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Explicit Model for Surface Waves on an
Elastic Half-Space Coated by a Thin
Vertically Inhomogeneous Layer

Ali Mubaraki, Danila Prikazchikov, and Askar Kudaibergenov

Abstract The study is focussed on surface waves propagating in an isotropic elastic
half-space coated with a thin, vertically inhomogeneous layer, subject to action of
a prescribed normal surface stress. The effective boundary conditions modelling an
inhomogeneous coating are derived in the long-wave limit, generalising the those for
a thin homogeneous isotropic layer. A singularly perturbed hyperbolic equation on
the interface is then deduced, governing surface wave propagation. The effect of the
perturbative pseudo-differential operator including the structure of the quasi-front
emerging for a point impulse loading, is analysed.

Keywords Surface waves · Thin coating · Inhomogeneous

1 Introduction

Thin films and coatings have numerous applications in engineering and biological
sciences, see e.g. [1–6], to name a few. In addition, a number of technological
developments are associated with related multi-layered structures, see e.g. [7] and
references therein.

Often the effect of a thin coating on the half-space is modelled by means of the
so-called effective boundary conditions, starting from the original work [8], and still
popular, see e.g. [9, 10] and references therein.
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The method of effective boundary conditions was also implemented for analysis
of surface wave field in a coated half-space, within the framework of hyperbolic-
elliptic models for the Rayleigh wave induced by a prescribed surface load, see
[11, 12] for more detail. As a result, the contribution of surface wave to the overall
dynamic response in the long wave limit is described by elliptic equations over the
interior associated with decay away from the surface, and a singularly perturbed
wave equation on the boundary governing surface wave propagation.

In this paper, we extend these results for a thin vertically inhomogeneous
coating layer, with density and material parameters being depth-dependent. First,
we derive the effective boundary conditions by employing a standard long wave
asymptotic procedure, well established for thin structures, see e.g. [13, 14]. Then, we
follow a slow-time perturbation scheme proposed in [11], with the small parameter
corresponding to the proximity of the wave phase velocity to that of the Rayleigh
wave. As a result, we obtain a wave equation for the longitudinal elastic potential,
which is singularly perturbed by a pseudo-differential operator. The amplitude of
the perturbation depends on the combination of the material parameters of both
coating and the substrate. As observed earlier in [11] for the case of a homogeneous
coating layer, the sign of this coefficient plays a crucial role, distinguishing between
the case of a local maximum/minimum of the phase speed at the Rayleigh wave
speed in the long wave limit. Finally, we illustrate the developments by considering
a model example of a concentrated vertical impulse loading applied on the surface
of a two-layered coating.

2 Basic Equations

Consider an elastic layer of thickness h, occupying the domain 0 ≤ x3 ≤ h, coating
a homogeneous half-space x3 ≥ h, see Fig. 1.

The layer is assumed to be vertically inhomogeneous, with the constitutive
relations given by

σij = λc

(
u1,1 + u2,2 + u3,3

)
δij + μc

(
ui,j + uj,i

)
, (1)

where σij , i, j = 1, 2, 3, are the Cauchy stress tensor components, ui are displace-
ment components, λc = λ (x3) and μc = μ (x3) are the Lamé elastic moduli, and

Fig. 1 An inhomogeneous
layer by a coated half-space
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δij is the Kronecker delta. Here and below a comma denotes differentiation with
respect to the corresponding variable. The governing equations of motion in the 3D
elasticity are taken as (see e.g. [15])

σi1,1 + σi2,2 + σi3,3 = ρc ui,tt , (2)

where ρc = ρ (x3) is volume mass density. The longitudinal and transverse wave
speeds are introduced as

c1 (x3) =
√

λc + 2μc

ρc

, and c2 (x3) =
√

μc

ρc

, (3)

respectively. The boundary conditions at the surface x3 = 0 are taken in the form

σ3m = 0, and σ33 = −P, m = 1, 2, (4)

where P = P(x1, x2, t) is a prescribed vertical load, with the continuity conditions
at the interface assumed as

ui = vi at x3 = h, (5)

where vi = vi(x1, x2, t), i = 1, 2, 3 are displacements on the surface of the
substrate.

3 Effective Boundary Conditions

First, we derive the effective boundary conditions, accounting for the effect of the
thin coating layer. Below we implement the direct asymptotic integration of the
equations in elasticity, see e.g. [11]. A small parameter ε, associated with the long-
wave limit, is specified as

ε = h

L
� 1, (6)

where L is the typical wave length. We introduce the scaling

ξm = xm

L
, η = x3

h
, τ = t ch

L
, (7)

with

u∗
i = ui

L
, v∗

i = vi

L
, σ ∗

mn = σmn

μh

, σ ∗
3i = σ3i

ε μh

, p∗ = P

ε μh

, (8)
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where ch = c2 (h), μh = μc (h), ρh = ρc (h), m, n = 1, 2 and all quantities with
the asterisk are assumed to be of the same asymptotic order. Then the equation of
motion (2) and the constitutive relations (1) can be written explicitly as

σ ∗
mm,ξm

+ σ ∗
mn,ξn

+ σ ∗
m3,η = ρ∗ u∗

m,ττ ,

σ ∗
33,η + ε

(
σ ∗

3m,ξm
+ σ ∗

3n,ξn

)
= ρ∗ u∗

3,ττ ,
(9)

and

σ ∗
mn = κ2

2

(
u∗

m,ξn
+ u∗

n,ξm

)
,

ε σ ∗
mm = (

κ2
1 − 2κ2

2

)
u∗

3,η + ε
(
κ2

1 u∗
m,ξm

+ (
κ2

1 − 2κ2
2

)
u∗

n,ξn

)
,

ε2 σ ∗
m3 = κ2

2

(
u∗

m,η + ε u∗
3,ξm

)
,

ε2 σ ∗
33 = κ2

1 u∗
3,η + ε (κ2

1 − 2κ2
2 )
(
u∗

m,ξm
+ u∗

n,ξn

)
,

(10)

where ρ∗(η) = ρc/ρh, κ2
1 = (λc + 2μc) /μh, κ2

2 = μc/μh and κ2
c = κ2

1/κ
2
2,

with 1 ≤ m �= n ≤ 2. On substituting u∗
3,η from (10)4 into (10)2, we get

σ ∗
mm = 4κ2

2

(
1 − κ−2

c

)
u∗

m,ξm
+
(

1 − 2κ−2
c

) (
2κ2

2 u∗
n,ξn

+ ε σ ∗
33

)
. (11)

The conditions (4) and (5) become

σ ∗
3m = 0 , σ ∗

33 = −p∗ at η = 0,

and u∗
i = v∗

i , at η = 1.
(12)

Next, expand the displacements and stresses as asymptotic series

⎛

⎜⎜⎜⎜
⎝

u∗
i

σ ∗
mm

σ ∗
mn

σ ∗
3i

⎞

⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜
⎝

u
(0)
i

σ
(0)
mm

σ
(0)
mn

σ
(0)
3i

⎞

⎟⎟⎟⎟
⎠

+ ε

⎛

⎜⎜⎜⎜
⎝

u
(1)
i

σ
(1)
mm

σ
(1)
mn

σ
(1)
3i

⎞

⎟⎟⎟⎟
⎠

+ . . . . (13)

Then, at leading order, we have

σ
(0)
mm,ξm

+ σ
(0)
mn,ξn

+ σ
(0)
m3,η = ρ∗ u

(0)
m,ττ ,

σ
(0)
33,η = ρ∗ u

(0)
3,ττ ,

σ
(0)
mn = κ2

2

(
u

(0)
m,ξn

+ u
(0)
n,ξm

)
,

σ
(0)
mm = 4κ2

2

(
1 − κ−2

c

)
u

(0)
m,ξm

+ 2κ2
2

(
1 − 2κ−2

c

)
u

(0)
n,ξn

,

u
(0)
i,η = 0,

(14)
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subject to

σ
(0)
3m = 0 , σ

(0)
33 = −p∗ at η = 0,

and u
(0)
i = v∗

i , at η = 1.
(15)

Equations (14)5 with boundary conditions (15)2 imply

u
(0)
i = v∗

i , i = 1, 2, 3. (16)

Therefore, from (14)2 and (15)1 we have

σ
(0)
33 = v∗

3,ττ

∫ η

0
ρ∗ (z) dz − p∗. (17)

Hence, (14)1, (14)4, (16) and (15)1 yield

σ
(0)
3m = v∗

m,ττ

(∫ η

0
ρ∗ (z) dz

)
− 4v∗

m,ξmξm

(∫ η

0
κ2

2 (z)
(

1 − κ−2
c (z)

)
dz

)

− v∗
m,ξnξn

(∫ η

0
κ2

2 (z) dz

)
− v∗

n,ξmξn

(∫ η

0
κ2

2 (z)
(

3 − 4κ−2
c (z)

)
dz

)
.

(18)

Finally, the effective boundary conditions on the interface x3 = h may be
expressed in terms of the original variables as

σ3m = h
(
ρ̃ um,tt − γ̃ um,mm − μ̃ um,nn − (γ̃ − μ̃) un,mn

)
,

σ33 = hρ̃ u3,t t − P,
(19)

where γ (x3) = 4μc (x3)
(
1 − κ−2

c (x3)
)

and a tilde over a quantity denotes its mean
value over the thickness of the layer

f̃ = 1

h

∫ h

0
f (x3)dx3.

Note that in case of a homogeneous isotropic layer the derived effective boundary
conditions (19) reduce to the well-known ones first obtained in [8], see also [11], cf.
(3.17).

4 Asymptotic Model for Surface Wave

With the effective boundary conditions (19) derived, an asymptotic model for
surface wave may now be constructed, generalising the previous results in [11]
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to a coating with vertically inhomogeneous material properties. We arrive at
the following boundary value problem for a homogeneous isotropic substrate,
containing the conventional Navier equations of motion

(λ + μ)grad div u + μΔu = ρu,t t , (20)

subject to (x3 = h)

μ
(
u1,3 + u3,1

) = h
(
ρ̃ u1,t t − γ̃ u1,11 − μ̃ u1,22 − (γ̃ − μ̃) u2,12

)
,

μ
(
u2,3 + u3,2

) = h
(
ρ̃ u2,t t − γ̃ u2,22 − μ̃ u2,11 − (γ̃ − μ̃) u1,12

)
,

λ(u1,1 + u2,2) + (λ + 2μ)u3,3 = hρ̃ u3,t t − P.

(21)

In above u = (u1, u2, u3) is the displacement vector, Δ is a 3D Laplace operator in
spatial coordinates, λ and μ are the constant Lamé parameters of the substrate, and
ρ is its volume mass density.

Following the procedure in [11], the Radon integral transform is applied to
(20) and (21), resulting in a reduction to a 2D formulation. Then, a slow-time
perturbation scheme may be established, revealing the free Rayleigh wave at leading
order, with the perturbed wave equation following from the analysis of correction
terms. The resulting explicit formulation for surface wave field is expressed in
terms of for the longitudinal Lamé potential φ, and two non-zero components of
the vector shear potential, ψ1 and ψ2, with the displacement field expressed using
the Helmholtz theorem

u = grad φ + curl ψ, (22)

with ψ = (−ψ2, ψ1, 0), for more details see [12]. The behaviour over the interior
of the half-space is governed by pseudo-static elliptic equations

φ,33 + α2
R Δ2φ = 0, ψm,33 + β2

R Δ2ψm = 0, m = 1, 2, (23)

where Δ2 = ∂11 + ∂22 is the 2D Laplacian in x1 and x2 and

αR =
√

1 − c2
R

c2
1

, βR =
√

1 − c2
R

c2
2

, c2
1 = λ + 2μ

ρ
, c2

2 = μ

ρ
,

with c1, c2, and cR conventionally denoting the longitudinal, transverse, and
Rayleigh wave speeds. The boundary condition for (23)1 is given by a singularly
perturbed wave equation

Δ2φ − 1

c2
R

φ,tt − bh
√−Δ2 (Δ2θ) = −1 + β2

R

2μB
P, (24)
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with

B = 1 − α2
R

αR

βR + 1 − β2
R

βR

αR − 1 + β4
R,

and the constant b inheriting properties of both coating and substrate

b = 1 − β2
R

2μB

(
ρ̃c2

R (αR + βR) − γ̃ βR

)
. (25)

It can be easily verified that in case of a homogeneous isotropic coating layer the
latter reduces to earlier results (cf. (4.23) in [11]). The differential relations between
the potentials on the boundary x3 = h are

φ,3 = −1 + β2
R

2

(
ψ1,1 + ψ2,2

)
, φ,m = 2

1 + β2
R

ψm,3, m = 1, 2. (26)

5 Illustrative Example

In order to illustrate the derived formulation, let us restrict ourselves to a the plane-
strain problem for a concentrated impact force P(x1, t) = P0δ(x1)δ(t), acting on
the surface of a two-layered coating, with the material and geometrical parameters of
the layers denoted with subscripts 1 and 2. The wave equation (24) may be rewritten
in the form

θ,ss − 1

c2
R

θ,τRτR
− hL sgn b

√−∂ss

(
θ,ss

) = −δ(s)δ(τR), (27)

where s = x1/L, τR = tcR/L are the dimensionless coordinates, and

θ = − 4μB

(1 + β2
R)cRP0

φ
∣∣
x2=h1+h2

, hL = (h1 + h2)|b|
L

� 1, (28)

with the constant b defined according to (25) with

ρ̃ = ρ1h1 + ρ2h2

h1 + h2
, γ̃ = 4μ1h1(1 − κ−2

c1 ) + 4μ2h2(1 − κ−2
c2 )

h1 + h2
. (29)

Equation (27) may be solved by asymptotic matching, see [11], resulting in

θ = 1

2

[
1 − sgn (b)

(
1

2
+ sgn (χ)

(
C(χ) + S(χ)

)− C2(χ) − S2(χ)

)]
, (30)
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Fig. 2 Quasi-front type behaviour for a two-layered coating: (a) rubber-nylon coating on
polysterene substrate; (b) nylon-polysterene coating on a rubber substrate

where χ = (s−τR)sgn b/
√

2hLτR and C(x) and S(x) denote the Fresnel integrals.
Illustrations of the solution (30) is presented below in Fig. 2, showing dependence
of θ on s, with tR = 1, h1 = 0.1, h2 = 0.2. The material properties are taken
as follows: for rubber the Young’s modulus E = 0.1 GPa, volume mass density
ρ = 930 kg/m3, Poisson ratio ν = 0.49, for nylon E = 2.95 GPa, ρ = 1130 kg/m3,
ν = 0.39, for polystyrene E = 3.1 GPa, ρ = 1040 kg/m3, ν = 0.35. As may
be seen from the graphs, there are possibilities of receding and advancing quasi-
fronts, as noticed previously in [11], associated with the local min/max of the
phase velocity at the Rayleigh wave speed in the long-wave limit. Moreover, the
velocity of oscillations could also differ on the material parameters. In case of the
coating involving soft rubber layer (with contrast in stiffness between rubber and
polystyrene exceeding 30), the oscillations of the quasi-front are rapid, whereas in
case of a soft rubber substrate, the oscillations are relatively slow.

6 Concluding Remarks

The methodology of hyperbolic-elliptic models for surface wave field has been
extended to the case of a half-space coated by a vertically inhomogeneous layer.
Further developments may include analysis of other types of boundary conditions
[16], near-resonant regimes of moving loads [17], anisotropy [18], as well as a more
general treatment of a vertically inhomogeneous half-space, see [19].
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17. Erbaş, B., Kaplunov, J., Prikazchikov, D.A., Şahin, O.: The near-resonant regimes of a moving
load in a three-dimensional problem for a coated elastic half-space. Math. Mech. Solids 22(1),
89–100 (2017). https://doi.org/10.1177/1081286514555451

18. Nobili, A., Prikazchikov, D.A.: Explicit formulation for the Rayleigh wave field induced by
surface stresses in an orthorhombic half-plane. Europ. J. Mech. A/Solids 70, 86–94 (2018).
https://doi.org/10.1016/j.euromechsol.2018.01.012

19. Argatov, I., Iantchenko, A.: Rayleigh surface waves in functionally graded materials—long-
wave limit. Quart. J. Mech. Appl. Math. 72(2) 197–211 (2019). https://doi.org/10.1093/qjmam/
hbz002


