11th Conference on POLYIMIDES June 2-5, 2019 University of Montpellier ## ABSTRACT BOOK ## - CONFERENCE POSTER PROGRAMME - | Poster
Number | LAST NAME | First
Name | Organisation | Country | Title | Page | |------------------|-----------|-----------------|--|----------------|--|------| | 1 | SALIMI | Saman | U. Savoie | France | Hybrid Organic/Inorganic
PolyPOSS- imide Model
Networks for Gas
Separation Applications | 91 | | 2 | СНОІ | Ju-Young | Yonsei
University | Korea
South | Improvement of the
Mechanical Properties of
Polyimide Film by Simple
Microwave Irradiation | 92 | | 3 | Jin | Seung-
Won | Yonsei
University | Korea
South | Preparation and Properties
of a Fully Aliphatic
Polyimide for Application
to Flexible Polymer Film
Substrate | 94 | | 4 | DIDENKO | Andrei L. | ICM
S ^t Petersburg | Russia | Fibre-Metal Laminate
Based on Thermoplastic
Elastomer for Vibration
Damping Application | 95 | | 5 | DIDENKO | Andrei L. | ICM
S ^t Petersburg | Russia | Formation of Fibre on the
Basis of Crystallizable R-
BAPB Polyimide | 98 | | 6 | Kuznetsov | Alexander
A. | Enikolopov
Institute
RAN
Moscow | Russia | Synthesis of New Star-
shaped and
Hyperbranched Polyimides
in Catalytic Medium | 100 | | 7 | VAGANOV | Gleb V. | IMC RAN
S ^t Petersburg | Russia | Melt Processing of
Nanocomposites Based on
High-Performance
Polymers | 101 | | 8 | Vaganov | Gleb V. | IMC RAN
S ^t Petersburg | Russia | Processing of a Polyimide
Nanocomposite Powder by
LASER Sintering | 103 | | 9 | EROKH | Amira | Fac of
Sciences
University of
Sfax | Tunisia | Morphology of the
Nanocellulose Produced by
Periodate Oxidation and
Reductive Treatment of
Cellulose Fibres | 105 | |----|---------------|-----------|---|------------|---|-----| | 10 | SHAMANAURI | Lana G. | R. Dvali
Institute
Tbilisi | Georgia | Radio Waves Absorbing Polymer Composites with Electric and Magnetic Particles | 106 | | 11 | ARCHVADZE | Kety T. | Javakhishvili
University
Tbilisi | Georgia | Synthesis of Fuctional
Groups Containing
Polymers by Equilibrium
Polycondensation Method | 107 | | 12 | GURGENISHVILI | Marina B. | Javakhishvili
University
Tbilisi | Georgia | Synthesis of Sulfur Containing Amide Type Copolymers by High Temperature Polycondensation | 108 | | 13 | TABATADZE | Lali V. | Sokhumi
State
University
Tbilisi | Georgia | Synthesis and Porperties of Organocyclosiloxane | 109 | | 14 | UMERZAKOVA | Maira B. | Bekturov
ICS KAN
Almaty | Kazakhstan | Investigation of Hydrolytic
Stability and Stability
During Long-Term Storage
of Aryl Alicyclic
Copolyimides | 110 | | 15 | PONOMAREV | lgor I. | Nesmeyanov
INEOS RAN
Moscow | Russia | New Approach for Semiladder Polymer Synthesis for Fire-resistant Fibre of "Lola" Family | 113 | | 16 | PONOMAREV | lgor I. | Nesmeyanov
INEOS RAN
Moscow | Russia | Carbon Nanofibres Gas-
diffusion Electrode for HT-
PEMFC | 114 | | 17 | Antipov | Yuri V. | JSC CRISM
Khotkovo
Moscow
Region | Russia | Structural Carbon Plastics
Based on Polyimide Resin | 116 | | 18 | Kuznetcov | Danila A. | IMC RAN
St Peterburg | Russia | Heat Resistance and Stress-
strain Properties of the Films
of Statistical Copoly(urethane
-imide)s and their Blends with
Semicrystalline Polyimide of
Parent Structure | 121 | | 19 | Kuznetcov | Danila A. | IMC RAN
St Peterburg | Russia | Study of Macrodiisocyanate Synthesis Method for the Production of Poly(urethane-imide)s | 123 | |----|-------------|-----------|-----------------------------------|------------|--|-----| | 20 | ASKADSKII | Andrey A. | Nesmeyanov
INEOS RAN
Moscow | Russia | New Design Scheme for
Quantifying the Glass
Transition Temperature
Applied to Polyimides | 125 | | 21 | KOKHMETOVA | Saule | Al-Farabi
Kazakh NU.
Almaty | Kazakhstan | Comparison of Various Dehydrating Agents for Organic Battery Electrolytes | 129 | | 22 | SAPOZHNIKOV | Dimitriy | INEOS RAN
Moscow | Russia | Synthesis, Properties and
Applications of
Co(polyimides) Based on
3,5-diaminobenzoic acid | 130 | | 23 | BULYCHEVA | Elena G. | INEOS RAN
Moscow | Russia | New Complexes of
Sulfonated Polyphenyl-
quinoxalines and
Cetylpyridinium Chloride | 131 | | 24 | SHIFRINA | Zinaida | INEOS RAN
Moscow | Russia | Pyridylphenylene Dendrons
as Multifunctional Ligands for
Fabrication of Hybrid Organic-
Inorganic Catalysts | 132 | | 25 | ZABEGAEVA | Olesya N. | INEOS RAN
Moscow | Russia | Molecular Composites Based on Polycaproamide and Polyamidoimide: Formulation and Characterization | 134 | | 26 | PERS | Paul | ICGM AIME
Montpellier | France | Polybenzimidazole (PBI) Membranes Reinforced by PBI Nanofibres for High Temperature PEMFC Application | 135 | | 27 | AKROUT | Alia | ICGM AIME
Montpellier | France | Composite Polybenzimidazole
(PBI) Nanofibres for Chemical
and Mechanical Reinforcement
of PFSA Membranes | 136 | | 28 | Vygodskii | Yacob S. | INEOS RAN
Moscow | Russia | Ionic Condensation Polymers | 137 | ## Comparison of Various Dehydrating Agents for Organic Battery Electrolytes ## Saule T. KOKHMETOVA, Alina K. GALEYEVA, Andrey P. KURBATOV Al-Farabi Kazakh National University, 71 al-Farabi Ave., 050040, Almaty, Kazakhstan, tornatore@mail.ru It is known that the presence of water in organic electrolytes adversely affects the width of the working window of potentials, in which the processes of charge-discharge of batteries based on intercalation compounds of alkali metals occur. The purpose of this work is to reduce the water content in the organic electrolyte to an acceptable value. For drying, one of the common electrolytes for sodium ion batteries 0.5 M NaPF6 EC / DMC (1:1) was used. Freshly calcined calcium oxide and 4Å molecular sieves were used as desiccants. To determine the background current, cyclic voltammetry was performed with a sweep rate of 10 mV/s in a three-electrode cell with platinum as an auxiliary electrode, sodium iron-sulfate reference electrode, and also aluminum foil as a working electrode. Determination of water content in solutions was carried out by Karl Fischer titration tests. Initially, the water content in the used electrolyte reached about 1350 ppm of water, while the working window of potentials was half a volt. The use of calcium oxide, taken in an equivalent amount relative to water, made it possible to reduce the water concentration to 850 ppm. The background current did not exceed 1 μ A in the range of -0.75-1.25V. The use of 4Å molecular sieves reduced the water content to 250 ppm. Despite the still high water content in the electrolyte, the working potential range was -3.0-2V, which is quite an acceptable result. Thus, it was found that the drying of the organic electrolyte with 4Å molecular sieves made it possible to increase the width of the potential window to 5 volts, which is an acceptable result in comparison with the use of a calcium oxide desiccant.