INFORMATION BULLETIN 10BC EPRS 46

Research articles of the International scientific conference **«Plant protection for ecological sustainability**

of agrobiocenoses»

21-24 April 2014, Kazakhstan

Edited by Kazbek Toleubayev

Almaty 2014

	X ₂ X 2 ··· 2 K., Toleubayev K. Biological parameters of honeycomb
123	and their residual effects on some natural enemies
	HENRE K. REhman A. Relative toxicity of insecticides used against
118	
115	and the set resis in France
	Malausa T. An everview of the recent applied biological control activites
111	the forests of Belarus and Georgia
	where L. Vovtka D., Goginashvili N. Current situation of bark beetle (<i>Ips</i>
107	the state where so the Komarov Botanical Institute
	arpova Yu., Varfolomeeva E. Use of the two populations of <i>Cryptolacinus</i>
104	treatments for whitefly control of tropical fruit plants in the botanical garden
	tk I., Varfolomeeva E. Nesidiocoris tenuis Reuter (Heteroptera, Miridae)
101	methods
	phytophages in an apple-tree orchard for the substantiation of pest management
	Ismailov V. Study of intra-and interspecific chemical communications of
	rnak I., Pachkin A., Pushnja M., Agasieva I., Niyazov O., Padalka S.,
1.6	management with use of natural enemies
i	netova A. Some ecological and behavioral aspects of <i>Plutella xylostella</i> and it's
205	butterfly in greenhouse
	tu A. The pathogenicity of entomopathogenic nematodes against the cabbaiye
92	the spruce forest of IIe-alatausky and Medeo national parks
	Panyushkina I. The historical role of Ips hauseri (Colcoptera: Curculionidae) in
	tamadiev N., Lynch A., O'Connor C., Sagitov A., Ashikbaev N.,
88	in Russia
8	in North-West and North Caucasus populations of Pyrenophora tritici-repentis
	nenko N., Mikhailova L., Kovalenko N., Baranova O. Frequency of Toxa gene
84	pesticide residues in the selected crops from Kazakhstan
	vicka B., Sagitov A., Kaczynski P., Toleubayev K., Abzeitova E. The levels of
80	suction trap
	vicka B., Konecki R. Monitoring of cereal aphids in northeastern Poland using a
75	kova H., Dzhuvinov V. Biological control of codling moth in Bulgaria
71	repentis) prevalent in the North Caucasus
	neva O., Volkova G. Study of wheat yellow leaf spot (Pyrenophora tritici-
67	 neonicotinoid group on non-target arthropods indicator species
	abayevà G., Temreshev I., Childebaev M. Action of pesticides from

16	Ziedan E., Farrag E. Management of brown spot disease on rice	
16	suitable pathosystem model	
	Zhusupova A., Omirbekova N., Zhunusbaeva Zh. Brachypodium distachyon as a	
16	Ichneumonidae) in Kazakhstan	
7	Zaviezo T., Toleubayev K., Malausa Th. Collection of Mastrus ridens (Hymenoptera:	
ñ	volkova v., vadykta v. Flytosanilary problems in the context of intensive cropping in	
7	in the stand glassinopers in Kazaklistan	
-	Lednev G. Field biological efficiency of <i>Beauveria bassiana</i> strains against	
	t spanov A., Levchenko M., Makarov E., Baimagambetov E., Duisembekov B.,	
14	lacewing (Chrysopa carnea Steph.) fed on different preys	
	Toleubayev K., Abzeitova E., Alpysbayeva K. Developmental peculiarities of green	
	mildew (<i>Plasmopara viticola</i>) in grapevine	
	Todirash V., Popa A. Development of spatio-temporal risk prediction model for downy	
	cyhalothrin for treatment against colorado potato beetle	
	Smagulova Sh., Slyamova N. Compatibility of Beauveria bassiana with lambda-	
14	biological pest control in Dzhungar Alatau	
	Identification of active species of entomopathogenic microorganisms engaged in	
	Slyamova N., Adilhankyzy A., Seitkali N., Uspanov A., Duisembekov B.	
1 8	whitefly and parasitoid encarsia in Georgia	
	Skhirtladze R., Rijamadze I. Host-parasite interaction between the greenhouse	
-	Sinyak E., Volkova G. Wheat stem rust in the south of Russia	
-	r neennd surupernus J. sp. urunet	

n for host-range .

Charles. (2011). ae). a potential Plant Protection

BRACHYPODIUM DISTACHYON AS A SUITABLE PATHOSYSTEM MODEL

Zhusupova A., Omirbekova N., Zhunusbaeva Zh.

Al-Farabi Kazakh National University, Almaty, Kazakhstan. aizhan.zhusupova(agmail.com

Cereals rusts (Puccinia spp.), caused by highly specialised *Basidiomycetes* in the order *Urchindes*, are among the most destructive plant diseases, responsible for recurrent episodes of catastrophic yield loss and economic hardship among grain-based agricultural societies for at least the past 300 years. Within this broad class of diseases, stem rust (causal organism *P. graminis* Pers. f. sp. tritici), stripe or yellow rust (causal organism *P. striticina*) of wheat (*Triticum aestivum*) are the most prominent in their historical relevance to agricultural productivity. While it is possible to mitigate lesses to these pathogens through the timely application of fungicides, it is not always efficient. Plus it should never be forgotten, that the food security is one of the major global issues. Today, global average wheat yields are about 2.5 t ha but an estimated 4.0 t ha will be needed to sustain the world in 2020 (Sears, 2006).

Most of the resistance genes discovered and deployed in defense against the wheat rusts are the so called major genes (also known as race-specific resistance genes), single loci conferring effective levels of resistance against specific physiologic races of the pathogen, generally throughout the life cycle of the host. It should be, however, noted that a race-specific resistance gene, though effective against some races of the pathogen, is by definition vulnerable to at least one other race (extant or potential) of the same pathogen, as are *combinations* of such genes.

Indeed, the long-term unreliability of the defense afforded by major genes is inherent, particularly given pathogen populations whose rates of genetic change far outpace that of modern cultivated wheat. To illustrate this fact, consider that of the approximately 70 identified major resistance genes to stripe rust, only 3 (*Yr5, Yr15,* and *Yr24/26*, each neither widely nor long-deployed) remain effective against all detected races of the pathogen in the United States (Chen, 2007).

The most promising long- term control strategy is to breed and deploy cultivars carrying durable adult plant resistance based on minor, slow-rusting genes with additive effects. Combining four to five slow-rusting resistance genes result in a high level of resistance, comparable to immunity. Traditional genetic and molecular mapping studies have demonstrated high genetic diversity for such minor genes in wheat germplasm and often resistance to brown and yellow rusts is under pleiotropic genetic control. Cloning and often resistance genes. It should be noted that having minor gene-based resistance resistance for these adapted parents (Singh, 2008).

Research to understand the genetics of host resistance-to pathogen in cereal grant