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Abstract—A stabilizing regulator is constructed for a 

nonlinear control system with a constant state matrix and a 

state-dependent input matrix. A regulator is designed by 

means of the State-Dependent Riccati Equation (SDRE) 

technique. The novelty of the work is reducing SDRE to the 

algebraic matrix Riccati equation with constant coefficients. 

That simplifies the proof of the asymptotic stability of a closed-

loop system. The results are illustrated by the example of a 

mathematical model of a three-sector economic system, where 

the stabilization in the equilibrium neighborhood is made by 

means of investment strategies in the form of feedback control. 

Keywords — three-sector economic cluster, nonlinear system, 

quadratic functional, SDRE, matrix Riccati equation  

I. INTRODUCTION 

Much attention is paid to the problem of stabilization of 
nonlinear systems in control theory. In particular, a plenty of 
new SDRE based algorithms for constructing stabilizing 
regulators for affine control systems have appeared recently 
[1]-[4]. A regulator state-dependence leads to recalculation 
of a control for every new value of a state. It significantly 
reduces the efficiency of computational procedures for real 
time applications. The ambiguity of representing a nonlinear 
system as a system with a linear structure and the lack of 
sufficiently universal algorithms for solving the Riccati 
equation, whose coefficients depend on the state, generate a 
set of possible suboptimal solutions. In applied problems, 
there are many different types of nonlinearities; therefore, 
different nonlinear control construction approaches, that are 
rational with respect to one or another given quality criterion, 
arise. 

In this paper, we consider the problem of constructing a 
stabilizing control for one class of nonlinear systems in 
which a state matrix is constant and an input matrix is state-
dependent. Such models are often found in applications, in 
particular, in mathematical economics (see [5],[6]). Here, 
using the specifics of nonlinearities in the mathematical 
model of a three-sector economic system (nonlinearities 
present only in an input matrix)[5], an application of the 
SDRE approach is used. Stabilizing regulator design is based 
on a solution of the matrix algebraic Riccati equation that 
appears like the Kalman’s method solving control problems 

with a quadratic functional to search for a stabilizing control 
on an infinite time interval. 

II. SIMPLIFICATION THE SDRE APPROACH IN A CASE OF THE 

STATIONARY LINEAR PART 

In the literature, the SDRE approach is mainly focused on 
the construction of feedback laws, as well as on the 
justification of it stabilizing properties. Let us show that, 
solving some inverse problem, for the class of affine control 
systems with the stationary linear part 


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where ny  is a state vector and ru  is a control, it is 

possible to build a such quality criteria 
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that stabilizing regulator for (1) has the standard Kalman’s 

form 1 ( )Tu R B y Ky  , where a constant positive-definite 

gain coefficient matrix K is a solution of some algebraic 
constant coefficients Riccati equation 

 1

1 0.T TKA A K KCR C K Q      

Here C is a some constant matrix. Indeed, according to 
the SDRE technique a control law has the form 

1 ( ) ( )Tu R B y K y y  , where matrix K is a positive definite 

solution of the following algebraic matrix Riccati equation 

 1( ) ( ) ( ) 0.T TKA A K KB y R B y K Q y     

All of it matrices coefficients can be state functions. 
Therefore, if we choose the weight matrix Q(y) in the 
criterion (2) so that 

 1 1

1( ) ( ) ( ) ,T TQ y KB y R B y K KCR C K Q    
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where C is the constant matrix, Q1 is a constant positive 
definite matrix and for all y, then the SDRE equation turns 
into a matrix equation (3) with constant coefficients. Thus, in 
the case of the constant linear part, the SDRE approach in 
problem (1)-(2) is implemented along the solution of the 
matrix algebraic Riccati equation with constant coefficients. 
That is there is some analogy with the simplification of the 
Pontryagin’s maximum principle for a system which is linear 
by state and nonlinear by control function. 

We note here that a similar technique of selecting the 
quality criterion was used in [7],[8].  

III. STABILIZING REGULATOR FOR A THREE-SECTOR 

ECONOMIC SYSTEM 

Let’s consider the following mathematical model of a 
three-sector economic system form [5],[9],[10] 

 0
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Here 
0 1 2( , , )k k k k  is a state vector, 

0k  is a capital-

production ratio of materials or resources, 
1k  is a capital-

production ratio of the means of labor, 
2k  is the capital-

production ratio of the production of consumer goods; 

0 1 2 0 1 2( , , , , , )u s s s     is a control vector, where 

0 1 2( , , )s s s  are share of sectors in a distribution of investment 

resources and 
0 1 2( , , )    are share of sectors in a 

distribution of labor resources; xi is a specific issues by a 
sector; βi is a direct material costs in the i-th sector; 

0 0 0

0 1 2( , , )k k k  are an initial state of the system, where 
0 (0)i ik k  is a capital-sector ratio of the i-th sector with 

t = 0. 

Here we consider the stabilization control problem, 
where the dynamics equations are the system of three 
ordinary differential equations (4) with state-dependent 
control multipliers. 

It is required to transfer a nonlinear system from a given 

initial state 0 0 0

0 1 2( , , )k k k to any sufficiently small 

neighborhood of the state 
0 1 2( , , )s s sk k k  on an infinite time 

interval [0, ) , where the equilibrium state of the system is 

chosen as the desired final state. 

The control problem can be presented as the stabilization 
problem for the system [10] 
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. The equilibrium states k
s
 

satisfy the constraints 

 ( ) 0.s s sAk BD k v   

Let’s introduce the condition 

І. The system (7) has a positive solution (k
s
, v

s
), satisfying  

the constraints (5). 

Let’s present (6) in the form of (1). To do this, we 
introduce a new control vector

 1( ) ( ) ( )s sw y u I D y D k v   , where I is identity matrix. 

So system (6) takes the form of (1) 


0 0( ) , ( ) ,y Ay BD y w y t y    

where , ( ) ( )A A B y BD y  . Now we introduce the quality 

criterion of the form (2) 
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where 0R   is a constant matrix, Q(y)=
1 1

1( ) ( ) ( ) ( ) ,T T s T s TKBD y R D y B K KBD k R D k B K Q    

Q1 > 0  is a some constant matrix. We use the scheme of the 
linear-quadratic optimal control algorithm to search for 
stabilizing control for system (8), i.e. w has the form 

 1 ( ) ,T Tw R D y B Ky   

where a constant matrix K satisfies the following algebraic 
matrix Riccati equation with constant coefficients 

 1

1 0.T TKA A K KCR C K Q      

For solvability of (11) we introduce the condition 

ІI. The triple of constant matrices  1/2

1, ,A C Q , where 

( )sC BD k , is controllable and observable. 

Substituting (10) in (8) yields the closed-loop system 


1 0 0( ) , ( ) ,

dy
A y y y t y

dt
   

where 1

1( ) ( ) ( ) .T TA y A BD y R D y B K   Let’s introduce 

the assumptions 
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ІІІ.
1 0, [0, ).k t    

IV. 1( ) ( ) ( )T TQ y KBD y R D y B K   

1 3

1( ) ( ) 0, .s T s TKBD k R D k B K Q y     

The condition III means that a capital-labor ratio cannot 
be negative at each time. Due to the boundedness of matrices 
in IV the condition IV can be satisfied if a sufficiently large 

in norm 
1 0Q   is chosen. 

Theorem. Let conditions I-IV be satisfied. Then the zero 
equilibrium point of the closed-loop system (12) is 
asymptotically stable, i.e. the nonlinear regulator (10), where 
K > 0 is a solution of the Riccati equation (11), is stabilizing. 

Sketch of the proof. The conditions of the theorem 
imply the existence of a positive definite solution K of the 
matrix equation (11). This solution forms the Lyapunov 

function 
1

( )
2

TV y y Ky . It is shown that the total time 

derivative of this function along the (12) is negative. Indeed, 
taking into account the matrix equation (11) and the form of 
Q(y), we obtain 
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IV. NUMERICAL EXPERIMENTS  

Let the initial data for the model (4)-(5) be defined as in 
Table 1. 

TABLE I.  PARAMETERS FOR THE THREE-SECTOR ECONOMIC MODEL 

i αi βi λi Ai si
* θi

* ki
* 

0 0.46 0.39 0.05 6.19 0.2763 0.3944 966.4430 

1 0.68 0.29 0.05 1.35 0.4476 0.2562 2410.1455 

2 0.49 0.52 0.05 2.71 0.2761 0.3494 1090.1238 

 

The initial state vector is 
0( ) ( 400, 100, 200)Ty t    and 

the matrices 
1, , TR Q K  have the following form 


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

The closed-loop system trajectories and controls obtained 
by numerical simulation are presented in Fig. 1 and Fig 2. It 
can be seen that the trajectories and stabilizing controls tend 
to the zero equilibrium point. Therefore, a closed-loop 
control system is asymptotically stable.  

 

Fig. 1. The trajectories y(t) 

 

Fig. 2. The control u(t)  

Using formulas 


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following from (5), as well as the expression 

 1( ) ( ) ,s su w I D y D k v    where I is the identity matrix 

of the corresponding dimension, the distribution of labor 

 0 1 2( ), ( ), ( )t t t    and investment  0 1 2( ), ( ), ( )s t s t s t  

resources are determined. Fig. 3 and Fig. 4 show the changes 
in resources for the balance relations (5) without any control 
constraints. It is seen that the investment resource s0 does not 
satisfy the condition of non-negativity of the balance relation 
(5), i.e. it has invalid value. 
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Fig. 3. Distribution of investment 

 

Fig. 4. Distribution oflabor resources 

 

Fig. 5. Trajectories y(t) for contstrained problem 

Let us show that the proposed algorithm can generate 
admissible controls for a number of problems with control 
constraints. For example, let us have the following 
constraints  


1 2 30.65 0.25, 0.5 0.4, 0.15 0.4.u u u          

The state trajectories along constrained control are 
presented in Fig. 5. It may be seen the asymptotic stability of 
the zero point of the closed-loop system. From Fig 6 one can 
see that the coordinates u1 and u3 of control vector take 
values partially on the boundary of the admissible region. 
Fig. 7 and Fig. 8 show distributions of investment and labor 
resources for balance relations (5) with control constraints. It 
is obvious that now si and θi satisfy all the conditions of the 
balance ratio (5). The investment resource s0 has values 
partly at the border, and then tends to an equilibrium value. 

 

Fig. 6. Contstrained control u(t) 

 

Fig. 7. Distribution of investment for contrained problem 

 

Fig. 8. Distribution of labor resources for contrained problem 
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Fig. 9. The capital-labor ratio of the constrained problem 

Fig. 9 shows the changes in the capital-labor ratio of 

sectors that tend to equilibrium values in the interval 
0[ , ).t   

V. CONCLUSIONS  

The nonlinear affine control system with a stable 
stationary linear part describing own motions and with a 
state-dependent input matrix is considered. The algorithm for 
constructing the nonlinear stabilizing regulator according to 
the Kalman’s algorithm is proposed for this system. The 
control gain matrix is based on a solution of a specially 
constructed algebraic matrix Riccati equation with constant 
coefficients. This algorithm for constructing a stabilizing 
regulator differs from the ordinary SDRE technique, which 
uses the solution of the algebraic matrix Riccati equation 
with coefficients depending on the system state. The 
asymptotic stability of a closed-loop system along the 
constructed regulator is established under the certain 
conditions. The results are illustrated by numerical 
simulations for a mathematical model of a three-sector 

economic system. The stabilization of the system in the zero 
equilibrium point is carried out by means of investment 
closed-loop control strategies. Computational experiments 
confirming the efficiency of the algorithm were performed. 
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