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Abstract—The paper deals with electromagnetic problem of 
the radiation generated due to the excitation of a periodic 
interface of an artificial material with dispersive constitutive 
parameters by an electron beam moving over this interface. It is 
demonstrated that the possibility of excitation of eigen waves of 
periodic surface has the principal influence on the radiation 
characteristics, which show anomalously high levels of the 
secondary filed. It is also shown that an accurate solution to the 
spectral problem, allowing numerical modeling of eigen 
regimes, provides the profound description and physical 
explanation of the complicated electromagnetic phenomenon. 

Keywords—diffraction radiation, dispersive materials, eigen 
fields, eigen values, eigen waves, leaky waves, metamaterials, 
multifold Riemann surface, periodic interface, Smith-Purcell 
radiation, spectral problems, unusual true eigen waves, Vavilov-
Cherenkov radiation 

I. INTRODUCTION 
The paper investigates the nature of the effect of 

diffraction radiation arising from the uniform motion of a 
plane, density-modulated electron beam near the periodic 
boundary of certain artificial material with dispersive 
constitutive parameters – metamaterial, Fig. 1. The effective 
permittivity and permeability depend on the modulation 
frequency of the electron beam and can take negative values. 

The process of diffraction radiation is modeled by the 
boundary value problem of diffraction of the electromagnetic 
field of the electron flow over the periodic boundary of the 
metamaterial (approximation of a given current). The solution 
of this boundary value problem is constructed using the 
regularization method [1], [2]. This method, in contrast to the 
previously known ones, allows to perform the analytical 
continuation of the solution of the diffraction problem into the 
domain of complex parameter values, in particular, complex 

modulation frequencies of the electron beam. This approach 
enables the unambiguous association of the resonant behavior 
of diffraction radiation, appearing with a change in the 
modulation frequency, with the excitation of natural 
oscillations (waves) of the periodic boundary of the 
metamaterial, as an open resonant structure [2]–[6]. 

The corresponding sophisticated numerical algorithms and 
programs served as an efficient and reliable tool for extensive 
numerical simulation that has illustrated analytical results and 
made up rather exhaustive and picturesque demonstration of 
complicated physical phenomena. 

II. FORMULATION OF THE PROBLEMS 
The works [1]–[3] contain several fundamental statements 

related to the formulation, construction of the solution, and 
physical analysis of the results of the solutions to the boundary 
value problem 
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The corresponding geometry is presented in Fig. 1. 

Relaying on the results of these papers, the efficient 
numerical-analytical tool for investigation of these problems 
had been constructed. 

Above and further ( ) ( ), ,xU g k H g k=  and 
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are the nonzero components of the total H -polarized field 
( ) ( ){ }, , ,g k g kE H , { },g y z= , 0x∂ = , formed by the 

system “boundary ,ε μΣ  - electron beam”; 
{ }int R : 0g h yΩ = ∈ − < < , { }A R : 0g y= ∈ > , 

{ }B R :g y h= ∈ < − , { }{ }2R= , R : 0g y z z l= ∈ < < , and 

G  is the closure of the domain G . ( )0 ,V g k  is xH -
component of electron beam field; ( )nW k+  and ( )nW k−  are 
the functions determining efficiency of diffraction radiation at 
spatial harmonics ( ),nU g k+  and ( ),nU g k− , which are 
outgoing upward (into vacuum half-space) and downward 
(into dispersive medium half-space) from the boundary, 
respectively; 2 2

n nk+Γ = − Φ , Re 0n
+Γ ≥ , Im 0n

+Γ ≥  and 

( ) ( )2 2
n nk k kε μ−Γ = − Φ , ( )1 Re 0nkε − −Γ ≥ , Im 0n

−Γ ≥  are 
vertical propagation constants of these harmonics; functions 

( ) ( )1 2 expn nz l i zϕ −= Φ , 0, 1, 2,...n = ± ±  form a complete (in 
space ( )2L 0, l ) orthonormal system in the cross section of 
Floquet channel R , ( ) 2n n lζ πΦ = + , 02 l kζ π β= Φ =  
(with this value of 0Φ , 0Re 0+Γ =  and 0Im 0+Γ > , ( )0 ,V g k  
is an inhomogeneous plane wave component); k  and 
0 1β< <  are modulation frequency and relative beam 
velocity; 2k π λ=  is a frequency parameter, which is set by 
modulation frequency; λ  is wavelength of radiation field in 
free space, l  and h  are period and height of the boundary 

( ) ( ){ }, : , 0x g y f z h f zε μΣ = = − ≤ ≤ . The more detailed 
description of the problem (1) is given in [1], [2]. The choice 

of the branches of two-valued functions ( ),n k ζ±Γ  was made 
and justified ibid, and relied on the so-called partial radiation 
conditions [1], [2], [8], [9], requiring that fields ( ),U g k±  
should not contain harmonics coming (carrying energy) from 
y = ±∞  to the boundary ,

x
ε μΣ . 

Applying this tool, 

• We have studied the principal energy characteristics 
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of diffraction radiation (Vavilov-Cherenkov radiation 
[7] or Smith-Purcell radiation [8]), generated by a 
plane density-modulated electron beam flying over a 
periodically corrugated boundary ,

x
ε μΣ  (see Fig. 1) 

separating vacuum ( 1.0ε μ≡ ≡ ) and a dispersive 
plasma-like medium with material parameters 

( ) 2 21k k kεε = − , ( ) 2 21k k kμμ = − ,  [1]–[6]; or 

( ) ( ) ( )2 2 2 2 21 , 1 ; 0 1.k k k k k k kε με μ θ θ= − = − − < <  
as in [9], [10]. 

• We have introduced the basic classification of the 
electromagnetic waves [3]–[6] associated with non-
trivial solutions of the problem (1) for ( )0 , 0V g k ≡ . 

• We have found out and proved that the characteristics 
of diffraction radiation are significantly affected by the 
“synchronism” of the electron beam with one of the 
unusual regular surface waves of the media interface, 
that is 
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The fulfillment of this condition is necessary for the 
existence of the corresponding eigenwaves of the 
boundary ( )y f z= , it is written in the form 

( )Im 0n nζ+ ±Γ >  and ( ) 0kε < . 

From these relations we obtain: 

 

 
Fig. 1.  Periodic interface: upper half-space is vacuum, lower half-space is
dispersive material 
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We study the complex eigen waves of the interface of 
various dispersive artificial materials and, as we have proved 
in numerous electromagnetic problems, their decisive 
influence on radiation characteristics. 

When ( )0 , 0V g k ≡  (see 1(b)) and k  is fixed, we obtain 
from (1) a homogeneous (spectral) problem with nontrivial 
solutions ( ) ( ) ( ), exp 2 ,s sH g i z l H yς ς π ς=  existing for no 
more than a countable set of eigenvalues { } Fς ς= ∈  ( F  is a 
multi-folded Riemann surface, see [1]) and determining fields 
of the eigenwaves 

( ) ( ) ( ) ( ){ }, exp 2 , , ,U g i z l E y H yς ς π ς ς=
  

 of the periodic 
media interface. To solve the problem, it is necessary to find 
out complex valued roots of the equation: 

 ( )det 0I H ς+ =    (5) 

The operator function ( )H ς  has the form described in 
details in [1] and [2], and depends analytically on ς  on the 
Riemann surface F . It has to be noted that for the finding 
complex valued roots of (5) rather complicated numerical 
routines had been developed. These algorithms are based on 
the adaptive conjunction of linear and quadratic interpolations 
of direct and inverse functions, Traub's interpolation, and 
modified Newton scheme [11], [12]. As initial approximation 
we have used the values of eigen number for plane boundary: 
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For numerical reconstruction of the electromagnetic field, 
density patterns in the vicinity of the interface of the 
corresponding eigen vectors have been found numerically 
using inverse iterations. The situation gets more complicated 
as we have to consider solutions on multifold Riemann surface 
and to watch the change of the sheet’s number. 

For our purposes, that is to establish correspondence 
between excitation of eigen waves and resonances in radiation 
field and to investigate the regularities of such 
electromagnetic scenario, it is necessary to consider the eigen 
wave problem in the first (physical) sheet of Riemann surface 
and to focus the study on the investigation of  

Unusual true eigen waves: for the media without losses (
( )Im 0ε = , ( )Im 0μ = ); ( )Im 0ς = ; 

and  
Something leaky waves, ( )Im 0ς ≠ . 

In order to meet boundary and radiation conditions in the 
presence of artificial material having negative or even double 
negative constitutive parameters ( )Re 0ε <  and/or 

( )Re 0μ < , it is necessary to choose the branches of the 
function ( ),n k ς−Γ , ( )Im 0ς = ; 0k >  according the rules: 

1. ( )Re 0ε > , ( )Re 0μ >  → ( )( )Re , 0n k ς−Γ ≥ ,

( )( )Im , 0n k ς−Γ ≥ ; 

2. ( )Re 0ε < , ( )Re 0μ >  (or ( )Re 0ε > , ( )Re 0μ < ) → 

( )( )Re , 0n k ς−Γ ≥ , ( )( )Im , 0n k ς−Γ ≥ ; 0ς >  

3. ( )Re 0ε < , ( )Re 0μ <  → ( )( )Re , 0n k ς−Γ ≤ ,

( )( )Im , 0n k ς−Γ ≥ ; 0ς >  

The scheme illustrating the conditions formulated above 
and supplied with detailed legend is presented in Fig. 2. 

The cuts are defined by the equality 
( )( ) ( )( )2 22 Re Im 0k nεμ ς ς− + + = ; functions ( ),n k ς−Γ  

are even ones: ( ) ( ), ,n nk kς ς− −Γ − = Γ . 

The treatment of the electromagnetic problem for the 
system “periodic interface of artificial material - electron 
beam” and the establishment of the one-to-one connection of 
the excitation of eigen surface waves with anomalously high 
levels of electromagnetic radiation is also restricted by the 
properties of the electron beam, in particular its velocity 
(parameter β ) and the limits for the existence of propagating 
(transferring energy) waves in the upper free space. In [2]–[6], 
the special attention had been payed to the possible 
combinations of forbidden zones, zones of synchronism, and 
their correlation with the regimes of propagation of various 
modes. 

The investigation of the influence of the frequency 
parameter k  variation on radiation characteristics may begin 
from the study of regularities of a plane boundary. The over 
mapping of the chart for values nς ±  of a plane boundary and 
chart of the limits of various regimes defined by the values of 

{ } ( )G , : , 0n nk kβ β± ±= Γ =  in the plane ( k , β ) of 
propagating waves in upper and low half space allows to find 
out the points k , where 2 nkl πβ ζ ±= . 

Moving along the frequency parameter k , the line 
kζ β=  crosses various curves of eigen waves with different 

numbers and propagation regimes, that is accompanied by the 
change in the eigen field configuration. The frequency points 
of radiation bursts are rather close to the crossing points’ 
projection onto the axis k  on the abovementioned charts. 

The study of the electromagnetic scenario with the 
corrugation depth variation h  at a fixed frequency or varying 
parameter k  presently lacks required regularities and is in 
progress. Generally, the increase of corrugation value h  
essentially influences the Q-factor and radiation 
characteristics. The investigation of the electromagnetic 
system “periodic interface - electron beam” with the depth of 
a periodic interface grooves changing and the corresponding 
influence on radiation characteristics involves much more 
challenging problems. In this situation, the study and 
consideration of the cuts for the function ( ),n k ς−Γ , which are 



depicted schematically in Fig. 2, acquires the decisive 
importance. Even the apparatus of catastrophe theory and 
consideration of Morse critical points [11], [13] may 
contribute to the understanding of this electromagnetic 
scenario. 

To demonstrate one of the electromagnetic situations 
arising in the study of these aspects of the problem, we present 
several results for the plasma-like interface ( ) 2 21k k kεε = −

, ( ) 2 21k k kμμ = − . To simplify a little the scenario, we have 
chosen 0.8kε = , 0.09kμ = , and 0.7β = . Here, k kε μ> ,

( ) 0kε < , and partial components ( ),n nU g ζ+ ± , ( ),n nU g ζ− ±  

of the true eigen waves ( ), nU g ζ ±  transfer the energy in 
opposite along the axis z  directions. We call these waves  
“unusual true eigen waves” in contrast to the usual true eigen 
waves ( ), nU g ζ ± , whose region of existence is limited by the 

frequencies k kε>  for which ( ) 0kε > , see [4]. So, for the 
chosen parameters, the unusual true eigen wave may exist 

within the frequency interval ( ) 1
2 20.0894 k k k kε μ μ ε

−

= +

0.5 0.5657k kε< < = , but our interests are limited by the 
region of propagation of 1G+

− , and there are no propagating 
waves inside the plasma-like material. Therefore, in this 
example, we study only the Smith-Purcell radiation, see 
Fig. 3. 

The introduction of the periodic corrugation adds the 
periodicity of the wavelength scale to the problem and, 
naturally, brings another challenge to the study of artificial 
and specially designed smart materials. The grooves depth 
influence for conventional materials had been studied in 
numerous works, e.g. see [1], [11] and references there. In the 
present problem, the periodic dependence of diffraction 
radiation characteristics of a grating on the depth of grooves 
had not been observed. 

The challenging contour plot of ( )1 ,W k h const+
− =  is 

presented in Fig. 4(a). In this figure, for the sake of clarity, 
the values of 0W +  are limited by the level ( )0 , 10.0W k h+ = . 
The first the most notable thing in this figure is the pronounce 
resonance around the frequency 0.4703k =  (it is marked by 
the white dashed line, which is found out for the plane surface 
in Fig. 3, 0.7β = ), that is around the frequency of possible 
excitation of the principal unusual true eigen wave of the 
interface. The Q factor of this resonance is essentially 
changing as the depth h  increase. The bunch of resonance 
lines spring out from the vicinity of the accumulation point 

sing 0.5 0.5657k kε= ≈  (the more detailed illustration with 
smaller sampling of parameters ,k h  is presented in Fig. 4(b). 
For the plasma-like medium, we have only one accumulation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. The choice of cuts and branches for the function ( ),n k ς−Γ ,

( )Im 0ε = : (a) ( )Re 0ε > , ( )Re 0μ > ;  (b) ( )Re 0ε < , ( )Re 0μ >  or

( )Re 0ε > , ( )Re 0μ < ;  (c) ( )Re 0ε < , ( )Re 0μ <  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Boundaries Gn
±  in the domains of k  and 2klβ πζ=  variation, 

separating regions where harmonics ( ),nU g k±  propagate without 

attenuation. Intersection of the curve of sβ with 0.7β =  defines the 
frequency point 0.4703k = , which corresponds to the unusual true eigen 
wave of plane boundary, that serves as the first approximation for studying 
eigen waves when the corrugation depth increase 
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point. For the media with constitutive parameters like the 
mentioned above ( ) 2 21 ,k k kεε = −  

( ) ( )2 2 21k k k kμμ θ= − − , we have two accumulation points, 
which are influencing the radiation characteristics. Fig. 4 
allows to note that the resonance’s peaks of radiation 
characteristics demonstrate rather different behavior in the 
domain of the frequency close to the first unusual true eigen 
wave ( 0.45 0.48k≤ ≤ ) and in the vicinity of singk  when 
approaching from the left. This bunch of resonances has 
considerably higher Q factor and each of the resonance lines 
in the plane ,k h  “moves on” in a different way. 

Naturally, to find out the explanation or, at least, more 
profound picture of the behavior of the system “electron beam 
- periodic dispersive interface”, we move to the consideration 
of the eigen wave problem. In Fig. 5, where the curves of 

( )0 hζ ± are presented, we see that while moving along one 
curve with h  increasing, we are staying in the same eigen 
wave, having the same configuration of eigen fields. 

More complicated situation appears in the study of 
( )0 hζ ±  while k  is approaching sing 0.5657k ≈ . The picture 

of eigen propagation constants mζ
±

 with grooves variation 
has completely different topology for different frequency 
parameter and for different type of eigen waves if compared 
with the scheme detailed in [4]. 

 

III. CONCLUSION 
The theory of electromagnetic wave scattering 

(homogeneous and inhomogeneous) with the appearance of 
new technologies brings new challenges to the researchers. 
One of such challenges is the investigation of new artificial 
materials with complex dispersive parameters. This paper 
confirms that for an investigation of such electromagnetic 
objects, the spectral theory is rather efficient and promising 
apparatus. 
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( )1 hζ +  (solid line), ( )1 hζ − (dashed line), and field patterns of ( ),xH g k
component calculated for 0.706h =  and 1.1152h =  (marked with arrows)
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