p8He (curve 4) scatterings are shown. For
p6He scattering, the calculation is carried out with the
three�body (curve 2) and oscillator (curve 3) WFs. The
differential cross section of p6He and p8He is some�
what larger than that of p4He at small angles, where the
contribution of the valence neutrons is determinant.
At large angles the decrease in DCS of p4He occurs
more slowly than that for p6He and p8He, because the
distribution of the core matter density of 6He and 8He
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in the momentum space has the shorter range than in
4He [167]. Therefore, at large angles the DCS yields
the significant information on the contribution from
the core in the optical model, which coincides with
our conclusion. 

Analyzing powers from [167] are given in Fig. 12b.
The calculation at small angles demonstrates the iden�
tical behavior of Ay for all nuclei despite the fact that
the matter density distribution of the valence nucleons
is different (particularly for the three�body and oscil�
lator WFs of 6He). This is explained by the fact that the
spin–orbit contribution from the valence neutrons
halo is very small, because when the distribution of the
matter density of valence neutrons (with short range)
is folded with the spin–orbit component of the ampli�
tude of the NN scattering, then for small transferred
momenta this quantity is close to zero [167]. The role
of the skin of valence neutrons of p6He and p8He is

shown in the fact that Ay is slightly displaced to the
region of smaller angles as compared to p4He. In spite
of this, the analyzing powers for p4,6,8He are very simi�
lar. This is not contradictory with our conclusions,
though the complete coincidence of Ay, calculated
with different WFs at small angles in our calculations
is not observed.

Fig.13. presents the result of the DCS calculation
at E = 0.060 (panel a) and E = 0.698 GeV/nucleon
(panel b) for p8Li scattering with WF in the α–t–n
model [152] with different variants of potentials of
intercluster interactions. Experimental data in
Fig. 13a are taken from [122, 123]. Curves 1, 2, and 3
illustrate the calculation with WF of models 1, 3, and 6
given in Table 4. All three curves, identically describ�
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Fig. 12. (a) Differential cross sections and (b) Ay of 4,6,8He
elastic scattering by the polarized proton target at 297 MeV
from [167]. Curve 1 illustrates p4He scattering, curves 2
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oscillator (3) WFs; curve 4 shows p8He scattering.
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culation with the WFs of variant 1, 3, and 6 given in Table 4.
The experimental data for this figure and the other ones at
E = 0.698 GeV/nucleon are taken from [122, 123].
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ing the DCS at small angles of scattering (it was
explained in the analysis of p6He scattering), differ
essentially only in the region of maxima. As is seen in
Table 4, different behavior of the displayed curves in
the region of the minimum that is most characteristic
both for the DCS and for Ay is associated with differ�
ences in the α–t potential. In model 6, the α–t poten�
tial takes into account the tensor interaction, which
substantially increases the weight of components with
L = 2 (which is seen from the comparison of their
weights in Table 4). Contribution from these compo�
nents leads to an increase in quadrupole moment to
the value Q = 30.36 mb, close to experimental data,
and to filling the minimum in the DCS, as it is seen
from comparison of curve 3 with two others. It is known
[168, 169] that scattering by nuclei with large values of
quadrupole moments, such as 7Li (Q = – 40 mb), 9Be
(Q = 53 mb), demonstrates the DCS with the substan�
tially less pronounced diffraction pattern than by spher�
ically symmetric nuclei. This is explained by the fact
that the electrostatic potential of a nucleus can be rep�
resented in the form of the monopole and quadrupole

terms, the latter (though it is weaker) fills minima in the
diffraction pattern, caused by the monopole scattering,
and does not make any substantial contribution to max�
ima. In our case, the WF components with L = 2 pre�
cisely make the contribution to filling of the cross sec�
tion minimum, and to the quadrupole moment, as is
seen from Table 4. The comparison with the available
experimental data at E = 0.698 GeV/nucleon is shown in
Fig. 13b. In the region of small scattering angles below θ
~ 11.3° (which corresponds to  = 0.049 (GeV/c)2), the
agreement with experiment is observed for all variants
of calculation, which, as in case of p6He scattering, is
evidence that the DCS is less sensitive to the contribu�
tion from the peripheral region of a nucleus, i.e., to
scattering by the single valence nucleon. At large angles,
the DCS becomes more sensitive to the structure pecu�
liarities of different WFs, which is particularly notice�
able in regions of minima at θ ~ 18° and 38°.

Let us consider how the analyzing power changes
depending on different model WF in Fig. 14 at E =
0.060 (panel a) and E = 0.698 GeV/nucleon (panel b).
Curves 1, 2, and 3 present the calculation with the WF
of models 1, 3, and 6 from Table 4. The regularities of
its behavior are the same as was noted for p6He scatter�
ing: at small angles (θ < 15°) for both energy values the
analyzing powers are close to each other; as the angle
increases their behavior differs more, with energy
growth the number of oscillations increases, minima
of Ay correlate with minima of DCS. The greatest
oscillations are observed for curve 1, calculated with
WF in model 1 (Table 4). From comparison of DCS
(in Fig. 13) and Ay it is seen that the latter is more sen�
sitive to the WF structure peculiarities.

Measuring the polarization characteristics is a dif�
ficult experimental problem even for stable targets,
and for our nuclei they are not performed until now.
Figure 15 illustrates the comparison of Ay for scatter�
ing of 0.2 GeV�protons: by 6Li nuclei (solid curve),
experimental data from [170] are denoted by open cir�
cles; by 7Li nuclei (dashed curve), experimental data
from [169] are denoted by black dots; by 8Li nuclei
(dash�dotted curve). The calculation is carried out in
Glauber approximation [171] with the WF in the α–n–p
[68–70] and α–t [139] models for 6,7Li and with the
WF of 8Li in model 6. For the 7,6Li nuclei, our curves
almost identically describe Ay in the first maximum,
but for angles exceeding 35° the substantial discrepan�
cies are observed. None of the performed calculations
describes satisfactorily the minimum of Ay. In
[169, 170], the calculations of DCS and Ay were car�
ried out in the optical model, whose first variant used
the Woods–Saxon standard potential and in its second
variant the microscopic folding�potential was
employed. However, the calculations from [169, 170]
(not given in our figure) match with the experiment
only to θ < 35°, but they are incorrect in reproducing
the negative slope and the position of minimum of
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experimental data in the region of θ > 35°, which, in
the authors' opinion, must be assigned to the insuffi�
ciency of the single scattering model and low quality of
determination of the nuclear density. From compari�
son of all curves it is seen that values of Ay for p6Li and
p7Li scatterings are close to each other for θ ≤ 35°,
whereas for p8Li zeros of Ay are displaced by approxi�
mately 10° to the region of the smaller angles, which
demonstrates the peculiarity of the structure for this
nucleus.

Let us consider scattering by 9Li and 9C nuclei. In
Fig. 16 and 17 the results of the DCS and Ay calculation
for p9Li and p9C scatterings at the energies E = 0.060
(Fig. 16a, 17a) and 0.703 GeV/nucleon (Fig. 16b, 17b)
with the WF in the 7Li–n–n and 7Be–p–p models are
shown. Curves 1 and 2 illustrate our calculation
[153, 172] with WF in the 7Li–n–n model with differ�
ent variants (3 and 4) of intercluster interactions from
Table 5, curve 3 presents the calculation for 9C with the
WF in the 7Be–p–p model from Table 6. Experimental
data from [165] for E = 0.06 and from [122, 123] for
E = 0.703 GeV/nucleon.

Since the 9C nucleus in the 7Be–p–p model is the
mirror analog 9Li in 7Li–n–n model, then the differ�
ence in the calculation of DCS and Ay is that where in
operator  for 9Li the elementary pn�amplitude is
used, it is substituted by the pp�amplitude for 9C there.
Differences in parameters of these amplitudes are
small: at E = 0.2 GeV  4.2 fm2,  2.36 fm2,

  [158]; at

Ω

pnσ = ppσ =

0.71, 1.15,pn ppε = ε = 0.68, 0.65pn ppβ = β =

E = 1.0 GeV  4.04 fm2,  4.75 fm2,
  [159].

Comparing our calculation [152, 153, 172] with
experiment [165] in Fig. 16a, we shall note that calcu�
lations performed in Glauber approximation with the
WF in models 3 and 4 (see Table 5) are in quantitative
agreement with the experimental data only in the for�
ward region of angles to θ < 30°, then to θ < 40° the
calculated cross sections lie below the experimental
data points, while at θ > 45° they are above the exper�
imental data points. This can be explained by two cir�
cumstances: inapplicability of Glauber formalism for
the medium and large scattering angles and not quite
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Curves 1and 2 present the calculation with the WFs in mod�
els 3 and 4 from Table 5; curve 3, the calculation for p9C with
the WF in 7Be–p–p model from Table 6. The experimental
data in this figure and in the other ones at E =
0.06 GeV/nucleon are taken from [165]; at E =
0.717 GeV/nucleon, from [122, 123]. The results of calcula�
tion within the optical model which are taken from [173]
(curve 4) and from [174] (curve 5) are shown in panel a. 
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adequate description of the inner region of the nucleus.
For comparison with our results, the results of the cal�
culations in the optical model from [173] (curve 4) and
[174] (curve 5) are given in the figure. In [173], the
DCSs are calculated in the optical model with the
complex folding�potential and with the density, taking
into account the effects of the nuclear medium. The
effective NN potential is obtained from solving the
Bethe–Brueckner–Goldstone equation in the infinite
nuclear matter. This curve correctly reproduces the
experimental data in the entire angular range, because
the calculation is performed in the optical model that is
not connected with limitation for large scattering angles
(like in Glauber theory). On the contrary, curve 5 from
[174], in which the calculations are also carried out in
the optical model with the Paris–Hamburg nonlocal
potential, lies below experimental data almost in the
entire angular range, except for several data points in
the range of angles θ > 55°.

In Fig. 16b, in the region of forward angles to
15° all curves identically reproduce DCS, agreeing

with experimental data. There are differences in
regions of diffraction minima and at large scattering
angles. The degree of filling minima correlates with
the value of quadrupole moment Q:  = 23.98 mb
corresponds to the cross section with the deepest min�
imum (curve 1);  = 27.9 mb (Table 5) corresponds to
the cross section whose minimum is less pronounced
(curve 2),  = 31.5 mb (Table 8) corresponds to the
shallowest cross section (curve 3 for 9C). Filling of
minima in the DCS, as well as the increase in quadru�
pole moment, are associated with the consideration of
exchange terms with strong spin dependence in the
7Li–n potential, which leads to the WF components
with L = 1 with appreciable weights (Table 5). As is
shown in [175], the consideration for the spin–orbit
components in the optical potential provides the sub�
stantial smoothing of minima in the DCS. The result
of calculation for the 9C nucleus (curve 3) for both
energies is close to the result for 9Li (particularly to
curve 2), which is naturally explained by the similarity
of their WFs, calculated in the identical potentials.

Let us turn to the consideration of the analyzing
power. Figure 17a presents Ay at E = 0.06 GeV/nucleon.
(Designations of curves are the same as in Fig. 16a.)
Curves 1 and 2 differ in absolute values but are similar
to each other in location of maxima and minima.
Curve 1 has the greatest oscillations (its minima in the
DCS are deeper than those in curve 2). The analyzing
power for 9C (curve 3) is close to Ay for 9Li (curve 2),
which, like for the DCS, is explained by the similarity
of their WFs.

Predictions for this characteristic, performed in
[173, 174] (within the same above described formal�
isms as for the DCS), differ qualitatively and quantita�
tively from both our predictions and each other. For
example, Ay from[173] (curve 4) is close to zero in the
full range of forward angles to θ < 42° and reaches the
maximum (+0.6) at  57°, whereas Ay from [174]
(curve 5) has a small positive value (+0.2) at θ < 38°,
reaches the minimum (–0.2) at  45°, and then
increases to 0.45 at  60°. Comparing Ay, predicted
in [174] with three different densities of 9Li (calculated
with different interaction potentials, not shown in our
figure), we can see that all of them differ from each
other, to the extent that they are in antiphase at certain
angles: one curve reaches maximum while another
reaches minimum. Thus, even with relatively small
variations of the calculation the polarization charac�
teristics can cardinally differ from each other.

Figure 17b shows Ay for E = 0.703 GeV/nucleon.
Curves 1, 2, and 3 are designated the same as in
Fig. 16b. Maxima and minima of the analyzing power
are localized at the same scattering angles, though
their amplitudes are substantially different. Curve 1
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has the greatest oscillation amplitude (the respective
DCS in Fig. 16b has the deepest minima), curve 3 is
the most smoothed (for the 9C nucleus, the respective
DCS in Fig. 16b has also the most filled minima). As
compared with Fig. 17a, at an energy of
0.703 GeV/nucleon, Ay oscillates stronger, and it has
three maxima and two minima which correlate with
the DCS minima in Fig. 16b.

Regarding the aggregate of data presented in
Fig. 16 and in Table 5, we may conclude that the best
description of the DCS and static characteristics is
achieved with the WF in model 4, calculated in the
Buck potential with the exchange terms with strong
spin dependence. 

Figure18 presents the results of the calculation of
the DCS of p9Li scattering with the WF of the 9Li
nucleus in the α–t–2n model from Table 9 (curves 1
and 2) and for comparison in the 7Li–n–n model
(curve 3, the same as curve 2 in Fig. 16) at E=
0.06 GeV/nucleon (panel a) and E = of
0.703 GeV/nucleon (panel b). The calculation with
both variants of α–t potentials (curve 1 corresponds to
model 1, curve 2 corresponds to model 2) leads to an
approximately identical result in the DCS description;
a difference is only observed in the region of minima of
cross sections. More substantial differences are
observed between calculations with WF in different
models: the cross section with the α–t–2n WF at both
energies has more pronounced diffraction structure
than that with the 7Li–n–n WF. Curve 3 lies above
curves 1 and 2 in the entire range of angles, moreover,
the discrepancy in the absolute value of cross sections
increases as the scattering angle grows. Why does the
DCS with the 7Li–n–n WF have the smoother struc�
ture, without deep minima, which are observed in the
cross section with α–t–2n WF? It follows from the
different description of the inner structure of the
nucleus, to which the value of quadrupole moment Q
also testifies. The theoretical value of quadrupole
moment, calculated with the α–t–2n WF of 9Li is
Qtheor = –16.75 mb in model 1 and –17.4 mb in model 2
(Table 9); with the 7Li–n–n WF the quadrupole
moment value Qtheor= –27.93 mb, while the measured
value Qexp= –27.4 mb. This is an important character�
istic, determining the quadrupole deformation of the
nucleus. For the WF used in the α–t–2n model, it
diverges from the experimental data by 40%. As it was
already said, the filling of diffraction minima occurs
only in the strongly deformed nuclei with spin J > 1, so
that the presence of deep minima in curves 1 and 2
may be connected with the underestimation of the
quadrupole deformation of nucleus in this model. 

At E = 0.7 GeV/nucleon, the experiment is carried
out only for forward scattering angles and the most
interesting region (of interference) is outside its limits,
which does not allow one to draw the well�justified
conclusion on the suitability of different model WF.

However, the fact that curves 1 and 2 (with the WF in
the α–t–2n model) are in poorer agreement than
curve 3 with experiment, and also the comparison of
static characteristics in Tables 5 and 9, assure us that
the 7Li–n–n model of 9Li nucleus is preferable.

The comparison of the DCSs in Fig. 18, calculated
with the WFs in the α–t–2n and 7Li–n–n models
(curves 1, 2, and 3), shows that they are very different
from each other, whereas the DCS with the WF, calcu�
lated in the common model but with different poten�
tials of intercluster interactions (curves 1 and 2 in
Figs. 18 and 16), are similar to each other. Obviously,
this means that the correctly chosen cluster structure
for description of both static and dynamic characteris�
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Fig. 18. The DCS of p9Li scattering at the energies (a) E =
0.06 and (b) E = 0.703 GeV/nucleon with the WFs of the
9Li nucleus in the α–t–2n model. Curves 1 and 2 display
the calculation with the WFs in models 1 and 2 from Table 9;
curve 3 (the same as curve 2 in Fig. 16, i.e., the calculation
with WFs within the 7Li–n–n model). 
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tics is more important than one or other type of inter�
cluster potentials. The fact that the WF in the 7Li–n–n
model better describes the experimental data at all
energies supports the dominating two�component
structure of 9Li in the form of the 7Li core and the skin
of two neutrons.

Let us compare the experimental data and theoret�
ical calculations of the DCS for the 6Li, 7Li, and 9Li
nuclei given in Fig. 19 at the close energies E = 0.060
and 0.065 GeV/nucleon. The experimental data are
taken from [165] for p9Li (triangles) and from [173] for
p6Li (light circles) and p7Li (black dots). The experi�
mental cross sections for all nuclei are close to each
other (to θ ~ 48°), they decrease monotonously as the
scattering angle increases and have the implicitly pro�
nounced minimum (rather a bend in the cross section)
at θ ≈ 45º. However, at large angles the experimental
cross section for p9Li scattering diminishes slower than
for p6Li and p7Li. Theoretical DCSs are calculated
within Glauber theory [176] with the WF in the α–n–p
(for 6Li, dashed curve), α–t (for 7Li, dotted curve),
and 7Li–n–n (for 9Li, solid curve) models. All curves
almost identically describe cross sections in the region
of forward angles, but at large angles they start to devi�
ate. The differential cross section for the 7Li nucleus is in
better agreement with experimental data than other cross
sections, which we attribute to the well fitted α–t�WF of
this nucleus [139, 140] (in particular, it correctly
describes the quadrupole moment).

Thus, it is shown that the DCSs depend on the WF
structure; however, at small scattering angles (where

the WF asymptotic behavior plays the appreciable
role), this dependence is very weak: all curves equally
describe the cross section to the angles θ < 20°. If the
contradictory conclusion is made in some works
(about the strong dependence of the cross section on
asymptotic behavior of density), while studying the
few�body correlations in p6He scattering, as in [111],
then, as Alkhazov showed in [121], this takes place not
due to the strong sensitivity of DCS to the WF asymp�
totics, but because the calculations use the density dis�
tributions which differ not only at large distances
(  fm), but at small (  fm) distances too. And
this is the reason why DCSs with different densities
can significantly differ from each other. The small sen�
sitivity of the DCS of elastic scattering to different
density distributions at small scattering angles is men�
tioned in [177], where the DCS of p8He elastic scatter�
ing at E = 26, 45 and 72 MeV/nucleon is calculated
using two different methods: DWBA with JLM�poten�
tial and in the eikonal approximation. At small scatter�
ing angles the DCSs with different density distribu�
tions (for total matter and neutron skin), obtained in
COSMA, equally describe experimental data, whereas
at large angles the calculated curves differ from each
other, from which a difference between the core and
the skin may be revealed. However, the authors
emphasize that the difference in the density distribu�
tion in the core and on the periphery is not very
noticeable, is model�dependent, and in order to use it
for measuring the density distribution, the accurate
measurements of the cross section at large angles are
required, which is a difficult problem due to low DCS.

The analogous conclusion is drawn in [22, 122, 167]:
“contribution from the core nucleons has maximum at
the larger angles than from the neutron halo” [22].

2.2.2. The dependence of a differential cross section
on the structure constituents of wave functions. Let us
consider in more detail which contribution to a DCS
comes from the WF components. A WF of relative
motion for p6He scattering can be written down as a
sum of two components (see (1.8)). Substituting it in
amplitude (2.1) and then in DCS (2.23), it is possible
to calculate, which contribution to the cross section
comes from each component:

(2.25)

Figure 20a illustrates the contribution to the DCS
(curve 1, the same as curve 1 in Fig.10b) from S�wave
(curve 2), which is due to consideration of the first
term in Eq. (2.25), and P�wave (curve 3), due to con�
sideration of the second term in Eq. (2.25) at E =
0.717 GeV/nucleon. In order to explain the cross sec�
tion behavior, we shall turn to the geometric shape of
different nuclear states. As is seen from Fig. 2, S�state
of the WF includes two geometric configurations: the
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dineutron one α–(2n) with maximum at the point  ≈

1.7 fm,  ≈ 3 fm; and the cigar�like one (n–α–n) with
maximum at  ≈ 4 fm,  ≈ 1 fm, where  is the mean
distance between two neutrons, and  is the mean dis�
tance between the center�of�mass of two neutrons and
the α�particle. From the fact that in the α–(2n) con�
figuration  ≈ 1.7 fm it follows that the dineutron clus�
ter in the nucleus is strongly compressed because the
size of a free deuteron is 4.3 fm. It is seen in Fig. 20a
that the cross section calculated with S�wave, accord�
ing to its weight (more 95% in model 1) makes the
main contribution and completely dominates at small
scattering angles. The cross section with this compo�
nent has rather a monotonous form with two minima:
at θ ≈ 20° and 40°. The configuration of P�wave
(Fig. 3) is close to the isosceles triangle with  ≈ 2.5 fm,

 ≈ 1.7 fm, which rotates about the common center�
of�mass. This configuration makes a small contribu�
tion to the cross section, noticeable only at the scatter�
ing angles θ > 40°. In the cross section with Ð�wave,
the sharp minimum is observed at θ ≈ 12°; this has no
impact, however, on the total cross section, because
the DCS with S�wave in this region is larger by 4 orders
of magnitude.

This behavior of partial cross sections, calculated
with different WF components, can be understood, if
not only their weights but also relative distances
between the α�cluster and nucleons are taken into
account. These distances in S�component are fairly
large, and the component spreads to  ~ 8 fm and  ~
7 fm and includes the nucleus periphery together with
its central part. The peripheral region of the nucleus in
the momentum space corresponds to small transferred
momenta (and small scattering angles); therefore, the
contribution from this component to the cross section
is particularly large at small angles. The Ð�wave maxi�
mum is located closer to the nucleus center (than that
of S�wave), and the Ð�wave extends to a shorter dis�
tance than S�wave, this configuration is as if com�
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pletely drawn into the inner region of the nucleus, its
contribution to the periphery is negligibly small. The
inner region of the nucleus in the momentum space
corresponds to large transferred momenta (i.e., to
large scattering angles), therefore the contribution to
the cross section from P�component at forward angles
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tribution from S�wave ( ) corresponding to the con�
sideration of the first term in Eq. (2.25); curve 3, from

P�wave ( ) corresponding to the consideration for the
second term in Eq. (2.25); curve 1 presents their total con�
tribution (the same as curve 1 in Fig. 10b). In panel b, the
p8Li scattering at E = 0.7 GeV/nucleon is shown. Curves 2, 3,
and 4 display contributions from the first ( ),
second ( ), and the third ( ) terms
of Eq. (2.26). Curve 1 presents the sum of all components
(the same as curve 3 in Fig. 13b). In panel c, the p9Li scat�
tering at E = 0.060 GeV/nucleon is illustrated. Curve 2 dis�
plays the contribution from the first ( ) term
of Eq. (2.27), curve 3 presents those from the second
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Eq. (2.27), and curve 1 is the sum of all three components
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is small (because of its small weight), while at large
angles it is comparable with the contribution of S�wave
and even exceeds it (which cannot be explained by the
small weight of P�wave).

A DCS for p8Li scattering which takes into account
three WF components from Table 4 is recorded fol�
lowing Eq. (1.13) as 

(2.26)

Contributions from different WF components in
model 6 (Table 4) to the DCS are presented in Fig. 20b
at E = 0.7 GeV/nucleon. Curves 2, 3, and 4 show the
contributions from the first, second, and third terms of
Eq. (2.26). Curve 1 is the sum of all three components
(the same as curve 3 in Fig. 13b). Let us compare the
partial contribution of the components with their geo�
metric configuration presented in Figs. 4–6. The con�
figuration  (Fig. 4) has a maximal weight
of 0.88 (Table 4) and two peaks at the points  = 1 fm,

 ≈ 2.5 fm and  ≈ 3 fm,  ≈ 2.5 fm. Here  is the dis�
tance between the α and t clusters,  is the distance
between the center�of�mass of α–t and n. The neutron
in this configuration is at an equal distance of 2.5 fm
from the center�of�mass of α–t. The  and t clusters
in the first maximum are three times closer to each
other than those in the second maximum. The WF
extension in both coordinates reaches 6 fm, and it
completely determines the contribution to the DCS at
both small and large angles. The component

 is very similar to the first one by its form.
It is seen in Fig. 5 that two maxima are localized at the
points  ≈ 1 fm,  ≈ 2.0 fm and  ≈ 3 fm,  ≈ 2.0 fm.
The small difference from the first configuration is
that the neutron is 0.5 fm closer the center�of�mass of
α–t. The extension of the WF also reaches 6 fm, there�
fore we can see in Fig. 20b the analogous behavior of
curves 2 and 3 with the contributions comparable with
their weights (see Table 4). The component

 (Fig. 6) has one peak at the point  ≈
2.5 fm, ≈ 2.0 fm, its maximal extension is 5.5 fm.
The WF in the central region of the nucleus is equal to
zero, therefore the corresponding DCS sharply
decreases and already at ~ 20° becomes smaller by
three orders of magnitude than the cross section with
the dominating component. Therefore, we see in
Fig. 20b that the DCS is completely determined by the
contributions of the first and second components of
WF according to their weights.

There is a somewhat different situation for p9Li
scattering. A differential cross section with consider�
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ation of three components of WF of 9Li (see
Eq. (1.14)) can be written as

(2.27)

where the first, second, and third terms in braces
determine the contribution of the WF components
with the quantum numbers , ,

 respectively. The calculation, performed using
this formula, is illustrated in Fig. 20c at E =
0.060 GeV/nucleon: curve 2 shows the contribution
from the first term of Eq. (2.27), curve 3 displays the
contribution from the second and third terms of
(2.27), and, as is seen from the figure, these curves are
similar in form and differ only in absolute values.
Curve 1 is the sum of all three components (the same
as curve 1 in Fig. 16a). An absolute value of the contri�
bution from the components to the DCS is determined
by their weight (see Table 5): the first WF component
(curve 2) makes the determining contribution to the
cross section, because its weight is 0.654, the weight of
two other components is 0.167, therefore their contri�
bution is smaller (curve 3). However, these compo�
nents make the contribution in all angular range, and
we cannot neglect it. Let us examine the geometric
configurations of these WF components (Fig. 7, 8). As
is seen from the figures and discussion, conducted in
section 1 (see 1.3), the geometric shapes of all three
configurations are almost identical, therefore their
contributions in the DCS are similar. 

2.2.3. The dependence of a differential cross section
on the scattering mechanism. Within our approach,
Glauber operator  (Eq. (2.3)) is expanded into the
series of scattering in the subsystems (clusters) com�
posing the nucleus. Substituting it in the DCS, we
derive

(2.28)
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(2.31)

Here ,  are the partial ampli�
tudes of the single�, double�, and triple�collisions.
The designation of subscripts 1, 2, and 3 is given in the
explication to Eq. (1.1).

Figure 21a displays the partial DCSs for p6He scat�
tering ( , , ), in which the
first (curve 1), second (curve 2), and third (curve 3)
terms of Eq. (2.28) are taken into account separately,
as well as their sum with consideration for interference
(curve 4). It is seen from the figure that the main con�
tribution at small scattering angles (θ < 20°) is due to
collisions with the α cluster and two valence neutrons;
however, their amplitude rapidly drops and higher�
order multiple collisions start dominating with the
increasing of the scattering�angle. It is also seen that at
small scattering angles curve 1 lies above total curve 4,
because in series (2.28) the double scattering term is
subtracted from the single scattering one and the total
cross section decreases, which improves the agree�
ment with experiment. At the point where the curves
of the single and double cross sections intersect, there
is a minimum in total curve 4 arising due to the
destructive interference upon squaring the matrix ele�
ments in (2.28). After the interferential minimum, the
double collisions begin dominating and, at θ ≈ 50°, the
triple collisions are nearing them. Expansion (2.28)
provides a convenient approach to finding the signifi�
cance of terms of the single and higher�order scatter�
ings. It is seen from the figure that, for the correct
description of the DCS in the wide angular range (to
θ ~ 50°–60°), it is necessary to take into account the
contributions from higher�order multiple collisions.
This conclusion is also confirmed in a number of other
works [67, 91, 173], in which the contribution to the
cross section from the higher order terms of the series
of multiple scattering was analyzed with scattering of
protons by the 6He, 11Li, and 11Be nuclei in inverse
kinematics. Let us dwell upon [67]. Here the DCSs
were calculated in three approximations: FIA (Factor�
ized Impulse Approximation), FSA (Fixed Scatter
Approximation), and Glauber approximation, and all
of them proved to be very close. The differential cross
section of single scattering from this work in Glauber
approximation is shown by curve 5. It is calculated
only to θ ~ 18° and does not reach the region of mini�
mum; however, it is seen that as the scattering angle
increases, the discrepancy from the experimental data
grows. The consideration of higher�order multiple
scattering reduces the DCS, bringing it closer to
experimental data, which is seen both from our calcu�
lations (curve 4) and from [67] (DCS from this work
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taking into account all multiplicities of scattering is
given in Fig. 10b, curve 5).

In Fig. 21b, the contribution from different multi�
plicities of scattering is calculated for p8Li scattering
( , , ). Lines 1, 2, and 3 dis�
play the contribution separately from the first, second,
and third terms of Eq. (2.28), and we see the result
almost analogous to the previous, with the single dif�
ference that the cross section of single scattering has a
small minimum in the region with θ ~ 18°. 

A spectacular picture of the contribution from col�
lisions of different multiplicities is observed in p9Li
scattering in Fig. 21c at E = 0.703 GeV/nucleon for
the WF in the α–t–2n model. It is seen from the figure
that at small scattering angles θ < 14°, the main con�
tribution comes from single scattering by the α, t, and
2n clusters (curve 1). It rapidly falls at large angles and
in the region of 30° > θ > 15°, the terms of double scat�
tering dominate (curve 2), at the angles θ > 30° the
contribution comes from triple scattering (curve 3).
Curve 4 presents the total contribution (the same as
curve 1 in Fig. 18b). In the regions where the curves
intersect, minima are observed in the total cross sec�
tion, which are caused by interference of the scattering
with different orders of collisions. In the regions of
minima (θ ≈ 14° and 30°), another peculiarity is
observed: the first minimum in both figures could be
deeper if the triple scattering was not taken into
account, the second minimum is not very deep due to
the single scattering, which fills it partially.

Let us note that in all cases, the cross section of sin�
gle scattering exceeds the experimental data in the
small�angle region, the contribution from the double
scattering decreases the DCS at small angles and after
the first interferential minimum becomes dominating,
after the second minimum the triple scattering begins
to dominate. From the considered examples we can
conclude that, for scattering by all investigated nuclei
at high transferred momenta, the dynamic contribu�
tions from higher orders are substantial and must be
taken into consideration. 

2.2.4. The differential cross section in optical limit
(limit of single scattering). Many formalisms (HEA,
FIA, FSA, etc.) are restricted by single collisions only.
As it was shown in the previous subsection, this is not
always the justified approximation. For example, the
following is said in [178] about it: “the formula of opti�
cal limit does not take into account the multiple scat�
tering terms and it is the main reason, why… the opti�
cal limit approximation overestimates the cross sec�
tion of reactions”.

Since the single�collision operator is a sum of oper�
ators, acting at each structure constituents of the
nucleus (see Eq. (2.29)) not mixing them (as in colli�
sions of higher orders), this allows one to calculate the
contribution to the DCS from each of them. One of
the operator component acts on the core (  for

1 α
Ω = Ω 2 tΩ = Ω 3 nΩ = Ω

1 α
Ω = Ω

6He,  for 8Li,  for 9Li),
another, the valence component, acts on neutrons
(  for 6He and 9Li,  for
8Li)). Thus, the single scattering contains essential
information on the structure of both the core and the
skin.

A cross section of single scattering can be written as

(2.32)

where

(2.33)

index  = 1, 2, 3.

The result of such a calculation is shown for p6He
scattering at E = 0.717 GeV/nucleon is shown in
Fig. 22a. Curve 2 displays scattering by α�particle,
corresponding to consideration of the first term in
Eq. (2.32), curve 3 presents scattering by two valence
nucleons, corresponding to consideration of the sec�
ond and third terms in Eq. (2.32), curve 1 gives the
contribution from all terms in Eq. (2.32) (the same as
curve 1 in Fig. 21a). It is seen from the figure that for
all scattering angles the main contribution to the cross
section comes from scattering by α�particle; scattering
by nucleons makes a certain contribution in the region
of forward scattering angles (which in the coordinate
space corresponds to the WF asymptotics). It is clear
that the excess neutrons are localized in the surface
region, therefore, their contribution to DCS is notice�
able at small angles, but already at θ > 10° the DCS of
scattering by nucleons becomes one order of magni�
tude smaller than the DCS of scattering by the core
and then it rapidly drops, so that scattering for large
angles is completely determined by the core. At zero
angle (θ = 0°), according to the optical theorem, the
cross section is determined by the imaginary part of
the amplitude at zero, which is directly connected
with the total cross section σtot in the elementary
amplitude of pn and pα scattering; for E = 0.7 GeV,

 3.92 fm2 [179],  12.5 fm2 [158], the first
one is three times smaller than the second one; there�
fore, at zero angle the DCS of scattering by α�particle
is higher than that by neutrons.

Calculating the total cross section of p6He scatter�
ing at the same energy by the optical theorem:

(2.34)

we obtained  17.8 fm2. This value is somewhat
larger than in [112], where the calculation of the cross
section is performed with three Faddeev WFs which
yielded  15.3–16.1 fm2 depending on the radius of
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6He, which is varied from 2.33 to 2.77 fm. The cross
section of the reaction at this energy is calculated in
[65]: in the optical limit approximation (OLA) 
16.6 fm2, using the variational Monte Carlo method

 16.3 fm2 (Rm = 2.56 fm), and using Green’s func�
tion Monte Carlo method  17.2 fm2 (Rm = 2.61 fm),
the latter value is most close to ours. The calculation
with WF in the simple shell model also yields close val�
ues of the cross section:  16.0 fm2 (Rm = 2.3 fm)
and  16.3 fm2 (Rm = 2.6 fm). 

The total cross section of p9Li scattering calculated
by Eq. (2.34) at E = 0.065 GeV/nucleon results in the
value  25.8 fm2. Comparing it with the values,
obtained in [173],  28.8 fm2 (in the g�folding
model with effective interaction, including the cen�

σ =

σ =

σ =

σ =

σ =

σ =

σ =

tral, two�body spin–orbit and tensor forces) and 
38.8 fm2 (in the t�folding model), we see that our value
is smaller; however it is close to the value  26.3 fm2,
obtained in [180] in the Born approximation. 

The pattern, similar to p6He scattering in Fig. 22a,
is also observed for the DCS of p8Li single scattering in
Fig. 22b. Here, curve 2 presents the total scattering by
α and t (contribution from two first terms of
Eq. (2.32)), curve 3 displays the scattering by nucleon
(contribution of the last term of Eq. (2.32)), curve 1 is
the sum of all three terms of Eq. (2.32) (the same as
curve 1 in Fig. 21b). The scattering by the core domi�
nates even more in the entire angular range and has the
more complicated structure with a small minimum at
θ = 20°, whereas scattering by a single nucleon has the
form of monotonously decreasing function, which
already at θ = 30° is smaller by almost two orders of
magnitude than the cross section of scattering by the
core.

In [107], while discussing different mechanisms of
reactions with halo nuclei and the issues on the infor�
mation which can be extracted from the measured char�
acteristics, the authors conclude that the core size plays
a more important role than halo in the DCS descrip�
tion. This statement also can be found in other works, in
which the role of the core and valence neutrons in
description of observables is analyzed [22, 87, 94, 177].

Figure 23 presents the calculation of angular distri�
bution of elastic scattering by proton of 11Li nucleus
from [22]. The DCSs for scattering on two parts of
optical potential  and  are shown by dash�
dotted and dashed curves, the solid curve displays their
total contribution. It is seen from the figure that scat�
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Fig. 22. Contribution to DCS of the single scattering
(curve 1, the same as curve 1 in Fig. 21a) from scattering by
the core, corresponding to the consideration of the first
term in (2.32) (curve 2), and from scattering by the skin,
corresponding to the consideration for the second and
third terms in (2.32) (curve 3). In panels, there are pre�
sented (a) the p6He scattering at E = 0.717 GeV/nucleon;
(b) the p8Li scattering at E = 0.70 GeV/nucleon.
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Fig. 23. Contribution to DCS of the p11Li elastic scattering
[22]. The dash�dotted curve corresponds to the scattering
by the core, the dashed curve illustrates the scattering by
halo nucleons, the solid curve displays the total contribu�
tion. The experimental data are taken from [165].
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tering by nucleons of the core dominates at all angles.
Scattering on the neutron halo makes a small contri�
bution only at small angles; “therefore, for studying
the spatial structure of nuclei with halo, it is important
to measure the differential cross section of scattering
of protons at small transfer of momenta” [22].

CONCLUSIONS

Significant progress in studying exotic neutron�
and proton�excess nuclei has been achieved for the
recent decade. Accelerators with new radioactive
beams (not only light but also isotopes of heavy nuclei)
have been commissioned, technologies of the polar�
ized targets construction are used and polarization
characteristics are measured. The kinematically com�
plete experiments are conducted for two� and three�
body breakup of the neutron�excess nuclei and for
study of different correlations in motion of fragments.
The laser�spectroscopic measurements made it possi�
ble to determine most accurately the rms charge radii
of light nuclei. The experimental achievements stimu�
late theoretical studies in this field. 

A description of the nuclear structure the nuclear
density is seldom used (because it is impossible to cal�
culate with them the effects of nuclear correlations);
more often WFs are employed, which are calculated in
the many�body (three�, four�, five�body) models. The
earlier models are improved: the shell model with large
basis (LSSM), and the shell model for continuous
spectrum (SMEC). The comparison of characteris�
tics, calculated on the basis of few�body and Faddeev
WFs is conducted. 

Methods of calculations are modified and
improved. For example, the Monte Carlo calculations
of Glauber amplitude of multiple scattering are con�
ducted, in which the WFs of any intricacy can be used
and there is no need for truncating the operator of
multiple scattering [64]. The NN and N�cluster poten�
tials are improved, in particular; the complete consid�
eration for spin–orbit interactions the elementary
amplitude directly from the phase shift analysis is
already performed for pd scattering [98]. For energies
of hundreds MeV/nucleon, the calculations are car�
ried out in the relativistic impulse approximation
(RIA) [76]. The modern computing codes FRESCO,
DWUCK4 are used.

In addition to complication of calculations,
another tendency takes place: the development of
qualitative methods, the optical limit approximation,
eikonal approximation, FIA, FSA, reducing the num�
ber of fitting parameters (as in works by Lukianov,
where only two parameters of the potential can be used
in HEA for quantitative description of experimental
cross section). As is said in [22]: “Under certain phys�
ical conditions, the simplification of the reaction
mechanism occurs, which makes it possible to develop

realistic models for description of processes of
nucleus–nucleus collisions.”

At present, more and more works appear, in which
the complex study takes place, along with elastic and
inelastic scattering the additional channels of reaction:
breakup, excitation, dynamic polarization of the core,
etc. The simultaneous analysis of different observables
within one theory shows that they are sensitive to differ�
ent details of the interaction mechanism and the struc�
ture of the nucleus and their global description allows
one to reduce the uncertainties connected with approx�
imations of the applied formalism.

The review presents the calculation of characteris�
tics of elastic p6He, p8Li, p9Li, and p9C scatterings
within Glauber multiple�scattering diffraction theory.
The essential feature of the calculation is that we used
realistic three�body WFs, calculated in the context of
modern nuclear models. From the particular calcula�
tions, the relation of the DCS and Ay, with the struc�
ture of the investigated nuclei and with the scattering
mechanism, is found. 

Analyzing the DCSs, calculated with the different
model WFs (both in Glauber approximation and in
comparison with other formalisms), we showed that a
DCS weakly depends on the WF behavior on asymp�
totics (which corresponds to small transferred
momenta, i.e., scattering with small angles), and
dependence on the inner part of WF (which corre�
sponds to large transferred momenta, i.e., scattering
with large angles) is much stronger. This conclusion is
confirmed by the calculation of the contribution from
different components to the cross section of single
scattering. Separating it depending on scattering by
the core and by the skin, we demonstrated that the
DCS of elastic scattering by the 6He, 8,9Li neutron�
excess nuclei in the entire angular range is determined
mainly by scattering by the core. Scattering by neu�
trons located on the periphery makes a small contribu�
tion to the cross section only at small scattering angles,
because the low�density skin cannot deflect the parti�
cle by a large angle. As is said in [177], “at large angles,
the contribution from the core dominates. The
described tendency confirms that the large transfer of
momenta in scattering occurs during the interaction
with the more massive α�core.”

After an expansion of the Glauber operator of mul�
tiple scattering into a series ofscattering on nucleons
and clusters involved in the nuclear structure, we cal�
culated the DCS while taking into account all multi�
plicities of collisions and partial (single�, double� and
triple) cross sections and showed that, though the
main contribution to the DCS at small transferred
momenta comes from single collisions, at large trans�
ferred momenta the dynamic contributions from
higher orders are considerable and must be taken into
account. 

The relation is found between the observed quanti�
ties and intercluster potentials, in which the WFs of
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nuclei are calculated, and conclusions are drawn on
the question of which potentials reproduce all experi�
mental data most realistically. It is shown that the deep
attractive potentials with FSs more reliably describe
the nuclear structure than the oscillator potential
does. By calculating the DCS of elastic scattering of
protons with the WFs, presented in the same models
but with different potentials of intercluster interac�
tions: α–t, α–n and t–n for 8 Li and 7Li–n, n–n for
9Li, we have shown that cross sections are less sensitive
to variations of the intercluster interactions than to the
WFs, constructed in different models. For example,
the WF of the 9Li nucleus in the α–t–2n model is less
successful than the WF in the 7Li–n–n model for
describingthe DCS at all energies, which may be the
consequence of the inadequate cluster separation. Too
rapid (as compared with experiment) decrease of the
DCS with the WF in the α–t–2n model at large trans�
ferred momenta is evidence of the deficit of the WF
high�momentum components.

The consideration for tensor interaction in the
intercluster potentials results in the mixing of configu�
rations and occurrence of additional WF components
with different quantum numbers. The contribution of
small components of WF, connected with consider�
ation for tensor interaction in the intercluster poten�
tials, allows one to correctly describe the quadrupole
and magnetic moments of nuclei and improve the
DCS description. Thus, the addition of the tensor
interaction to the α–t (or to n–t) alone, potential
allows one to calculate the WF of 8Li, in which the
total weight of configurations with LS = 21 increases
to 10% which brings into agreement the quadrupole
and magnetic moments with experimental values.
With the 7Li–n potential, which has the strong spin
dependence, the WF is calculated, which reproduces
the quadrupole moment of 9Li. There is a correlation
between the filling of the DCS minimum and the con�
tribution from the WF small components:

 for 8Li and 
for 9Li. The calculation has shown for p6He scattering
that P�wave in the WF of 6He (with a weight of 4.3%)
makes the appreciable contribution to the cross sec�
tion at the angles θ > 45°.

From the calculation of polarization characteris�
tics, it is possible to draw the general conclusion that
they are substantially stronger (than the DCS and the
total cross section), depending on the selection of both
the WF of the target�nucleus and parameters of the
spin–orbit nucleon–nucleon interaction; however, in
the region of small scattering angles they like the DCS,
they depend weakly on the selection of the model WFs
of the nucleus.

The comparison with results of calculations, per�
formed in the other approximations (HEA, optical
model, FIA, FSA) and with different model WFs, has
demonstrated a good accuracy of the Glauber approx�

1121;3121lLSλ = 1113 2 1111 2lLSλ =

imation and noncontradictory description of experi�
mental data. This assign the confidence that the
description of experimental data to be obtained in the
future can be carried out within the approved Glauber
formalism. 
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