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Abstract—The paper proposes a method for calculating Som-
merfeld integrals using the example of the problem of radiation
from a Hertz dipole. An integral representation of the dipole field
in the form of Sommerfeld integrals is given and its analytical
expression is found in the form of an infinite power series.
Qualitative and quantitative comparisons of the final results with
exact expressions for the Hertz radiator obtained directly from
integral representations in cylindrical and spherical coordinate
systems are presented. The results of the paper may be used in
the theory of diffraction and in solving the Sommerfeld problem

Index Terms—Maxwell equations, convolution, Green’s func-
tion, scattering of electromagnetic waves, Hertz dipole, Sommer-
feld integrals

I. INTRODUCTION

Sommerfeld integrals, introduced by A. Sommerfeld in
1909 [1], are used in solving problems related to wireless radio
communication over long distances since they provide an accu-
rate mathematical description of electromagnetic phenomena
[2]-[5]. Recently, they have become widely used in mathe-
matical models related to many electromagnetic technologies,
ranging from modeling electrical discharges to plasmonic
integrated devices [6]-[8]. However, numerical methods have
difficulties in accurate evaluation of Sommerfeld integrals.
This is caused by highly oscillatory and slowly converging
behavior of the integrand and its singularities, including branch
points and a pole near the real-axis path of integration. It is
generally assumed that such Sommerfeld integrals cannot be
calculated in a closed form.

Therefore, the calculation of Sommerfeld integrals has both
practical and theoretical significance since they can be used
as Green’s functions in the frame of integral equation for-
mulations. In recent years, reports on combining analytical
approximations and numerical computations have been pub-
lished [9]-[11].

In the first section, the integral representations of the
magnetic and electric fields of the Hertz point radiator are
considered using Hertz vector potentials.

In the second section, the exact analytical expressions for
the Hertz dipole fields in cylindrical and spherical coordinate
systems required in the third chapter are described.
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In the third section, on the example of the Hertz dipole, the
method for evaluating Hertz integrals is considered. The main
results of the work are presented in the conclusions.

In the second section, the integral representations of the
magnetic and electric fields of a Hertz point source are
considered, using Hertz vector potentials.

The third section describes the exact analytical expressions
for the Hertz dipole fields in cylindrical and spherical coordi-
nate systems required in the third chapter.

In the fourth section, on the example of the Hertz dipole,
the method for evaluating Hertz integrals is described.

II. INTEGRAL REPRESENTATIONS OF THE FIELDS OF A
HERTZIAN POINT DIPOLE

It is known that the potential of the Hertz vector

IT = - Jx, (1
wWeEQE
is a solution of the Helmholtz equation
(k2 + AT = @)

iwepe
where the symbol * is the convolution over all spatial coordi-
nates, J is the current density, 1) = gtkor /7 is Green’s function,
w is the circular frequency, ¢ is the dielectric permittivity.

The electromagnetic field is generally defined in terms of
the Hertz vector as

H = —iwepeV x 11,
E=V xV xII +

3)
L @)

1WeEQE

Note that the Hertz point dipole corresponds to the current
density (J =)

j = —iwpd(x)é(y)d(z — 20),

where z is its location along the z axis.
Integral representation of the Hertz vector of a point electric
dipole

(&)

ip 1 ..
I° = = [ —el===ly(k,p)k,dk 6
471'505/%6 0(Kpp)kpdkp, ©)
0
=]k — kg

654

979-8-3503-2058-9/23/$31.00 ©2023 |IEEE



or the so-called inverse Hankel transform follows from the
Fourier inversion of the expression (1) in the cylindrical
coordinate system
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The above integrals are calculated by means of representation
of the Bessel function as
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and application of the theory of residues on the complex plane
k..

The integral representations of the fields of the Hertz
radiator are expressed in a similar way using the Hertz vector
in the form of Hankel transformations
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It is useful to represent the above integral representations
also in terms of the Hankel function (see Appendix A)
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Similar integrals occur in the Sommerfeld integrals, as well as
in boundary value problems.

III. EXACT FIELD FORMULAS

Using the integral representation of a spherical wave
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It is not difficult to calculate the integral (10) for the magnetic
field of the Hertz radiator
ipw O e'For
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(14)

It should be noted that the same result can be obtained by
calculating the convolution (1) in (3)

ipw O €T

dw Bp 1

Hy= -V x (j*1) = a-— (15)
It is convenient to obtain an exact expression for the electric

field only by calculating the rotor of expression (13) in the

cylindrical coordinate system using equations (4) and (3)
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In the spherical coordinate system, it will take the form

{egsin9<1+i/,€— 1/,€2)—
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due to transformations of the basis vectors
ep:e7nsir16’—|—egc€)s€7 (18)
e, = e, cosbt —egsinb.

IV. METHOD FOR CALCULATING SOMMERFELD
INTEGRALS

As an example, to demonstrate the methodology for calcu-
lating the Sommerfeld integrals, consider the electric field of
a dipole (11). Let z > zp.

Passing to the angular integration variable 6, where

ky, = kgsind,

we transform expression (11) to the Sommerfeld integral along
the contour S, (see Fig. 1)

It should be noted that to provide the convergence of the
asymptotic integral, the integration contour .S, in (19) must
be deformed to a line passing from top to bottom parallel to
the imaginary axis, which slightly deviates to the left up to
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the point 04;, and to the right after that. Obviously, here 04,
is a saddle point.
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Fig. 1. The contours of integration.

To calculate the integral (19), we first move the integration
contour parallel along the real axis to the origin of the
coordinate system by replacing 6 — 6+6;,, after the function
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we make expansion into Maclaurin series, where
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Thus, the Sommerfeld integral (19) is reduced to the calcula-
tion of the integral
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which vanishes for odd values of m (see. (36) Appendix B).

Finally, we represent the dipole field as an infinite series
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where I' is a gamma function.

In (25) we select the leading term of the asymptotic series

pk3 e
— sin 04,
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Note that the leading term of the series coincides with the
expression for the electric dipole in the wave zone

(ep cos 04i, — e, sin Gdir).

pk2 em )
Eqo(r, Oair) ~ —eo 0~ sinfg;,, 27
TEQE T

where ey = e, cosly;. — e, sinfg;, is the unit vector in the
spherical coordinate system.

Let us calculate the coefficients of the series, for example,
of the initial four terms
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(16 +ik)} (m =0,1,2,3). (28)

As a result, we obtain an approximation of the sum of the first
four terms of the series in the cylindrical coordinate system
(k>1)
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In the spherical coordinate system, the above expression is
written as

)~ (14+:2
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due to the representation of the basis vectors as
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e, = e, sinly;, + eq cos 04,
e, = e, cosly;, —

In Figs. (2) and (3) the coefficients of the series a?, (22)
and a}, (23) are calculated using approximate formulas (28)
and (28).

Figure 2 shows a comparative estimate of the asymptotic
expression in the form of a power series for the electric field
of a vertical dipole (30) with the exact formula (17). Figure
3 shows the dependence, in percentage, of the modulus of the
relative error of the source field E4(r, 64;,) in the power series
approximation (m = 3) in (30) on the dimensionless distance
(k = kor).
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Fig. 2. Directional patterns of a vertical dipole |E4(r, 04;,)|. The solid line
with a marker is the true diagram (17), the solid line corresponds to the
approximate formula (30), kK = 5, = 1.
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Fig. 3. Dependence of the relative error of the vertical dipole radiation pattern
(30), on the dimensionless distance .

V. CONCLUSIONS

Integral representations of the fields of a Hertz point radiator
in the form of the Hankel transformation (8), (9) as well as
integrals with infinite limits (10), (11) are obtained.

In order to assess the accuracy of the method for calculating
the Sommerfeld integrals, the exact analytical expressions for
the integrals in cylindrical (13), (16) and spherical coordinate
systems (17) are given.

In this paper, the use of the auxiliary integral (36) forms
the basis of the method for calculating the asymptotics of the
Sommerfeld integrals.

Qualitative and quantitative comparisons of the final results
with exact expressions for the Hertz radiator (17) obtained di-
rectly from integral representations in cylindrical and spherical
coordinate systems are presented.

Fig. 3 shows the dependence of the relative error of the
radiation pattern on the distance ~, which does not exceed
one percent. As an example of the reliability of the technique,
it is shown that the expansion of the Hankel functions in an
infinite power series leads to the well-known formula (41).

This work can be continued in solving the Sommerfeld
problem.
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APPENDIX A
REPLACING THE BESSEL FUNCTION BY THE HANKEL
FUNCTION IN THE HANKEL TRANSFORMS

Let an arbitrary analytic function f(k,) satisfy the condition
Flkp) = ™ f(e7"k,), (32)

then the representation of the inverse Hankel transform of
order v of the function f(k,) is

[ 108k, =5 [ 051 )
0

—oo+10
(33)
Using the representation of the Bessel function
1
L (kpp) = 5 (HSD (kop) +HE (Kpp)). (34)
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and the analytic continuation of the Hankel function of the
second kind

H?) (kyp) = =™ HM (kppe'™), (35)

the integral along the negative real semi-axis can be expressed
in terms of the Hankel function of the first kind. Then, based
on the equality of the integrands and the condition (33), the
integrals are combined into one integral, which is contained
in the right side of the expression (32).

In this case, it should be borne in mind that the Hankel
function has a cut along the negative real semi-axis. Therefore,
the path of integration must pass parallel to the cut, above it, at
a distance equal to a vanishingly small imaginary value +:0,
which we will omit everywhere below.

In particular, the function f(k,) must be even with respect
to the function Jo(k,p) or Hél)(kpp), according to condition.

APPENDIX B
AN AUXILIARY INTEGRAL FOR CALCULATING
SOMMERFELD INTEGRALS

Asymptotic calculations of the Sommerfeld integrals in the
form of an infinite series can be optimally performed using
the auxiliary integral

/92m6—i502/2d9 _ (z)erjr(m —+ %) (36)

ik
Sz
In order to calculate the auxiliary integral, we first deform
the contour S, to the imaginary axis, which passes from top
to bottom and slightly deviates from it by an infinitesimal
real value to ensure the convergence of the integral. Then the
integral can be sequentially represented as
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where the last integral can be found by m-fold calculation of
the derivative with respect to the parameter x on both sides
of the equality sign in the expression for the integral

(37

100—0

/ e*ifi62/2d9 — 1671’71'/47 (38)
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taking into account the representation of the gamma function

s = Lot n =)

The last integral (38) can easily be obtained

C(o0) +iS(00) = /e”tz/th
0

using the Fresnel integrals [12] and the substitution ¢t =

—i\/K/T.

A. Calculating asymptotics of the Hankel function

Another illustrative example of demonstrating the technique
for calculating the Sommerfeld integral using the auxiliary in-
tegral (36) is the asymptotic expansion of the Hankel function
in a power series for large values of the argument.

Let us use the Sommerfeld integral representation for the
Hankel function

H(Vl)(z) _ l /eiu(ﬁfg)eizcosﬁda.
™
S

(39)

In order to calculate the asymptotic formula of the Hankel
function in the form of a power series, as a rule, we expand
the integrand in the Maclaurin series

S
ew(Gfﬂ'/Q)ezz cos 0 efzz(1702/2) _ § m pm

m!
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with coefficients
J— efi(z+l/7r/2) dl (eiz(cos 0+02/2)6iu9)
" aom
and express the Sommerfeld integral (39) in terms of the
auxiliary integral (36)

iz X hm o,
HP( =S 3 / gme—i=0*/2,
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Here one should bear in mind that odd integrands (with
odd values of m) are omitted as the corresponding integral
vanishes.

Thus, using formula (36)and calculating the coefficients

6=0

{hom)} = e~/ (1; —2 0 iz — (V8 4015022 + i2);
VS (700" + 2802 + 1)z — 3522); .. ) (40)

finally we get the asymptotic expansion of Hankel functions
of the first kind for z — oo (see [12] )

F e~ ham 2\mtE 2
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The main term of the series is (m = 0)
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