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Abstract. Some generalizations of Landau-Lifschitz equation are integrable,
admit physically interesting exact solutions and these integrable equations are
solvable by the inverse scattering method [1]. Investigating of the integrable
spin equations in (1+1)-, (2+1)-dimensions are topical both from the mathe-
matical and physical points of view [2]-[5]. Integrable equations admit different
kinds of physically interesting as domain wall solutions [2]. We consider an
integrable spin equation [3]. There is a corresponding Lax representation.
Moreover the equation allows an infinite number of integrals of motion. We
construct a surface corresponding to domain wall solution of the equation.
Further, we investigate some geometrical features of the surface.
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We use the geometric approach to one of the generalized Landau-Lifschitz equation

3]
S: = (S x S, +uS),, (la)
u, = —(S,(S; X Sy)), (1b)
where S is spin vector, S? + S35 + 52 = 1, X is vector product, u is a scalar function. The
equation allows an infinite number of motion integrals and has several exact solutions.

One of them is the domain wall solution. We identify the spin vector S and vector r,
according to [3| the geometric approach

S=r, )
Then (1a), (1b) take the form
Iy = (T X Tyy 4+ ury), (3a)
Uy = — (g, (Tag X Tay)). (3b)

If we integrate (3a) by z, then it takes the form
Iy =Ty X Iy + Ury.

Taking into account Gauss-Weingarten equation and E = r2 = 1 the system is defined as

MF M
ﬁ)rm — ﬁry + F%Q\/Kn,

r, = (u+



Uy = \/X<LP%2 - MF%I):

where
2 _ 2FF, — EFE, — FE,
11 — 2A )
2 EG, - F'E,
12 2A )

A = EG — F?. Equation (1a), (1b) is integrable equation and has soliton solutions.
Here we present the domain wall solution of the equation (1a), (1b) [3],

" B expiby
Sy t) = coshla(z — bt — xg)]’ (4a)
S3(z,y,t) = —tanhla(x — bt — xo)], (4b)

where a, b are real constants.
Theorem. Domain wall solution (4a)-(4b) of the spin system (1a), (1b) can be
represented as components of the vector r,, where

r = écos(by)arctg(sh[a(a: — bt — x0)]) + c1, (5a)
ry = 2sin(by)arctg(sh[a(:c — bt — x0)]) + ¢, (5b)
ry = —éln|ch[a(w — bt — x)]| + 3, (5¢)

where ¢y, ca,c3 are constants. Solution of the form (5a)-(5¢) corresponds to the surface
with the following coefficients of the first and second fundamental forms
2+ sh*[a(x — bt — x)]

R G ey e ER (6a)

2

G = b—CLTCtQQ(Sh[CL([B —bt —x)]), L=0, (60)

a2

barctg®(shla(x — bt — xo)]).

M=0, N=- 6c
VAa2chla(z — bt — xq)] (6e)
Proof. From (2) we have
(S1,52,83) = (T12, T2z, 32, (7)
ie.

Tz = S1, Tox = S2, T3, = 3. (8)

Hence
Ty = /S1d37 + C1, (9a)
Ty = /Szdx + Ca, (90)

2



r3 = /Sgdx + c3, (9¢)

where ¢y, ¢9, c3 are constants of integration. Note
+ _ o ot
S —Sl+ZSQ—rx,

then
rt=ri+iry = /S+dm +ct, (10)

where ¢ is constant of integration. Substituting (4b) to the equation (9¢) we have
ry = /S3dx +oe3=— /[tanh[a(m — bt — xp)|dx + c3 =
1
= ——In|ch[a(x — bt — x0)]| + c3, (11)
a
where c¢3 is constant. Thus
1
r3 = ——In|chla(x — bt — x¢)]| + c3, (12)
a
Substituting (4a) to (10) we have

r+:7“1+ir2:/5+dx+c+=

expiby
= d +
/ coshla(z — bt — x9)] BEe

1
rt = —cos(by)arctg(sh[a(m — bt — l’o)]) + 1+
a

then

+i(%sm(by)arctg(sh[a(x — bt — x0)]) + ¢2),

i.e. we have obtained

1
r = acos(by)arctg(sh[a(x — bt —x0)]) + 1,

ro = %sin(by)arctg(sh[a(x — bt — x0)]) + ca. (13)

Thus, (12), (13) give us (5a)-(5c¢).
We proceed to prove the second part of the theorem. From (12) and (13) we have

cos(by) sin(by)
o R , 14
" 1+ sh?la(x — bt — x0)] " 1+ sh2[a(x — bt — )] (14a)
1 b .
T = s (o — bt — )] Ty = —Eszn(by)arctg(sh[a(:c — bt — xp)]), (14b)



b
Toy = Ecos(by)arctg(sh[a(x — bt —xp)]), 713y =0. (14c)

Then we can calculate
2 2 2 2
E_rx_rlx+r2r+r3m_

_ cos*(by) N
(14 sh?[a(x — bt — x¢)])?
N sin?(by) 1 _ 2+ sh?[a(z — bt — x)] )
(14 sh?[a(z — bt — x0)])?2  ch?[a(x — bt — x9)] (1 + sh?[a(x — bt — x0)])?
Similarly, using (13) and (14c) we obtain
b2
G=r,=r],+75+13, = ﬁarcth(sh[a(x — bt — x9))]). (16)
F = (ry,ry) = rigriy + rogTay + 3573y = 0. (17)

Formulas (15) - (17) give us the first three equations (6a) - (6¢). Using (15) - (17) we
compute

b*(2 + sh?[a(x — bt — x¢)])

— j— 2 —
AN=FEG—-F a?(1 + sh?[a(x — bt — x0)])?

arctg®(shla(z — bt — p)]).

We calculate the components of the vector n

r, X T, r, X T, 1 ( )
n= = = ni, N2, N3),
o, VA VAT
1 bcos(b tg(sh — bt —
Pt = — (rautsy — Taaray) — cos(by)arctg(shla(x xo)])' (18)
VA VAachla(x — bt — x0)]
Similarly, for the components
1 bsin(b tg(sh — bt —
o = (s — i) = SO AGaA Z 0 wl) g,
VA VAachla(x — bt — x0)]
1 barctg(shla(x — bt — x¢)])
ng = ——=(Tr1aTay — rogT1y) = : 19b
’ ﬂ( 1272y ~ T2:T1y) VAa(1 + sh2[a(z — bt — 20)]) (196)
Now, from (14a), (14b) we have
S _ 2acos(by)shla(x — bt — wo)]chla(z — bt — zo)] (20a)

(1 + sh?a(x — bt — x0)])? ’

_ 2asin(by)shla(x — bt — xo)]chla(x — bt — x¢)]
Mer = (1 + sh?[a(x — bt — x0)])? ' (200
ashla(x — bt — xp)]
ch?[a(z — bt — xg)]

Thus, using (18), (19a), (19b), (20a) - (20c) we can compute

(20c)

T3z =

L= (Il, rzm) = M1 T1gz T N2T2ze + N335z
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It is followed
L=0. (21)

Similarly, we calculate other coefficients of the second fundamental form
M =0, (22)

' Ylarctg®(shla(z — bt — xo)]). (23)
VAa2chla(z — bt — xq)]
The formulas (21) - (23) give us the last three equations (6a) - (6¢). Finally, Theorem is
proved.

Based on the results of work [3], where Gauss-Codazzi-Mainardi equation considered
in multidimensional space, we have studied generalized Landau-Lifschitz equation and
built the surface corresponding to domain wall solution. Thus, this work fully reveals the
meaning of the geometric approach [3] in (2+1) - dimensions.
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