ON A CORRECT SOLVABILITY SEMIPERIODICAL BOUNDARY VALUE PROBLEM FOR LINEAR HYPERBOLIC EQUOTION

Symbat S. Kabdrakhova
Institute of Mathematics MES RK, Almaty, Kazakhstan,
e-mail:S_Kabdrachova@mail.ru

We consider on $\bar{\Omega}=[0, \omega] \times[0, T]$ semiperiodical boundary value problem for linear hyperbolic equation with two independet variables

$$
\begin{gather*}
\frac{\partial^{2} u}{\partial t \partial x}=A(x, t) \frac{\partial u}{\partial x}+B(x, t) \frac{\partial u}{\partial t}+C(x, t) u+f(x, t), \tag{1}\\
u(0, t)=\psi(t), \quad t \in[0, T], \tag{2}\\
u(x, 0)=u(x, T), \quad x \in[0, \omega], \tag{3}
\end{gather*}
$$

where $A(x, t), B(x, t), C(x, t), f(x, t)$ are continuous functions on $\bar{\Omega}$, function $\psi(t)$ is continuousdifferentiable on $[0, T]$ and satisfies condition $\psi(0)=\psi(T)$.

Let's $C(\bar{\Omega})$ is space of continuous function $u: \bar{\Omega} \rightarrow R$ on $\bar{\Omega}$ with norm $\|u\|_{C}=\max _{\bar{\Omega}}|u(x, t)|$.
In this paper we are investigated correct solvability of the problem (1)-(3). Necessary and sufficient conditions of correct solvability of semiperiodical boundary value problem are received for linear hyperbolic equation with two independent variables in the term coefficient $A(x, t)$ and T.

Definition. Boundary value problem (1)-(3) is called correct solvability, if for any $f(x, t) \in C(\bar{\Omega})$ and cotinuous- differentiable function $\psi(t)$ on $[0, T]$, it has unique solution $u(x, t)$ and is valid

$$
\max \left\{\|u\|_{C},\left\|u_{x}\right\|_{C},\left\|u_{t}\right\|_{C}\right\} \leq K \max \left\{\max _{t \in[0, T]}|\psi|,\|f\|_{C}\right\}
$$

where K is constant, not depending from $f(x, t), \psi(t)$.
Thorem. Boundary value problem (1)-(3) is correct solvability if and only if, when for some $\delta>0$ the following inequality holds $\left|\int_{0}^{T} A(x, \tau) d \tau\right| \geq \delta$ for any $x \in[0, \omega]$.

Was built examples, showing importance of conditions of the theorem.

