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Abstract. Some generalizations of Landau-Lifschitz equation are integrable,
admit physically interesting exact solutions and these integrable equations are
solvable by the inverse scattering method [1]. Investigating of the integrable
spin equations in (1+1)-, (2+1)-dimensions are topical both from the mathe-
matical and physical points of view [2]-[5]. Integrable equations admit different
kinds of physically interesting as domain wall solutions [2]. We consider an
integrable spin equation [3]. There is a corresponding Lax representation.
Moreover the equation allows an infinite number of integrals of motion. We
construct a surface corresponding to domain wall solution of the equation.
Further, we investigate some geometrical features of the surface.
Keywords: surface, domain wall solution, integrable equation, integrals of
motion, nonlinear equation.

We use the geometric approach to one of the generalized Landau-Lifschitz equation
[3]

St = (S× Sy + uS)x, (1a)

ux = −(S, (Sx × Sy)), (1b)

where S is spin vector, S2
1 + S2

2 + S2
3 = 1, × is vector product, u is a scalar function. The

equation allows an infinite number of motion integrals and has several exact solutions.
One of them is the domain wall solution. We identify the spin vector S and vector rx
according to [3] the geometric approach

S ≡ rx (2)

Then (1a), (1b) take the form

rxt = (rx × rxy + urx)x (3a)

ux = −(rx, (rxx × rxy)). (3b)

If we integrate (3a) by x, then it takes the form

rt = rx × rxy + urx.

Taking into account Gauss-Weingarten equation and E = r2x = 1 the system is defined as

rt = (u+
MF√
Λ
)rx −

M√
Λ
ry + Γ2

12

√
Λn,

1



ux =
√
Λ(LΓ2

12 −MΓ2
11),

where
Γ2
11 =

2EFx − EEt − FEx

2Λ
,

Γ2
12 =

EGx − FEt

2Λ
,

Λ = EG− F 2. Equation (1a), (1b) is integrable equation and has soliton solutions.
Here we present the domain wall solution of the equation (1a), (1b) [3],

S+(x, y, t) =
expiby

cosh[a(x− bt− x0)]
, (4a)

S3(x, y, t) = −tanh[a(x− bt− x0)], (4b)

where a, b are real constants.
T h e o r em . Domain wall solution (4a)-(4b) of the spin system (1a), (1b) can be

represented as components of the vector rx, where

r1 =
1

a
cos(by)arctg(sh[a(x− bt− x0)]) + c1, (5a)

r2 =
1

a
sin(by)arctg(sh[a(x− bt− x0)]) + c2, (5b)

r3 = −1

a
ln|ch[a(x− bt− x0)]|+ c3, (5c)

where c1, c2, c3 are constants. Solution of the form (5a)-(5c) corresponds to the surface
with the following coefficients of the first and second fundamental forms

E =
2 + sh2[a(x− bt− x0)]

(1 + sh2[a(x− bt− x0)])2
, F = 0, (6a)

G =
b2

a2
arctg2(sh[a(x− bt− x0)]), L = 0, (6b)

M = 0, N = −b3arctg2(sh[a(x− bt− x0)])√
Λa2ch[a(x− bt− x0)]

. (6c)

P r o o f . From (2) we have

(S1, S2, S3) = (r1x, r2x, r3x), (7)

i.e.
r1x = S1, r2x = S2, r3x = S3. (8)

Hence
r1 =

∫
S1dx+ c1, (9a)

r2 =

∫
S2dx+ c2, (9b)
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r3 =

∫
S3dx+ c3, (9c)

where c1, c2, c3 are constants of integration. Note

S+ = S1 + iS2 = r+x ,

then
r+ = r1 + ir2 =

∫
S+dx+ c+, (10)

where c+ is constant of integration. Substituting (4b) to the equation (9c) we have

r3 =

∫
S3dx+ c3 = −

∫
[tanh[a(x− bt− x0)]dx+ c3 =

= −1

a
ln|ch[a(x− bt− x0)]|+ c3, (11)

where c3 is constant. Thus

r3 = −1

a
ln|ch[a(x− bt− x0)]|+ c3, (12)

Substituting (4a) to (10) we have

r+ = r1 + ir2 =

∫
S+dx+ c+ =

=

∫
expiby

cosh[a(x− bt− x0)]
dx+ c+,

then
r+ =

1

a
cos(by)arctg(sh[a(x− bt− x0)]) + c1+

+i(
1

a
sin(by)arctg(sh[a(x− bt− x0)]) + c2),

i.e. we have obtained

r1 =
1

a
cos(by)arctg(sh[a(x− bt− x0)]) + c1,

r2 =
1

a
sin(by)arctg(sh[a(x− bt− x0)]) + c2. (13)

Thus, (12), (13) give us (5a)-(5c).
We proceed to prove the second part of the theorem. From (12) and (13) we have

r1x =
cos(by)

1 + sh2[a(x− bt− x0)]
, r2x =

sin(by)

1 + sh2[a(x− bt− x0)]
, (14a)

r3x = − 1

ch2[a(x− bt− x0)]
, r1y = − b

a
sin(by)arctg(sh[a(x− bt− x0)]), (14b)
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r2y =
b

a
cos(by)arctg(sh[a(x− bt− x0)]), r3y = 0. (14c)

Then we can calculate
E = r2x = r21x + r22x + r23x =

=
cos2(by)

(1 + sh2[a(x− bt− x0)])2
+

+
sin2(by)

(1 + sh2[a(x− bt− x0)])2
+

1

ch2[a(x− bt− x0)]
=

2 + sh2[a(x− bt− x0)]

(1 + sh2[a(x− bt− x0)])2
. (15)

Similarly, using (13) and (14c) we obtain

G = r2y = r21y + r22y + r23y =
b2

a2
arctg2(sh[a(x− bt− x0)]). (16)

F = (rx, ry) = r1xr1y + r2xr2y + r3xr3y = 0. (17)

Formulas (15) - (17) give us the first three equations (6a) - (6c). Using (15) - (17) we
compute

Λ = EG− F 2 =
b2(2 + sh2[a(x− bt− x0)])

a2(1 + sh2[a(x− bt− x0)])2
arctg2(sh[a(x− bt− x0)]).

We calculate the components of the vector n

n =
rx × ry
|rx × ry|

=
rx × ry√

Λ
=

1√
Λ
(n1, n2, n3),

n1 =
1√
Λ
(r2xr3y − r3xr2y) =

bcos(by)arctg(sh[a(x− bt− x0)])√
Λach[a(x− bt− x0)]

. (18)

Similarly, for the components

n2 =
1√
Λ
(r3xr1y − r1xr3y) =

bsin(by)arctg(sh[a(x− bt− x0)])√
Λach[a(x− bt− x0)]

, (19a)

n3 =
1√
Λ
(r1xr2y − r2xr1y) =

barctg(sh[a(x− bt− x0)])√
Λa(1 + sh2[a(x− bt− x0)])

. (19b)

Now, from (14a), (14b) we have

r1xx = −2acos(by)sh[a(x− bt− x0)]ch[a(x− bt− x0)]

(1 + sh2[a(x− bt− x0)])2
, (20a)

r2xx = −2asin(by)sh[a(x− bt− x0)]ch[a(x− bt− x0)]

(1 + sh2[a(x− bt− x0)])2
. (20b)

r3xx =
ash[a(x− bt− x0)]

ch2[a(x− bt− x0)]
. (20c)

Thus, using (18), (19a), (19b), (20a) - (20c) we can compute

L = (n, rxx) = n1r1xx + n2r2xx + n3r3xx.
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It is followed
L = 0. (21)

Similarly, we calculate other coefficients of the second fundamental form

M = 0, (22)

N = −b3arctg2(sh[a(x− bt− x0)])√
Λa2ch[a(x− bt− x0)]

. (23)

The formulas (21) - (23) give us the last three equations (6a) - (6c). Finally, Theorem is
proved.

Based on the results of work [3], where Gauss-Codazzi-Mainardi equation considered
in multidimensional space, we have studied generalized Landau-Lifschitz equation and
built the surface corresponding to domain wall solution. Thus, this work fully reveals the
meaning of the geometric approach [3] in (2+1) - dimensions.
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