УДК 519.86

ФОРМИРОВАНИЕ ИСТОЧНИКОВ РОСТА ФИРМЫ С ПОМОЩЬЮ ПРОИЗВОДСТВЕННОЙ ФУНКЦИИ КОББА – ДУГЛАСА С УЧТЕТОМ НТП

Велямов Т.Т. 1 , Алпысбай Г.Е. 2

Казахский национальный университет имени аль- Фараби Алматы, Республика Казахстан

Аннотация: В статье с помощью построения производственной функции и формирования ее управляющих маржинальных параметров разработаны рекомендации для: - минимизации издержек производства в краткосрочном периоде;

- формирования оптимального сочетания факторов производства, обеспечивающие минимальные издержки производства;
- прогнозирования размера роста производства и формирования оптимального сочетания факторов производства, обеспечивающие достижения прогнозного уровня роста.

Ключевые слова: производственная функция, научно-технический прогресс, модель, объект, предельный продукт, прибыль.

Производство - процесс создания товаров путем преобразования ресурсов в готовую продукцию. Теория производства изучает проблему соотношения между массой потребляемых производственных ресурсов и объемом выпущенной продукции. Иными словами, речь идет о достижении максимальных результатов при минимальных затратах производственных ресурсов посредством, в том числе, их взаимозаменяемости. Производственная функция — функция, отображающая зависимость между максимальным объемом производимого продукта и физическим объемом факторов производства при данном уровне технических знаний. Она должна максимально отражать реальный производственный процесс. Поскольку большинство зависимостей в производстве имеет вероятностный характер, теснота изучаемой связи должна быть высокой.

Сформируем исходные данные для построения производственной функции с учетом HTП для следующих данных, реально функционирующего предприятия.

t (время)	Y(объем продукции), млн.тг.	К (капитал), млн.тг.	L (труд) дес.ед.
1	65126	440	159
2	65221	490	162
3	66872	520	177
4	66975	527	133
5	71235	544	200
6	71817	590	238
7	72923	600	260
8	74015	648	271
9	75293	668	290
10	76104	675	310

І. Используя метод наименьших квадратов, построим производственную функцию Кобба - Дугласа с учетом научно-технического прогресса

$$Y = A * K^{\alpha} * L^{\beta} * e^{-\lambda t}.$$

где, Y- выпуск, A- коэффициент приведения, K — капитал, L- труд, α , β — коэффицетты эластичности по капиаталу и труду соответвтеннно.

Прологарифмируем функцию для приведения ее к линейной форме

$$\ln \cdot Y = \ln A + \alpha * \ln K + \beta * \ln L - \lambda t$$

и введем следующие обозначения

$$\ln \cdot Y = y''$$
; $\ln A = a_0$; $\ln K = x_1$; $\ln L = x_2$; $\alpha = a_1$; $\beta = a_2$; $\lambda = a_3$; $t = x_3$; $y'' = a_0 + a_1 * x_1 + a_2 * x_2 - a_3 * x_3$

Согласно методу наименьших квадратов (МНК), имеем

$$F = \sum [(a_0 + a_1 * x_1 + a_2 * x_2 - a_3 * x_3) - y]^2 \rightarrow min$$

Вычислим частные производные от неизвестных и приравняем их нулю:

$$\begin{cases} \frac{\partial f}{\partial a_0} = 2[(a_0 + a_1 * x_1 + a_2 * x_2 - a_3 * x_3) - y] * 1 = 0 \\ \frac{\partial f}{\partial a_1} = 2[(a_0 + a_1 * x_1 + a_2 * x_2 - a_3 * x_3) - y] * x_1 = 0 \\ \frac{\partial f}{\partial a_2} = 2[(a_0 + a_1 * x_1 + a_2 * x_2 - a_3 * x_3) - y] * x_2 = 0 \\ \frac{\partial f}{\partial a_3} = 2[(a_0 + a_1 * x_1 + a_2 * x_2 - a_3 * x_3) - y] * x_3 = 0 \end{cases}$$

$$\begin{cases} \Sigma y = n * a_0 + a_{1^*} \Sigma x_1 - a_{3^*} \Sigma x_3 \\ \sum y x_1 = a_0 \Sigma x_1 + a_1 \Sigma x_1^2 + a_1 \Sigma x_1 x_2 - a_3 \Sigma x_1 x_3 \\ \sum y x_2 = a_0 \Sigma x_2 + a_1 \Sigma x_1 x_2 + a_1 \Sigma x_2^2 - a_3 \Sigma x_2 x_3 \\ \sum y x_3 = a_0 \Sigma x_3 + a_3 \Sigma x_1 x_3 + a_1 \Sigma x_3 x_2 - a_1 \Sigma x_3^2 \end{cases}$$

Решая, полученную систему нормальных уравнений, методом Гаусса находим численные значения неизвестных:

A	3030,13	
α	0,722538	
β	1,088524	
λ	0,078	
a ₀	8,01636074	
a ₁	-0,3249851	
a_2	0,08482263	
a ₃	0,063458	

Подставляя полученные значения в производственную функцию Кобба-Дугласа с учетом н.т.п. получим:

$$Y = 3030,13 * K^{0,722538} * L^{1,088524} * e^{-0,078*t}$$

Вычисляем основные параметры производственной функции:

$$\begin{split} MP_L &= \frac{\partial y}{\partial L} = \beta * \frac{Y}{L} = 4,327. \\ MP_K &= \frac{\partial y}{\partial K} = \alpha * \frac{Y}{K} = 1.108. \\ MRTS &= -\frac{\alpha}{\beta} * \frac{L}{K} = -0.26. \end{split}$$

Далее дадим управленческую интерпретацию вычисленным параметрам производственного процесса, описываемого построенной функцией:

- 1. MP_L =4,327- предельная производительность труда, которая показывает то, что каждый следующий принятый в компанию работник может увеличить объем выпуска на 4,327 единицы.
- $2.\ MP_K=1.108$ предельная эффективность капитала которая показывает то, что следующая единица привлеченного инвестиционного капитала в компанию может увеличить объем выпуска на $1.108\ \text{млн.д.e.}$
- 3. MRTS = -0.26 предельная норма замещения факторов производства, которая показывает сколько что потребуется 0,26 денежных единиц(капитала), в случае выбытия одной единицы труда, чтобы объем выпуска сохранить на прежнем уровне.
- $4.~\alpha=0.722538~$ означает, что при увеличении капитала на 1% объем выпуска возрастет на 0.722538~ процента.
- 5. $\beta = 1,088524$ означает, что при увеличении труда на 1% объем выпуска возрастет на 1,088524 процента.
- 6. $\alpha + \beta = 1,811062$ означает, что имеет место возрастающая отдача от масштаба, т.е. одна денежная единица, вложенная, в производство дает отдачу, равную 1,811062 денежным единицам.
- **II.** Определим оптимальную комбинацию факторов производства, которая обеспечивает выпуск продукции на максимальном уровне при минимальных издержках.

Исходные данные для решения задачи: оплата за труд $\omega=5$ денежных единиц; ставка рефинансирования r=21.1%; величина оборотного капитала z=1370.

Используя в качестве целевой функции построенную производственную функцию, найдем оптимальное сочетание факторов производства, максимизирующую целевую функцию.

$$Y = 3030,13 * K^{0,722538} * L^{1,088524} * e^{-0,078*t} \rightarrow max$$
 $w*L + r*K=z$, $L,K \ge 0$.

Введем обозначения $L=x_2$; $K=x_1$; $r=\gamma_1$; $w=\gamma_2$;

Далее, составим функцию Лагранжа.

$$f(x_1; x_2; \lambda) = x_1^{\alpha} * x_2^{\beta} + \lambda(z - \gamma_1 x_1 - \gamma_2 x_2).$$

Определим частные производные по неизвестным и получим систему уравнений

$$\begin{cases} \frac{\partial f}{\partial x_1} = \alpha * x_1^{\alpha - 1} * x^{\beta} - \lambda \gamma_1 = 0 \\ \frac{\partial f}{\partial x_2} = \beta * x_1^{\alpha} * x^{\beta - 1} - \lambda \gamma_2 = 0 \\ \frac{\partial f}{\partial \lambda} = z - x_1 \gamma_1 - x_2 \gamma_2 = 0 \end{cases}$$

Из данной системы уравнений находим, что $K = \frac{z}{r(1 + \frac{\beta}{\alpha})}$, $L = \frac{z}{w(1 + \frac{\alpha}{\beta})}$, при которых целевая

функция достигает своего максимального значения. Оптимальные значение факторов производства, при которых целевая функция достигает максимального значения, для приведенной статистики, соответственно равны: K=451,33997 и L=679,95647.

На основе информации полученной из департамента стратегического развития, о том, что в следующем году спрос на продукцию на рынке возрастет на 2%, разработаем рекомендации для обеспечения прироста объема продукции на 2%.

Двухпроцентный прирост объема выпуска можно достигнуть за счет труда, если его увеличить на

$$\frac{2\%}{1.088524} = 1,83735\%.$$

Аналогичный прирост объема выпуска можно получить за счет фактора К, если его увеличить на

$$\frac{2\%}{0,722538} = 2,76802\%.$$

С помощью построенной производственной функции можно определит величину потенциального роста объема производства на следующий производственный цикл. Для этого, сначала необходимо определить уровень потенциального роста каждого фактора производство в отдельности.

Спрогнозируем значения факторов производства на следующий период. Трендовую модель для фактора К, как функцию от времени, представим в следующем виде:

$$K = a_0 + a_1 t$$

Методом наименьших квадратов определим, $a_0=428$, $a_1=25.855$ и значение $K=712\,$ для t=11.

Аналогично, для L имеем $L = b_0 + b_1 t$, при этом $b_0 = 115.2$, $b_1 = 19.055$, L = 325.

Определим значение выпуска на t + 1 = 11 период:

$$Y_{11} = 3030.13 * 712^{0.722538} * 325^{1.088524} * e^{-0.857} = 79321$$

$$\Delta = Y^{11} - Y^{10} = 79321 - 76104 = 3217$$

Выпуск увеличился по сравнению с предыдущим периодом $Y_{10} = 76104$ на 4%

Вывод. На основе построенной производственной функции Кобба — Дугласа сформирована рекомендация для оценки эффективности функционирования предприятия, позволяющие оптимизировать издержки производства и на этой основе максимизировать выпуск продукции. Также, в процессе моделирования производственного процесса установлено, что производственные резервы предприятия достаточны для удовлетворения спроса на свою продукцию на рынке, за счет формирования оптимальной комбинации факторов производства в краткосрочном периоде, т.е. без привлечения финансовых ресурсов в основной капитал.

Литература.

- 1. Кошевой О. С. Разработка управленческих решений: учеб.пособие. Пенза: Изд-во ПГУ, 2005.
- 2. Варфоломеев В. И.Воробьев С. Н. Принятие управленческих решений. М.:Кудиц-образ, 2001.
- 3. Терелянский П. В. Системы поддержки принятия решений. Опыт проектирования. Волгоград :ВолгГТУ, 2009.
- 4. Ларичев О. И.,Петровский А. В. Системы поддержки принятия решений. Современное состояние и перспективы их развития // Итоги науки и техники. Сер. Техническая кибернетика.Т.21. М.: ВИНИТИ, 1987. С. 131–164.
- 5. И.И. Елисеева. Эконометрика. «Финансы и статистика», -М.: 2002.
- 6. Айвазян С.А., Мхитарян В.С. Практикум по прикладной статистике и эконометрике. М.: ЮНИТИ, 2001.