

Search Q 📮 Log in



Home > Mechanics of High-Contrast Elastic Solids > Conference paper

# Blur Effect in a Multiple Particle Inverse Problem for Fiber-Reinforced Composites

<u>V. Mityushev</u> <sup>⊡</sup>, <u>Zh. Zhunussova</u>, <u>K. Dosmagulova</u> & <u>H.</u>

<u>Akca</u>

Conference paper | First Online: 12 April 2023

13 Accesses

Part of the <u>Advanced Structured Materials</u> book series (STRUCTMAT, volume 187)

## Abstract

The Prony method of scattering data analysis is extended to an inverse problem for a fiberreinforced composite. Unidirectional fibers of shear moduli  $\mu_k$  (k = 1, 2, ..., n) are embedded in the host of shear modulus  $\mu$ . We consider antiplane strain of the fibrous composite when a section perpendicular to the axis of fibers is the unit disk which contains *n* non-overlapping inclusions. The contact between the components is supposed to be perfect. The main attention is paid to rigid

inclusions when  $\mu_k \gg \mu$ . Let the longitudinal displacement *u* be given on the unit circle. Other components of displacement vanish in the unit disk in the antiplane statement. The considered problem is written in terms of complex potentials and solved by a method of functional equations. In particular, the out-of-plane traction proportional to the normal derivative  $\frac{\partial u}{\partial \mathbf{n}}$  is found on the unit circle. This yields a constructive method to the symbolic approximation of the Dirichlet-to-Neumann operator for an arbitrary multiply connected circular domain. The method is applied to the inverse problem for non-overlapping equal disks whose centers  $a_k$  (k = 1, 2, ..., n) have to be determined. Let the displacement u and the traction  $\mu \frac{\partial u}{\partial \mathbf{n}}$  be given on the outer unit circle. We construct explicitly a polynomial  $P_n(z)$  whose complex roots coincide with the centers of inclusions  $a_k$ . This result can be considered as a solution to the special Prony problem. The considered examples demonstrate the effect of blurring for large *n* when disks in the near-boundary vicinity are properly determined. The location of the deeper disks is blurry and can be determined by the same equation  $P_n(z) = 0$  but solved with higher accuracy.

This is a preview of subscription content, <u>access via</u> <u>your institution</u>.

➤ Chapter

EUR 29.95

Price includes VAT (Kazakhstan)

- DOI: 10.1007/978-3-031-24141-3\_10
- Chapter length: 17 pages
- Instant PDF download
- Readable on all devices
- Own it forever
- Exclusive offer for individuals only
- Tax calculation will be finalised during checkout

|   |                | Buy Chapter |        |
|---|----------------|-------------|--------|
| > | eBook          | EUR         | 181.89 |
| > | Hardcover Book | EUR         | 219.99 |

Learn about institutional subscriptions

## References

- 1. Beck JV, Blackwell B, Charles JR (1985) Inverse heat conduction, 1st edn. Wiley Inc, New York
- Alifanov OM, Artyukhin EA, Rumyantsev SV (1995) Extreme methods for solving ill-posed problems with applications to inverse heat transfer problems. Begell House Inc., New York
- Cherkaeva E, Tripp AC (1996) Inverse conductivity problem for inaccurate measurements. Inverse Probl 12:869–883
- 4. Kuchment P (2013) The radon transform and medical imaging, CBMS-NSF regional conference series in applied mathematics

- Necat Ozisik M (2000) Inverse heat transfer: fundamentals and applications. CRC Press, Boca Raton
- Hetmaniok E, Slota D, Witula R, Zielonka A (2015) An analytical method for solving the twophase inverse Stefan problem. Bull Polish Acad Sci Tech Sci 63:583–590
- 7. Hetmaniok E, Slota D, Zielonka A (2015) Using the swarm intelligence algorithms in solution of the two-dimensional inverse Stefan problem. Comput Math Appl 69(4):347–361
- Colton D, Kress R (2013) Inverse acoustic and electromagnetic scattering theory. Springer, Berlin
- **9.** Isakov V (2017) Inverse problems for partial differential equations. Springer, Berlin
- **10.** Kress R (2012) Inverse problems and conformal mapping. Complex Var Elliptic Equ 57:301–316
- 11. Ammari H, Garnier J, Kang H, Lim M, Yu S
   (2014) Generalized polarization tensors for shape description. Numer Math 126:199–224
- **12.** Munnier A, Ramdani K (2018) Calderón cavities inverse problem as a shape-from-moments

problem. Quart Appl Math 76:407-435

- 13. Czapla R (2016) Basic sums as parameters characterizing, Silesian. J Pure Appl Math 6:85– 96
- 14. Mityushev VV, Rogosin SV (2000) Constructive methods for linear and nonlinear boundary value problems for analytic functions. Chapman & Hall/CRC, Boca Raton
- 15. Gluzman S, Mityushev V, Nawalaniec W (2018) Computational analysis of structured media. Elsevier, Amsterdam
- 16. Carriere R, Moses RL (1992) High resolution radar target modeling using a modified Prony estimator. IEEE Trans Antennas Propag 40:13– 18
- 17. Ebenfelt P, Gustafsson B, Khavinson D, Putinar M (eds) (2005) Quadrature domains and their applications. Advances and applications, operator theory. Birkhäuser Verlag, Basel
- Muskhelishvili NI (1966) Some basic problems of the mathematical theory of elasticity, 5th edn. (Russian) Nauka, Moscow

- 19. Bergman DJ (1976) Calculation of bounds for some average bulk properties of composite materials. Phys Rev B 14:4304
- 20. Drygaś P, Gluzman S, Mityushev V, Nawalaniec W (2020) Applied analysis of composite media. Analytical and computational results for materials scientists and engineers. Elsevier, Amsterdam
- 21. Rylko N (2015) Edge effects for heat flux in fibrous composites. Comput Math Appl 70:2283–2291
- 22. Rylko N (2015) Fractal local fields in random composites. Comput Math Appl 69:247–254
- 23. Rylko N, Wojnar R (2015) Resurgence edge effects in composites: fortuity and geometry.
  In: Mladenov IM, Hadzhilazova M, Kovalchuk V (eds) Geometry, integrability, mechanics and quantization. Avangard Prima, Sofia, pp 342–349
- 24. Drygaś P, Mityushev V (2009) Effective conductivity of arrays of unidirectional cylinders with interfacial resistance, Q. J Mech Appl Math 62:235–262

- 25. McPhedran R, Shadrivov I, Kuhlmey B et al (2011) Metamaterials and metaoptics. NPG Asia Mater 3:100–108
- 26. Craster RV, Kaplunov J (2013) Dynamic localization phenomena in elasticity. Acoustics and electromagnetism. Springer, Vienna
- 27. Palmer SJ, Xiao X, Pazos-Perez N et al (2019) Extraordinarily transparent compact metallic metamaterials. Nat Commun 10:2118
- **28.** Cadogan CC (1971) The Möbius function and connected graphs. J Combin Th B 11:193–200
- 29. Kaplunov J, Prikazchikov DA, Sergushova O (2016) Multi-parametric analysis of the lowest natural frequencies of strongly inhomogeneous elastic rods. J Sound Vib 366:264–276
- **30.** Kaplunov J, Prikazchikov DA, Prikazchikova LA, Sergushova O (2019) The lowest vibration spectra of multi-component structures with contrast material properties. J Sound Vib 445:132–147
- 31. Kaplunov J, Prikazchikov DA, Sergushova O(2017) Lowest vibration modes of strongly inhomogeneous elastic structures. In:

Altenbach H, Goldstein R, Murashkin E (eds) Mechanics for materials and technologies. Advanced structured materials. Springer, Cham, pp 265–277

## Acknowledgements

This research, by V. Mityushev, Zh. Zhunussova and K. Dosmagulova, is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP08856381).

## Author information

Authors and Affiliations

## Faculty of Computer Science and

### **Telecommunications, Cracow University of**

## Technology, Kraków, Poland

V. Mityushev

## **Institute of Mathematics and Mathematical**

## Modeling, Almaty, Kazakhstan

V. Mityushev, Zh. Zhunussova & K. Dosmagulova

## Al-Farabi Kazakh National University, Almaty,

#### Kazakhstan

Zh. Zhunussova & K. Dosmagulova

## Abu-Dhabi University, Adu-Dhabi, UAE

H. Akca

Corresponding author

Correspondence to V. Mityushev.

Editor information

**Editors and Affiliations** 

#### Fakultät für Maschinenbau, Otto-von-Guericke-

Universität, Magdeburg, Sachsen-Anhalt,

#### Germany

Holm Altenbach

#### School of Computing and Mathematics, Keele

#### University, Keele, Staffordshire, UK

Danila Prikazchikov

Department of Engineering Enzo Ferrari,

#### University of Modena and Reggio Emilia,

#### Modena, Italy

Andrea Nobili

## Rights and permissions

**Reprints and Permissions** 

## Copyright information

© 2023 The Author(s), under exclusive license to

Springer Nature Switzerland AG

## About this paper

#### Cite this paper

Mityushev, V., Zhunussova, Z., Dosmagulova, K., Akca, H. (2023). Blur Effect in a Multiple Particle Inverse Problem for Fiber-Reinforced Composites. In: Altenbach, H., Prikazchikov, D., Nobili, A. (eds) Mechanics of High-Contrast Elastic Solids. Advanced Structured Materials, vol 187. Springer, Cham. https://doi.org/10.1007/978-3-031-

24141-3\_10

## <u>.RIS</u> <u>↓</u> <u>.ENW</u> <u>↓</u> <u>.BIB</u> <u>↓</u>

#### DOI

https://doi.org/10.1007/978-3-031-24141-3\_10

| Published     | Publisher Name | Print ISBN |
|---------------|----------------|------------|
| 12 April 2023 | Springer, Cham | 978-3-031- |
|               |                | 24140-6    |
| Online ISBN   | eBook Packages |            |
| 978-3-031-    | Physics and    |            |

24141-3 <u>Astronomy</u>

Physics and

Astronomy (R0)

Not logged in - 176.64.9.162 Not affiliated **SPRINGER NATURE** 

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.