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PREFACE

We are very pleased to introduce the abstracts of the 6th International II'S and Contemporary
Mathematics Conference (1FSCOM2019).

As previous conferences, the theme was the link between the Mathematics by many valued logics
and its applications.

In this context, there is a need to discuss the relationships and interactions between many valued

logics and contemporary mathematics.

Finally,in the previous conference, it made suceessful activities to communicate with scientists
working in similar fields and relations between the different disciplines.

This conference has papers in different areas; multi-valued logic, geometry, algebra, applied
mathematics, theory of fuzzy sets, intuitionistic fuzzy set theory, mathematical physics,
mathematics applications, ete.

Thank you to all paticipants scientists offering the most significant contribution to this

conference.

Thank you to Scientific Committee Members, Referee Committee Members, Local Committee
Members, University Administrators, Mersin University Mathematic Department.

CHAIR
Assoc. Prof. GOKHAN CUVALCIOGLU

www.ifscom.com
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SURFACE TO EXACT SOLUTION OF NONLINEAR
SCHRODINGER EQUATION

ZHKH ZHUNUSSOVA, LKH. ZHUNUSSOVA, AND K. A, DOSMAGULOVA

ABSTRACT. Heisenberg ferromagnetic equation is considered in (1+1)-, (2+1)-
dimensions. Surface with appropriate coefficients of the first fundamental form
is found for regular onesolitonic solution of the nonlinear Schrodinger equation
with gravity which is Lakshmanan equivalence to Heisenberg ferromagnetic
equation.

1. INTRODUCTION

Nonlinear medels describing different physical phenomena can be solved by in-
verse scattering method [1]-[6]. One of the well-known nonlinear models is Heisen-
berg ferromagnetic model

(11) St =58x Sw:;c:

where x is vector product, 8 = (51,82,53),8 =S+ 55+ 52 = 1.

Lakshmanan established, that the model (1) at 82 = |1 is equivalent in the
geometrical sense to nonlinear Schrodinger equation which is crucial for physical
applications

where 8 = +1, % i1s complex function. This equivalence is called by Lakshmanan
equivalence. We note, that Lakshmanan equivalence is valid both for integrable
and for nonintegrable nonlinear differential equations, and by definition its appli-
cability domain is limited by establishing an equivalence between a spin system
and nonlinear differential equation, for example Schrodinger type. Moreover, for
integrable nonlinear differential equation Lakshmanan equivalence does not Imply
knowledge of Lax representation of considered nonlinear differential equations.
Now some generalizations of the model (1) in (24-1)-dimensions are known. For
example, in [5] a generalized Heisenberg Ferromagnetic model is considered

(1.3) S; = (S % S, + uS),,
(1.4) Uz = —(8,(S2 x 8y)),
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where S is spin vector, 87+ 82 + 8% = 1, x is vector product, u is a scalar function.
We identify the spin vector S and vector r, according to [2]

S =r,.
Then (3a), (3b) take the form
Yoy = (Tp X Ty + ULy

Uy = —(Tzy (Tow X Tay)).
Surface corresponding to onesolitonic solution of the model (1) is found, and the
result iz formulated and proved in the theorem [3] below. At first we present the
one-soliton solution of the equation (3a), (3b) [2],

S ( t) :1—77?2 hg( )
T, Y, sec 4
s(&, Y 5 52 X1R

S*a,u,t) = %[if T PR

X1 = X1r+ix11, A =n+,
my = mar(p) +imar(p),  my(y,t) =my(p),
Xir =1z +map(p) +o1r,  p=y+iAd,
x11 = Ex +mar(p) + i1, e = In(2n/A]),

miplp) = Re[mai(p)], nmur(p) = Imlma(p)l,
which we use in the following theorem.
Theorem 1.1. Main Theorem. One-soliton solution of the spin system {8a)-(3b)
can be represented as components of the vector T, wherer; = m+817 To =

Ugfeg arctg(shx1g) + c2,73 = T — U2+Eg thxir + ca, where c1,cp,c3 are constants,
Solution of the form 1, corresponds to the surface with the following coefficients of
the first and second fundamental forms

E=1 (= 4771—%31,
’ (n? +£2)chx1r’
B 2 Ry B dn®Ema py,
T (P + kxR’ /(0 + €2)2chixar’
B dp*emip, B dngmi g,
(0 + ) 2chixar’ A+ )%k’

2. SOLITON SURFACE

In this work we consider soliton immersion in Fokas-Gelfand sense [3]. In the
modern literature the notion immersion is widely expanded and related not only
to the soliton theory. It is a transition from sophisticated origin problem to some
simple problem.

According to the work of Fokas-Gelfand [3] we present the description of the
soliton immersion. In (1+1)-dimension the nonlinear differential equations are given
in the form of zero curvature condition

Uy —Ve+ [, V] =0,
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where [[/,V] = UV — VU, the matrix {7 is prescribed, and matrix V is expressed
in the terms of elements of matrix /. Such nonlinear differential equations are
compatibility condition of the linear systems

pe =Ug, e =V
In this case there exists a surface with immersion function F(z,t) defined by for-
mulas % = 1Xo, % = ¢~1Y¢. The surface defined by P(z,t) is identical to
the surface in three-dimensional space defined by coordinates x; = Pi(z,¢), j =
1,2,3. Frame on the surface is given by triple [3]

8P 8P o
——¢TIX¢, So—¢Ye, N-¢7ls

where J = ‘g’g‘, | X |=+/< X, X >. Here by definition

<X,Y 5= —%tT(XY),
where X,Y are some matrixes. The first and second fundamental forms in the
Fokas-Gelfand sense are given as
I=<X,X>de?+2< X,Y >dadt+ < Y,Y > di?,

(2.1) I =< %—X+[X,U],J> da? 4+ 2 < %+[X,V],J>dzdt+
T
oY

LYV, > d
t< g+ >

As it is shown in the work [3] the immersion function # can he defined as

3
P=9¢ tor+ ¢ Mg = Z ity

=1

where M, is matrix function defined by A, z,t. f; = —%Uj is corresponding algebra,
basis, o; are Pauli matrixes and [f;, f;] = f&. In this case, X,Y can be written

X = yUx + Mys + [M1,U],Y = vV + My + [M1,V].
Let the matrixes X,V J have the forms
(2.2) X_(fln a12>’ Y—(bll le)} J_<811 612>_
@21 a2 ba1  bao €21 Co2
In this case elements of the matrix J are expressed through elements of the matrix
X and Y in correspondence to the following formulas

ery — ayabay — biz00y oy — a1 (b1 — bag) + bay{0on — a11)
| (XY | [X, Y] | ’
b1z(a11 — age) + a12(baz — b11) asibiz — baiogs
2.3 = Bl i
@8 e 5,7 =X

Then the first fundamental form (4) of the surface is I = Edz? + 2Fdxdt + Gdi?,

where

1 1
(2.4) E= *5(6&1 + 2a12a01 + &32), F= *5(0111511 + a12bor + az1bis + aosbos),

1
(2.5) G = —5(5%1 + 2byoboy + b3s).
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As example of the soliton equation leading to the immersion we consider nonlinear
Schrodinger equation (2). In this case the matrixes U/, V take the forms [5]

_)\G‘g . 0 q

U—g“rUi): Uﬂz(g 0)1
iN? i . 0 7 0 G

(2.6) VZTG'S—FZ‘Q“ Ug—@)\(q 0)—}—(_% 0 )

The lemma is valid.

Lemma 2.1. The second fundamental form in the Fokas-Gelfand sense correspond-
ing to the reqular onesolitonic solution g of the nonlinear Schrodinger equation has
the form

2.7) IT = Lda® + 2Mdadt + NA#2,
where
1 .
(2.8) L= *5{01111611 + 124021 + 4212012 + G250z — Ai{oo1012 — G12021)+

+iQ(CL12611 + aogciz — @11612 — &12622) + ig_(&mCQQ + a11021 — @9 — &21811)},
1
Sy 2 2
M= *i{anzcn + a12¢001 + @o1:012 + G200 + 1A + 2|g|7) (221012 — @r120: )+

+{g= + Adg)(ar1612 + a19c22 — @12611 — aseci2)+

+(gz — Aig)(arico1 + asicos — as1c11 — 22621) s
1 )
N = —5{5113811 + biaecar + ba1ecia + basecan + (A7 + 2/g*) (barcis — braes )+

+{gx + Adg)(br1c1a + bracas — braciy — bageia )+
+{(@y — Aig)(br1021 + barcas — barery — bazenn )}

Proof. We substitute the matrixes (6), (10) to (5). After some algebra we get (11),
(12). The lemma is proved. O

3. SURFACE TO A REGULAR ONESOLITONIC SOLUTION

We consider a particular case at v =1, M; = 0. In this case we get

_ 1 1 0 s L =A g
(31) XU)\Q,E(O _1>,YV>\Z< g )\)7

( ; _L>
J= Vad
9 0 *
vad

and P = ¢ 1¢s. In order to calculate the explicit expressions for immersion func-
tion P we consider the regular onesolitonic solution of the nonlinear Schrodinger
equation which has the form [4]

exp(—2ifx — 4i(£2 — *)t — id)
ch[2n(x + 48t — xq)] !

where zg = %ln\%gf\, 8§ = argmgs — argmgl, £ = Rel, n= I'mA.

(3.2) q(z,t) =27
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Theorem 3.1. Regular onesolitonic solution of the nonlinear Schrodinger equation
corresponds to the surface in Fokas-Gelfand sense with the coefficients of the first
fundamental form

64n2(£2 +n?)

(3.3) B = o N ek n(e + 46t — 20)
B 1287%¢ (8% + 72)

(3.4) T (A= Ntk 2n(r + 48t — z0)]”

) 256n2(£2 + n?)?

T (A — NAch22n(z + 48 — z0)]|
where A1 = const.

Proaf. Solution of the linear system we find in the form

(3.6) b = pemCitat o),
Taking into account (16} and applying (10), we get

- )\0'3 )\0'3 o )\0'3 )\0'3 - )\0'3
BT o= (o2 4 Uo— 2 = S22 — 22 4 Untp = ["2, ] + U
We take

. a b 1 0 .
(3.8) @b—f—)\—)\i,wheﬂe}l—(E C»E«>,I—<0 1), A] — const.
We substitute (18) to (17)
A 1 " A "
3.9 s = Up — — —[gs, A] — ————o3, A].
(39) o=y m A mp o
On the other hand, from (18) it follows that
A,
3.10 = — .
(5.10) ey
From (19) and (20) we get
A, Ugd 1 . X x
311 v B e O e W LR AT
( ) )\_)\9{ 0 )\_)\9{ % [0-31 } 22()\_)\9{) [0-37 }
Thus
(312) R Uk M Mt Lo Al
¢ 2T 24
We note, that
o 0 i
(313) [JS,A} :O'gA*AO'S =2 =0 .
Then we substitute (23) to (7) and get
1/ 0 b

(3.14) UO_E(—E: O).

Substituting (23) to (22), we get

Gy by \ 1/ b bd M0
el (cw cL)_z'(aa 55>+z'<5 0)’
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From (10) and (24) we get

(3.16) 3(2 8_)_1(—0@ 8>${ Z_Zf?_—_%;c j{bc—_q.q
Therefore, we have found the matrix A in the explicit form with components (25).
Using (14) we get

(3.17) & = 2nth[2n(z + 4t — z0)] + c1.

From (25) it follows that & = —%£= — A} = 4 = —21 [ ggdz. Using (14) we get

. lizs. o L
(3.18) Gy = ;bc = Gy = g(fq)q.
Then
(3.19) &= f% s 3,

Consequently, taking into account (25), (26}, we get

7 EET 7 3(-@)53 7 s
3.0 Je= B2 _ g sfs PV . SYY
(520 oo - g !

From (25), (26) it follows that
1

(3.21) dy = ——b.
i

Moreover, in view of (23), (31), we have

= 1
(3.22) d=— chfda:.

7

Taking into account (22}, we get (28) in the form
(3.23) d=—a.
Therefore,
(3.24) 4 = —i2nth[2n(z + 4&t — x0)] + 1.

Thus, the matrix A for regular onesolitonic solution {14) of the nonlinear Schrodinger
equation takes the form

- exp{i(2Lx i _p?
- ( 2nth[2n(z + 48t —xg)] + o1 —2n p{cfgg[gn(—:i(ﬁwrzfgra)} ) -

(325) A= axpl —i(2¢x 2_p? 3
20 Z ch([gfr(;fa(ci+4gzgf+5)} —2nth[2n(z + 48t — zp)] + o

Then we take ¢ =1 —

ﬁ, where Aj is constant, then from (13), we get

A A

(3.26) P=¢ "t =(I+ P )\1)()\ —h2

On the other hand, we get

3 .3 ; ; .
L. i, [ iR —iR-1iR
G2 P=) P, QZ;PJJJ ( il |
i= iz
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From (36), (37) by (31) we get P3 = 28 With help of (33) we find P; in the

(A=A )2
explicit form for regular onesolitonic solutié)n of the nonlinear Schrodinger equation
4

(3.28) Pl —ﬁth[%(z A8t zg)] e
From (36), (37) we get F5 = %. Thus

P i(@ +_5)  _ (& —_E) 2

(A— A2’ (A =A%’ (A= A2

From (36), (14) using the well-known formulas

g b I S " S
(3.29) shl = — ch¢ = — cos( = — sing = —

where {( = 2n{x — zo + 4£t), we obtain the values for the components Fj, P of the
matrix P

| dnsin@z 4+ 4(82 — )t + )

(3.30) B = R T echintz = 28t —zo)]

_ dncos(2bx 4+ 4(82 — n*)i + 6)
N (A — N 2ch2n(z + 48t — 20)]
Then we calculate coefficients of the first fundamental form by formula.

(3.32) B= P2 4P P2

(3.31) P,

We calculate the derivatives Py, Foz, Ps,. The square of the first derivatives is
substituted to (41}, then

_ 64n” (€* + %)
(A — Xtch2[2n(z + 46t — x0)]
By the similar way, by the formulas
F=PPru+ PopPo+ Pop Py, G=PL+ P35+ P;
we obtain the value

- 12802£(£2 + 1)
(3.33) B = Nk nG + 48t —zo)]’

_ 256n°(€° + %)
(A= NAch?[2n(z + 48t — xp)]

Theorem is proved. O

(3.34)

The surface can be written in the form
Pg = (Pl, PQ)
Then from (38), (40a), (40b) we get
B (A— )_\)Qsh[Qn(a: + 48t — zp)|ch[2n{z + 4E¢ — x0)]
dnsin(28x + 4(£2 — p?)t + §)cos(28x + 4(£2 — )t + 4)

Then we use possibilities of the editor Maple and construct the surface at some
values of the parameters.

Py = P,P,.
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Remark 3.2. The short version of thiz paper was published in abstracts of the
Third Dynamic Days in Central Asia, Nazarbayev University, Astana, Kazakhstan
(September 02-035, 2016) [7].

4. CONCLUSION

Thus, we investigate Heisenberg ferromagnetic equation in (141)-, (241)-dimensions.
As example, we have considered {1+1)-dimensional nonlinear Schrodinger equa-
tion. The first fundamental form with corresponding coefficients {15) is found for
integrable surface corresponding to regular onesolitonic solution of the nonlinear
Schrodinger equation with gravity.
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