

The 28th International Conference on Applications of Computer Algebra ACA'2023

PROGRAM & ABSTRACTS

Warsaw University of Life Sciences – SGGW Institute of Information Technology July 17 - 21, 2023

WWW: https://aca2023.iit.sggw.pl

Program and Organizing Committees

General Chair

Alexander Prokopenya, Warsaw University of Life Sciences - SGGW, Poland

Scientific Committee: ACA Working group

Gabriel Aguilera Venegas Alkiviadis Akritas Michel Beaudin Anouk Bergeron-Brlek Francisco Botana Bruno Buchberger Thierry Dana-Picard Victor Edneral Jose Luis Galan Garcia Victor Ganzha Mark Giesbrecht Hoon Hong David Jeffrey Erich Kaltofen Ilias Kotsireas (co-chair) Hiroshi Kai Robert H. Lewis Richard Liska Edgar Martinez-Moro Manfred Minimair Aleksandr Myllari Veronika Pillwein Alexander Prokopenya Louis-Xavier Proulx Pedro Rodriguez Cielos Tateaki Sasaki Yosuke Sato Werner Seiler Tony Shaska **Dimitris Simos** Margarita Spiridonova Stanly Steinberg Quoc-Nam Tran Elena Varbanova Nikolay Vasiliev Stephen Watt Michael Wester (co-chair) Wolfgang Windsteiger Zafeirakis Zafeirakopoulos

Advisory Committee

Ilias Kotsireass, Waterloo, Canada Michael Wester, New Mexico, USA

Local Organizing Committee

Ryszard Kozera (co-chair) Alexander Prokopenya (co-chair) Andrzej Zembrzuski Marcin Ziółkowski Artur Wiliński Włodzimierz Wojas Marcin Choiński Monika Krawiec Anna Dyniec Monika Hertel-Świerad Magdalena Magnuszewska

ACA2023 – General Schedule

- S1 Computer Algebra in Education
- S2 Computer Algebra Modeling in Science and Engineering
- S3 D-Finite Functions and Beyond: Algorithms, Combinatorics and Arithmetic
- S4 Computer Algebra Systems and Interval Methods
- S6 Computer Algebra Applications in the Life Sciences
- S7 Computational Differential and Difference Algebra and its Applications
- S8 Algebraic Geometry from an Algorithmic Point of View
- S9 Effective Ideal Theory and Combinatorial Techniques in Commutative and Non-Commutative Rings and Their Applications
- S10 Algebraic and Algorithmic Aspects of Differential and Integral Operators

Schedule for Invited Talks

Tuesday, July 18, 2023

Build. 34, 3d floor, Lecture Hall "Aula IV"

11:30 – 12:30 **Jon McLoone**

Wolfram's Vision for Unified Computation

Wednesday, July 19, 2023

Build. 34, 3d floor, Lecture Hall "Aula IV"

11:30 – 12:30 Werner M. Seiler Theoretical and Numerical Analysis of Singular Initial and Boundary Value Problems

Thursday, July 20, 2023

Build. 34, 3d floor, Lecture Hall "Aula IV"

11:30 – 12:30 Adam Strzebonski

Recent Symbolic Computation Developments in Mathematica

Contents

Invited Speaker – Jon McLoone	24
Invited Speaker – Werner M. Seiler	25
Invited Speaker – Adam Strzeboński	26

Computer Algebra in Education

Assessment of students' knowledge and abilities in undergraduate mathematics	27
Online drills created by extended CindyJS and scoring them with Maxima	31
ChatGPT excels in medicine but falters in basic algebra	33
Orthogonal matrices: third time around	36
Using CAS in the classroom: personal thoughts (Part III)	38
Surfaces and their duals	41
Rubi gems	43
Automated computation of geometric Loci in Mathematics Education	45
GeoGebra automated reasoning tools: why and how (to use them in the classroom) .	47
Orthogonal trajectories to isoptics of ovals	50
Using CAS in mathematics education with the quadratic curve addition method	52

Computer Algebra Modeling in Science and Engineering

Fitting sparse reduced data	54
A discrete SIS model built on the strictly positive scheme	55
On applications of computer algebra systems in queueing theory calculations	56
Analyzing electric circuits with computer algebra	58
LMS with simple modeling developed by extended CindyJS and Maxima	59
Billiards: At the intersection of Math, Physics and Computer Algebra	61
Computation of normal forms for systems with many parameters	62
Spin 1 particle with anomalous magnetic moment in external uniform electric field, solutions with cylindric symmetry On stability of stationary motion of the 3D swinging Atwood machine	63 65
Semi-algebraic representations for the multistationarity region of reaction networks	66
Derivation of the evolution equations in the restricted three-body problem with variable masses by using Computer Algebra	68 70
Investigation of a two-planetary problem of three bodies with variable masses varying anisotropically at different rates	72

D-Finite Functions and Beyond: Algorithms, Combinatorics and Arithmetic

Reduction based creative telescoping for definite summation of P-recursive sequences: the integral basis approach	74 75
Linear recurrence sequences in the OEIS	77
Reduction based creative telescoping for definite summation of D-finite functions: the Lagrange identity approach	78 80
Two applications of the telescoping method	81
A symbolic-numeric validation algorithm for linear ODEs with Newton-Picard method	83
Algebraic consequences of the fundamental theorem of calculus in differential rings	85
Separating variables in bivariate polynomial ideals: the local case	86

Computer Algebra Systems and Interval Methods

On the application of an interval finite difference method and symbolic methods for solving the heat conduction problem	88
On the application of directed interval arithmetic for solving elliptic BVP	90
Symbolic and algorithmic differentiation for the interval algorithm of training contracting autoencoders	91 93

Computer Algebra Applications in the Life Sciences

Inferring stochastic models of gene transcription from initiation events by computer	
algebra	94 95
Phylogenetic invariants for time-reversible models	96
Divide and control: an efficient decomposition-based approach towards the control of asynchronous boolean networks	97 98
Five equivalent representations of a phylogenetic tree	99
Computing sign vector conditions for existence and uniqueness of equilibria of chemical reaction networks	100 101
Generic dimension of varieties arising in reaction network theory and 3D genome reconstruction	102 103
CAD adjacency computation using validated numerics	104

Computational Differential and Difference Algebra and its Applications

Classifications of prime ideals and simple modules of the Weyl algebra A ₁ in prime	
characteristic	105
Multiplicity of arc spaces of fat points	106

A new type of difference Gröbner bases and their applications	107
On the SchmidtKolchin conjecture	108
Specializations of normal forms in differential Galois theory	109
A classification of first order differential equations	111
Local integrability of polynomial vector fields	112

Algebraic Geometry from an Algorithmic Point of View

Jet schemes of Pfaffian ideals	113
Binary curves of genera four and five	114
Free resolutions and generalized Hamming weights of binary linear codes	115
Infinite free resolutions induced by Pommaret-like bases over ClementsLindström rings	117 120
Degroebnerization for data modelling problems	122
Generalizing Möller algorithm: a flexibility issue	124
On classification of algebraic curves and surfaces, using algorithmic methods	127
On the weighted proximity graph of the base locus of a plane Cremona map	130
Irreducible Supernatural Bundles on Grassmannians	132
An algorithmic approach to characterize Cohen-Macaulay binomial edge ideals of small graphs Sumsets and the Castelnuovo-Mumford regularity of projective monomial curves	133 135
Applying machine learning to the computation of Pommaret bases – A progress report	138

Effective Ideal Theory and Combinatorial Techniques in Commutative and Non-Commutative Rings and Their Applications

A breakthrough concerning the solution of a famous equation on finite fields and its	
impacts in the context of S-boxes in symmetric cryptography	142
A new view on the Rees algebra of a monomial plane curve parametrization	145
Marked bases for some quotient rings and applications - part I	147
Marked bases for some quotient rings and applications - part II	149
Vanishing ideals and evaluation codes	151
Letterplace: theory, technology, and implementation	153
On binomial complete intersections	154
Pinched Veronese algebras	156
Almost monomial subalgebras of MK[x] and their LAGBI bases	158
On simplification of comprehensive Gröbner systems	160
Term elimination sequence and removal of extraneous factors in two-polynomial	
systems	163
Testing tameness of a complex polynomial map via comprehensive Gröbner systems	166
Primary decomposition via algebraic local cohomology with tag variables	168
A Gröbner basis as a combination of congruence closures	171

Algebraic and Algorithmic Aspects of Differential and Integral Operators

Doctrine specific ur-algorithms	173
The most general theory of one-sided fractions	174
The Newton-Puiseux algorithm and effective algebraic series	175
New dimension polynomials and invariants of inversive difference-differential field extensions	176
systems A semi-decision procedure for proving operator statements	177 178
A differential algebraic approach of systems theory	179
Hypergeometric creative telescoping	180
Crossed homomorphisms and Cartier-Kostant-Milnor-Moore theorem for difference Hopf algebras	181
Approximate symmetries and conservation laws and their applications to PDEs	182
Difference-differential polynomials in SageMath	183
Towards an effective integro-differential elimination theory	185
Symbolic solution of differential equations	186
Rational solutions of first-order algebraic ordinary difference equations	187
On an interplay of computer algebra and ring theory	189
An abelian ambient category for behaviors in algebraic systems theory	190

Applications of Computer Algebra – ACA'2023 Warsaw, Poland | July 17 – 21, 2023 Session on "*Computer Algebra Modeling in Science and Engineering*"

The problem of many bodies with isotropically varying masses

Mukhtar Minglibayev 1,2 , Alexander Prokopenya 3 Aiken Kosherbayeva 1

[kosherbaevaayken@gmail.com]

¹ Al-Farabi Kazakh National University, Almaty, Kazakhstan

² Fesenkov Astrophysical Institute, Almaty, Kazakhstan

³ Warsaw University of Life Sciences, Warsaw, Poland

The number of confirmed exoplanetary systems is more than 4000 to date [1] and it is growing up every day. The parent star and exoplanets are non-stationary [2]. It means that the investigation of a multi-planetary system with variable masses is actual in celestial mechanics and astronomy. Due to the non-stationarity of celestial bodies, the mathematical model of their motion becomes more complicated.

In the present talk, we investigate the dynamic evolution of the system of many bodies with isotropically varying masses. We apply the method of canonical perturbation theory developed for solutions of such non-stationary problems in [3]. Doing quite cumbersome symbolic calculations with the computer algebra system Wolfram Mathematica [4], we calculated the perturbing function in the form of power series in small parameters (analogues of eccentricities and inclinations). Averaging the perturbing function over the mean longitudes and computing its derivatives with respect to the canonical variables, we derived the evolution equations describing the secular perturbations of the orbital elements in analytical form [5]. As an example, we have considered the K2-3 exoplanetary system (see [6]) and obtained numerical solutions of the evolutions.

Keywords: four body problem, variable mass, dynamic evolution, secular perturbations

Acknowledgments

This research is funded by the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. AP14869472)

References

[1] EXOPLANET EXPLORATION, *url:https://exoplanets.nasa.gov/*. Last update: May 11, 2023.

[2] T.B. OMAROV, Non-Stationary Dynamical Problems in Astronomy. *New-York: Nova Science Publ.Inc. P.260. ISBN:1-59033-331-4*, (2002).

