

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «ЧЕЧЕНСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ»

АКТУАЛЬНЫЕ ПРОБЛЕМЫ ЕСТЕСТВЕННЫХ НАУК

Материалы
Всероссийской научно-практической конференции с международным участием, посвящённой Международному году Периодической таблицы химических элементов

12 октября 2019 года

Грозный - 2019

Печатается по решению Ученого совета Чеченского государственного педагогического университета

УДК 50 ББК 20

Актуальные проблемы естественных наук [Текст]: Материалы Всероссийской научно-практической конференции **с** международным участием, посвящённой Международному году Периодической таблицы химических элементов. — Грозный: Изд-во ЧГПУ, 2019. — 356 с.

ISBN 978-5-6043624-0-2

Сборник содержит материалы докладов ведущих специалистов и молодых ученых, работающих в различных областях естественных наук, представленных на Всероссийской научно — практической конференции, состоявшейся в Чеченской республике, в г. Грозном 12 октября 2019года.

Главный редактор:

Хасбулатова З.С. – д.х.н., профессор ЧГПУ

Редакционная коллегия:

Бажева Р. Ч – д.х.н., профессор КБГУ им.Х.М.Бербекова Абубакарова З.Ш. – к.т.н., доцент ЧГПУ

Материалы сборника публикуются в полном соответствии с авторскими оригиналами.

©Чеченский государственный педагогический университет, 2019.

О БИОМОНИТОРИНГЕ СОЕДИНЕНИЙ ФТОРА Оказова З.П	46
ЛЕКАРСТВЕННЫЕ РАСТЕНИЯ В НАРОДНОЙ МЕДИЦИНЕ ОСЕТИН <i>Оказова 3.П.</i>	
О РАЗДЕЛЬНОМ СБОРЕ МУСОРА В РОССИИ <i>Оказова З.П.</i>	54
РОЛЬ НЕХВАТКИ ПИТЬЕВОЙ ВОДЫ В ПСИХОЛОГИЧЕСКОМ ФУНКЦИОНИРОВАНИИ ЧЕЛОВЕКА $\it Xahaeba~X.P.$ 2.	59
ПИЩЕВЫЕ РАСТЕНИЯ ОБЛАСТИ ЧЕРНЫХ ГОР И СЕВЕРНЫХ СКЛОНОВ СКАЛИСТОГО ХРЕБТА Хасуева Б.А., Ханаева Х.Р. 20	63
СРАВНИТЕЛЬНЫЙ АНАЛИЗ КОМПОНЕНТНОГО СОСТАВА НЕКОТОРЫХ ВИДОВ РАСТЕНИЙ РОДА <i>PETROSIMONIA Нурпейсова Д.С., Токтарбек М., Сейтимова Г.А., Ескалиева Б.К Бурашева Г.Ш.</i> 20	
МЕТОДИКА ОБУЧЕНИЯ ЕСТЕСТВЕННЫХ ДИСЦИПЛИН. 2	71
МЕТОДЫ И ПОДХОДЫ В ПРОВЕДЕНИИ ЭКСПЕРИМЕНТАЛЬНЫХ РАБОТ ПО ХИМИИ	
Абубакарова З.Ш	71
СОСТОЯНИЕ И ПЕРСПЕКТИВЫ ПРОГРАММИРОВАННОГО ОБУЧЕНИЯ	77
Абубакарова З.Ш	
Байбатырова Ф.И., Умарова Л.Х	
МЕТОДИКА ПРОВЕДЕНИЯ ОБОБЩАЮЩИХ ЗАНЯТИЙ В ПРОЦЕССИЗУЧЕНИЯ НЕОРГАНИЧЕСКОЙ ХИМИИ Гасанова Х.М., Магомедбеков У.Г., Гасангаджиева У.Г.,	E
Етмишева С.С	89
СИСТЕМА СОВРЕМЕННЫХ МЕТОДИЧЕСКИХ ЗНАНИЙ О ЦЕЛЯХ, СОДЕРЖАНИИ И ПРОЦЕССЕ ОБУЧЕНИЯ ХИМИИ	
Гасанова Х.М., Магомедбеков У.Г., Гасангаджиева У.Г., Етмишева С.С2	93
РАЗВИТИЕ ПОЗНАВАТЕЛЬНОГО ИНТЕРЕСА УЧАЩИХСЯ ПРИ НАБЛЮДЕНИИ ПРИРОДНЫХ ЯВЛЕНИЙ	
1 Гудаев МА.А., 2 Машаев С-М.Ш., 1 Ашаханова Р.А	96

профессора Алахвердиева Фазиля Джалаловича №3 Грозный 2011 г. – с. 46-56.

- 6. Хасуева Б.А. Анализ флоры области Черных гор и северных склонов Скалистого хребта в пределах Чеченской республики. Назрань 2009 г. 224 с.
- 7. Яруллина Н. и Омаров Ш. Ядовитые Яруллина и вредные растения горного Дагестана. Махачкала, 1966. 141 с.

СРАВНИТЕЛЬНЫЙ АНАЛИЗ КОМПОНЕНТНОГО СОСТАВА НЕКОТОРЫХ ВИДОВ РАСТЕНИЙ РОДА PETROSIMONIA

Нурпейсова Д.С., Токтарбек М., Сейтимова Г.А., Ескалиева Б.К., Бурашева Г.Ш.

Казахский национальный университет имени аль-Фараби, 050040, Алматы, Казахстан

Флора Казахстана широко представлена разнообразными дикорастущими растениями, обладающими различными спектрами биологической активности. Благодаря этому возможно использование дикорастущих растений для создания на их основе отечественных экологически чистых и недорогих препаратов, по качеству не уступающих импортным.

Большой интерес представляют растения семейства *Chenopodiaceae*, занимающие преобладающую часть ландшафта Республики Казахстан. Растения семейства маревые *(Chenopodiaceae)* известны около 100 родов и 1400 видов (в мировом масштабе), из которых в Казахстане встречаются 47 родов и 218 видов. Химические исследования большинства растений этого семейства указывают на их высокую питательную ценность.

Растения рода петросимония (*Petrosimonia*) насчитывают более 11 вида, в Казахстане встречается 10 видов.

Китайскими учеными из *Petrosimonia sibirica* выделены фенольные соединений, алкалоиды, хиноны, лактоны и эфиры. В настоящее время казахстанские виды растения *Petrosimonia*

glaucescens и Petrosimonia sibirica впервые подвергнуты систематическому исследованию химического состава. Изученные растения данного семейства обладают широким спектром биологического действия и используются для лечения различного рода заболеваний.

Объекты исследования — надземная масса некоторых видов растений рода *Petrosimonia*: петросимония сизоватая (*Petrosimonia glaucescens*) и петросимония сибирская (*Petrosimonia sibirica*), собранные в фазу цветения в Алматинской области.

Доброкачественность растительных объектов определены следующими показателями по общепринятым методикам 1-го издания Государственной Фармакопеи РК: потеря в массе при высушивании, экстрактивные вещества, общая зола. Доброкачественность растительного сырья определяют путем товароведческого, количественного химического анализа. Для большинства видов растительного сырья допустимый предел влажности обычно 12-15 %. Данные количественного определения представлены в таблице 1.

Таблица 1 — Количественное содержание основных групп БАВ в надземных массах растений рода *Petrosimonia*

Название растений	Показатели добро- качествен-ности сырья			Количественное содержание основных групп БАВ, (%)							
	Влажность	'	Экстрактивные вещества (70%- вол-сп.)	Алкалоиды	Сапонины	Флавоноиды	Дубильные вещества	Аминокислоты	Углеводы	Органические кислоты	Кумарины
Petrosimonia sibirica	7.84	24.72	52.89	0.41	2.62	2.02	0.14	4.29	4.24	3.50	0.33
Petrosimonia glaucescens	5.91	24.54	46.13	0.40	8.68	3.04	0.05	3,11	4.24	3.59	0.32

Методами двумерной хроматографии на бумаге (БХ) и тонкослойной хроматографией (ТСХ) в различных системах растворителей с использованием специфических проявителей установлены, что основными группами биологически активных ве-

ществ надземной массы исследуемых растений являются сапонины, флавоноиды, кумарины, амино-, жирные кислоты, фенолокислоты, углеводы.

Из данных таблицы 1 следует, что при влажности 5,91 % (Petrosimonia glaucescens) и 7,84 % (Petrosimonia sibirica), содержание экстрактивных веществ в 70 % водно-этиловом экстракте находится в пределах от 46,13 до 52,89 %.

атомно-эмиссионной спектроскопии Методом ИПС-28 («Морс», Россия) изучен минеральный состав зольного остатка 2х видов растительных образцов, определены 10 макро- и микроэлементов. Микро- и макроэлементы приносят уникальную пользу для здоровья человека, растений и животных. Они обеспечивают развитие организма, их прочность. Микроэлементы в растениях содержатся в незначительных количествах, однако существует взаимосвязь между накоплением в растениях определенных физиологически активных соединений и микроэлементов. Из литературы известно, что растения продуцирующие гликозиды поглощают следующие элементы: марганец, молибден, хром; а алкалоиды – медь, марганец и кобальт; кроме того, продуцирующие сапонины – молибден и ванадий; а терпены – марганец; витамины, кумарины и полифенольные соединения – медь, цинк, марганец; полисахариды – марганец и хром.

Установлено, что растений рода *Petrosimonia* отличаются высоким содержанием Na, K и Ca, но во всех видах содержание Ni, Cu, Co, Pb минимален.

Также определен аминокислотный и жирнокислотный состав двух видов растений рода *Petrosimonia*.

Известно, что аминокислоты являются структурными единицами молекулы белка. Всего в природе найдено около 300 аминокислот, однако в состав белков входит лишь 20, получивших название белковых, или протеиногенных аминокислот. Аминокислотный состав изучен на аминокислотном анализаторе Hitachi — 280. Из растений *Petrosimonia sibirica* и *Petrosimonia glaucescens* идентифицированы 20 аминокислот и установлено их количественное содержание, где преобладают следующие аминокислоты: аланин (0.618-0.625 %), пролин (0.306-0.309 %), аргинин (0.405-0.410 %), глутаминовая (2.440-2.460 %) и аспарагиновая кислоты (1.254-1.260 %).

В растительных объектах в достаточном количестве обнаружены и жирные кислоты. Вероятно, появление жирных кислот в растительном экстракте связано с гидролизом липидов в растениях. Глицириды жирных кислот являются физиологически активными, особенно глицириды некоторых жирных ненасыщенных кислот. К ним относятся линолевая, линоленовая и арахидоновая кислоты, которые необходимы для жизнедеятельности живого организма (фактор витамина F). В исследуемых объектах жирных идентифицированы кислот установлено 8 И количественное содержание. Для растений видов Petrosimonia Petrosimonia glaucescens sibirica отмечена высокая концентрация линолевой (18:2) и олеиновой (18:1) кислот.

Приведенные данные позволяют утверждать, что нативные фитопрепараты, полученные из надземной части некоторых видов растений рода *Petrosimonia*, имеет высокую биологическую активность, в то время как, само растение представляет значительную кормовую ценность.