

SECOND ANNUAL MEETING OF KAZAKH PHYSICAL SOCIETY

June 6-8, 2019, Kazakh-British Technical University

Chair: Prof. T. A. Kozhamkulov, President of KPS

Co-Chairs: Prof. T. S. Ramazanov, Vice-President of KPS, Al Farabi Kazakh National University,

Prof. K.A. Baigarin, Head of Nur-Sultan Branch of KPS, Nazarbayev University **Prof. M.T. Gabdullin**, Head of Almaty Branch of KPS, Kazakh-British technical University

Scientific Program Committee:

KazNU: T.A. Kozhamkulov, T.S. Ramazanov, A.E. Davletov, M. E. Abishev, N.Zh. Takibayev, K.N. Dzhumagulova; NU: K.A. Baigarin, A. Nurmukhanbetova, Z. Utegulov, A. Tikhonov, A. Desyatnikov, A. Zhumabekov, A. Bountis, M. Kaikanov; ENU: R. Myrzakulov, A. K. Aryngazin; **KBTU:** M.T. Gabdullin, K.Kh. Nussupov, N.B. Beisenkhanov, D.I. Bakranova; KazNTU: S.E. Kumekov, R. Beisenov; KazNPU: A.I. Kupchishin, V.N. Kosov; NNC: E.G. Batyrbekov, M.K. Skakov; **INP:** E. Kenzhin, N.T. Burtebayev, T. Zholdybayev, M. Zdorovets; PTI: T.K. Sadykov, A. Serikkanov; FAPI: L.M. Chechin, M. Dubovichenko; **ISR:** Ch. Omarov; II: V.M. Somsikov, O.N. Krikunova; **KSU:** N. Ibrayev **TSHVNS:** V.V. Zhukov **ZhSU:** E.S. Andasbaev

Local Organizing Committee:

Almaty Branch of KPS Kazakh-British Technical University

	Al Farabi National University, Almaty, Kazakhstan
	Investigation of carbon nanowalls synthesis by pecvd method
11:20 - 11:35	Daniele Malafarina
	Nazarbayev University, Nur-Sultan, Kazakhstan
	Observable properties of a black hole mimicker
11:35 - 11:50	Essen Suleimenov
	Kazakh-British Technical University, Almaty, Kazakhstan
	Effect of Non-Stationary Electric Current on The Oxide Meline
	System - Gas Phase
11:50 - 12:05	Chingiz Akniyazov
	Fesenkov Astrophysical Institute, Almaty, Kazakhstan
	Space debris cloud evolution; De-orbiting small space debris
12:05 - 12:20	Almasbek Utegenov
	Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh
	National University, Almaty, Kazakhstan
	Properties of the Complex Plasma in the Radiofrequency
	Discharge With Imposed DC Field
12:20 - 12:35	Aigerim Tazhen
	Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh
	National University, Almaty, Kazakhstan
	Experimental investigation of the properties of plasma-dust
	formations on pulsed plasma accelerator
12:35 - 14:00	LUNCH BREAK
14:00 - 14:15	Sagi Orazbayev
	Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh
	National University, Almaty, Kazakhstan
	Synthesis of carbon nanoparticles in plasma medium and their
	application
14:15 - 14:30	Farid Umarov
11.15 11.50	Kazakh-British Technical University, Almaty, Kazakhstan
	Particle-solid surface interactions
14:30 - 14:45	Gulzipa Sataeva
	L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
	Nanostructured Potassium Sulfate Crystals
14:45 - 15:00	Saken Toktarbay
	Department of Theoretical and Nuclear Physics, Al-Farabi Kazakh
	National University, Almaty, Kazakhstan
	Investigation of the stability of orbits by using the adiabatic
	theory of motion in General Relativity.
15:00 - 15:15	Nurlan Bakranov
	Kazakh National Research Technical University after K.I. Satpayev,
	Almaty, Kazakhstan
	Photoelectrochemical Application of Heterostructured
	Semiconductors
15:15 - 15:30	Timur Kulsartov
	IETP, Al-Farabi Kazakh National University, Almaty, Kazakhstan
	Kazakh-British Technical University, Almaty, Kazakhstan

Experimental investigation of the properties of plasma-dust formations on pulsed plasma accelerator

M.K. Dosbolayev, Zh. Raiymkhanov, A.B. Tazhen, T.S. Ramazanov

Institute of Experimental and Theoretical Physics, Al-Farabi Kazakh National University,

Almaty 050040, Kazakhstan

e-mail: merlan@physics.kz

Abstract: In this work, the process of interaction of a pulsed plasma with the surface of graphite plates is studied. Trajectories of the scattered dust particles at plasma erosion of plate surface are obtained. The high-speed «Phantom VEO710S» camera with the capture rate of 78,000 frames/sec were used to capture the interaction of a pulsed plasma flow with the surface of the graphite plates and the evolution of the particles. The size of deposited carbon nanoparticles varies within the range of 20-180 nm. In addition, nanoparticles of the electrode material were obtained.

Introduction

Currently, one of the main challenges in successful devise and operation of the ITER is erosion of the internal walls of the reactor's vacuum chamber. The product of this erosion process is the particles of micron to submicron size found in the reactor chamber. The presence of dust in the plasma pinch negatively affects the thermonuclear processes in ITER. Plasma-thermal (radiation) effects on the walls of the chamber is one of the key challenges in constructing safe and durable chambers, it is the adverse effects of pulsed plasma flow to the walls of the reactor chambers is the key issue in understanding and tackling the plasma dust formation issue in ITER [1, 2].

The experiments were carried out on the installation of a pulsed plasma accelerator IPU-30 [3]. The schematic diagram of the experiment is shown in Figure 1 (top view). There are two graphite plates (Figure 1), placed in the plasma flow path at a 45-degree angle to the axis of chamber, at a distance 60 mm from the end of the electrodes. The length of the plates extends to the diameter of the outer electrode, so the plasma flow appeared in interelectrode space pass through the any sector of the graphite plates. These plates are the source of carbon dust particles. The particles are emitted when the plasma flow is interacting with the surface of the plate and moves along the plasma flow direction in sufficient value of the discharge voltage. The copper substrates are placed at a distance of 30 mm from the graphite plate. These substrates are used to collect the dust particles that are formed during the erosion of the plates.

Fig. 1. Schematic diagram of the experimental setup and plasma processes in it. Top view.

The interaction of a pulsed plasma flow with the surface of the graphite plates and the evolution of the particles were captured by the high-speed "Phantom VEO710S" camera. The capture rate of 78,000 frames/sec. Thus, the distance between neighboring frames is 12.82 µsec. The size of collected carbon dust particles varies within the range of 20-180 nm [4, 5].

References

J.C. Flanagan et al., "Characterising dust in JET with the new ITER-like wall" Plasma Phys. Control. Fusion 57, 014037 (2015).

A. Yu. Pigarov, S. I. Krasheninnikov, T.K. Soboleva, T.D. Rognlien, "Dust-particle transport in tokamak edge plasmas" Phys. Plasmas 12, 122508 (2005).

- M.K. Dosbolayev, A.U. Utegenov, A.B. Tazhen, T.S. Ramazanov, "Investigation of dust formation in fusion reactors by pulsed plasma accelerator" Laser and Particle Beams 35, 741-749 (2017).
- M.K. Dosbolayev, Zh. Raiymkhanov, A.B. Tazhen, T.S. Ramazanov, "Experimental investigation of the properties of plasmadust formations on pulsed plasma accelerator" IEEE Transactions on Plasma Science, in press (2019).
- M.K. Dosbolayev, Zh. Raiymkhanov, A.B. Tazhen, T.S. Ramazanov, "Impulse Plasma Deposition of Carbon Nanoparticles" Acta Physica Polonica A, in press (2019).