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Abstract. Method for solving of a boundary value problem of ordinary differential
equations with boundary conditions at phase and integral constraints is supposed.
The base of the method is an immersion principle based on the general solution
of the first order Fredholm integral equation which allows to reduce the initial
boundary value problem to the special problem of the optimal equation.
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Problem statement. We consider the following boundary value problem

ẋ = A(t)x+B(t)f(x, t) + µ(t), t ∈ I = [t0, t1] (1)

with boundary conditions

(x(t0)) = x0, x(t1) = x1) ∈ S ⊂ R2n (2)

at phase constraints

x(t) ∈ G(t) : G(t) = {x ∈ Rn|γ(t) ≤ F (x, t) ≤ δ(t), t ∈ I}, (3)

and integral constraints
gj(x) ≤ cj, j = 1,m1; (4)

gj(x) = cj, j = m1 + 1,m2; (5)

gj(x) =

t1∫
t0

f0j(x(t), t)dt, l; j = 1,m2; (6)

Here A(t), B(t) are prescribed matrices with piecewise continuous elements of n× n,
n×m order, respectively, µ(t), t ∈ I is given n - dimensional vector-function with piecewise
continuous elements, m - dimensional vector-function f(x, t) is defined and continuous in
the variables (x, t) = Rn × I and satisfies the following conditions:

|f(x, t)− f(y, t)| ≤ l|x− y|, ∀(x, t), (y, t) ∈ Rn × I, l = const > 0,

|f(x, t)| ≤ c0|x|+ c1(t), c0 = const ≥ 0, c1(t) ∈ L1(I, R
1),

S is the convex closed set. Function F (x, t) = (F1(x, t), . . . , Fr(x, t)), t ∈ I is r - dimensional
vector-function which is continuous in arguments, γ(t) = (γ1(t), . . . , γr(t)),
δ(t) = (δ1(t), . . . , δr(t)), t ∈ I are prescribed continuous functions.
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The values cj, j = 1,m2 are prescribed constants, f0j(x, t), j = 1,m2 are given
continuous functions by set of arguments satisfying to the conditions

|f0j(x, t)− f0j(y, t)| ≤ lj|x− y|, ∀(x, t), (y, t) ∈ Rn × I, j = 1,m2;

|f0j(x, t)| ≤ c0j|x|+ c1j(t), c0j = const, c1j ∈ L1(I, R
1), j = 1,m2.

Note, that: 1) if A(t) ≡ 0, m = n, B(t) = In, then the equation (1) can be written
as

ẋ = f(x, t) + µ(t) = f(x, t), t ∈ I. (7)

Therefore, the results obtained below remain valid for the equation (7) at conditions
(2)-(6);

2) if f(x, t) = x + µ1(t) (or f(x, t) = C(t)x + µ1(t)), then the equation (1) can be
written in form

ẋ = A(t)x+B(t)x+B(t)µ1(t) + µ(t) = A(t)x+ µ(t), t ∈ I, (8)

where A(t) = A(t) + B(t), µ(t) = B(t)µ1(t) + µ(t). It follows that the equation (8) is a
partial case of equation (1).

The following problems are stated:
Problem 1. To find necessary and sufficient conditions for the existence of solutions

of boundary value problem (1)-(6).
Problem 2. To construct solution of boundary value problem (1)-(6).
As it follows of problem statement necessary to prove the existence of the pair (x0, x1)∈S

such that the solution of (1) proceeded from the point x0 at the time t0 passes through
the point x1 at the time t1, along with the solution of the system (1) for each time the
phase constraint is satisfied (3), and integrals (6) satisfy (4), (5). In particular, the set S
is defined by the relation

S = {(x0, x1) ∈ R2n|Hj(x0, x1) ≤ 0, j = 1, p;

< aj, x0 > + < bj, x1 > −dj = 0, j = p+ 1, s},

where Hj(x0, x1), j=1, p are convex functions in the variables (x0, x1), x0=x(t0), x1=x(t1),
aj ∈ Rn, bj ∈ Rn, dj ∈ R1, j = p+ 1, s are given vectors and the numbers, < ·, · > is
scalar product.

In many cases, in practice the process under study is described by the equation of the
form (1) in the phase space of the system defined by the phase constraint of the form (3).
Outside this domain the process is described by completely different equations or process
under investigation does not exist. In particular, such phenomena take place in the research
of dynamics of the nuclear and chemical reactors (outside the domain (3) reactors do not
exist.) Integral constraints of the form (4) characterize the total load experienced by the
elements and nodes in the system (for example, total overload cosmonauts), which should
not exceed the specified values and equations of the form (5) correspond to the total limits
for the system (for example, fuel consumption is equal to a predetermined value).

The essence of the method consists in the fact that at the first stage of research by
transformation and introducing a fictitious control the initial problem is immersed in
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the control problem. Further, the existence of solutions of the original problem and the
construction of its solution is carried out by solving the problem of optimal control of a
special kind. With this approach, the necessary and sufficient conditions for the existence
of solution of boundary value problem (1)-(6) can be obtained from the condition to
achieve the lower bound of the functional on a given set, and the solution of the original
boundary problem are the limit points of minimizing sequences.

We assume that f0(x, t) = (f01(x, t), . . . , f0m2(x, t)), where

f0(x, t) = C(t)x+ f0(x, t), t ∈ I, (9)

C(t), t ∈ I is known matrix of m2×n order with piecewise continuous elements, f 0(x, t) =
(f 01(x, t), . . . , f 0m(x, t)). If j-th row of the matrix C(t) is zero, then f0j(x, t) = f 0j(x, t).
Thus, without loss of generality, we can assume the function f0(x, t) is defined by (9). By
introducing additional variables d = (d1, . . . , dm1) ∈ Rm1 , d ≥ 0, the relations (4), (6) can
be represented as

gj(x) =

t1∫
t0

f0j(x(t), t)dt = cj − dj, j = 1,m1,

where
d ∈ Γ = {d ∈ Rm1 | d ≥ 0}.

Let the vector c = (c1, . . . , cm2), where cj = cj − dj, j = 1,m1, cj = cj, j = m1 + 1,m2.
We introduce vector-function η(t) = (η1(t), . . . , ηm2(t)), t ∈ I, where

η(t) =

t∫
t0

f0(x(τ), τ)dτ, t ∈ [t0, t1].

Then
η̇ = f0(x(t), t) = C(t)x+ f 0(x, t), t ∈ I

η(t0) = 0, η(t1) = c, d ∈ Γ.

Now the initial boundary value problem (1)-(6) can be written as

ξ̇ = A1(t)ξ +B1(t)f(Pξ, t) +B2f 0(Pξ, t) +B3µ(t), t ∈ I, (10)

ξ(t0) = ξ0 = (x0, Om2), ξ(t1) = ξ1 = (x1, c), (11)

(x0, x1) ∈ S, d ∈ Γ, P ξ(t) ∈ G(t), t ∈ I, (12)

where
ξ(t) =

(
x(t)
η(t)

)
, A1(t) =

(
A(t) On,m2

C(t) Om2,m2

)
, B1(t) =

(
B(t)
Om2,m

)
,

B2 =

(
In

Om2,n

)
, B3 =

(
On,m2

Im2

)
, P =

(
In, On,m2

)
, P ξ = x,

Oj,k is matrix of j×k order with zero elements, Oq ∈ Rq is vector q×1 with zero elements,
ξ = (ξ1, . . . , ξn, ξn+1, . . . , ξn+m2).
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The basis of the proposed method of solving problems 1 and 2 are the following
theorems about the properties of solution of the first order Fredholm integral equation:

Ku =

t1∫
t0

K(t0, t)u(t)dt = a, (13)

where K(t0, t) = ∥Kij(t0, t)∥, i = 1, n, j = 1,m is known matrix of n × m order with
piecewise continuous elements in t at fixed t0, u(·) ∈ L2[I, R

m] is source function, I =
[t0, t1], a ∈ Rn is given n-dimensional vector.

Theorem 1 it Integral equation (13) for any fixed a ∈ Rn has a solution if and only
if the matrix

C(t0, t1) =

t1∫
t0

K(t0, t)K
∗(t0, t)dt, (14)

n× n order is positive definited, where (*) is a sign of transposition.
Theorem 2 Let the matrix C(t0, t1) is positive definited. Then the general solution of

the integral equation (13) has the form

u(t) = K∗(t0, t)C
−1(t0, t1)a+ v(t)−K∗(t0, t)C

−1(t0, t1)

t1∫
t0

K(t0, t)v(t)dt, t ∈ I, (15)

where v(·) ∈ L2(I, R
m) is an arbitrary function, a ∈ Rn is an arbitrary vector.

Proofs of Theorems 1 and 2 are given in [2, 3]. Application of Theorems 1 and 2 to
solve the controllability and optimal control problem are presented in [4-7].

Along with the differential equation (10) with boundary conditions (11) we consider
the linear control system

ẏ = A1(t)y +B1(t)w1(t) +B2(t)w2(t) + µ2(t), t ∈ I, (16)

y(t0) = ξ0 = (x0, Om2), y(t1) = ξ1 = (x1, c), (17)

(x0, x1) ∈ S, d ∈ Γ, w1(·) ∈ L2(I, R
m), w2(·) ∈ L2(I, R

m2), (18)

where µ2(t) = B3µ(t), t ∈ I.
Let the matrix B(t) = (B1(t), B2(t)) of (n + m2) × (m2 + m) order, and the vector-

function w(t)=

(
w1(t)
w2(t)

)
∈L2(I, R

m+m2). It is easy to see that the control w(·)∈L2(I, R
m+m2)

which transfers the trajectory of system (16) from any initial state ξ0 to any desired state
ξ1 is a solution of the integral equation

t1∫
t0

Φ(t0, t)B(t)w(t)dt = a, (19)
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where Φ(t, τ) = θ(t)θ−1(τ), θ(t) is the fundamental matrix of solutions of the linear
homogeneous system ω̇ = A1(t)ω, vector

a = a(ξ0, ξ1) = Φ(t0, t1)[ξ1 − Φ(t1, t0)ξ0]−
t1∫

t0

Φ(t0, t)µ2(t)dt.

As follows from (13), (19), the matrix K(t0, t) = (t0, t)B(t).
Further, we consider an immersion principle for boundary value problem (1)-(6) and

prove several theorems about solution of the optimization problem.
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