
Mathematical modeling of the biomedical processes

А. О. Beketayeva book

Almaty

2018



2



Contents

Preface 5

1 Mathematical methods in biomedicine 7
1.1 Numerical Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Numerical Taxonomy Principles . . . . . . . . . . . . . . . . . . 7
1.1.2 Similarity Assessment. Association Coefficient . . . . . . . . . . 8
1.1.3 Correlation Coefficient. Distance Factor . . . . . . . . . . . . . 9
1.1.4 Analysis Methods in the Numerical Taxonomy . . . . . . . . . . 11

1.2 Dynamic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 Basic concepts. Phase spaces, phase trajectories. . . . . . . . . . 14
1.2.2 One-dimensional linear systems. Stability of the equilibrium po-

sition of one-dimensional systems . . . . . . . . . . . . . . . . . 17
1.2.3 Two-dimensional linear systems. The equilibrium position and

the stability of two-dimensional linear systems . . . . . . . . . . 18
1.3 Some information on numerical methods for solution of the partial dif-

ferential equations
34

1.3.1 Finite-difference approximation of derivatives . . . . . . . . . . 34
1.3.2 Estimation of the accuracy of finite-difference approximation of

derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.3.3 Implicit and Explicit schemes . . . . . . . . . . . . . . . . . . . 36
1.3.4 Estimation of the Stability of Finite-Difference Schemes . . . . 38

Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
List of Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 Mathematical modeling of the biomedical processes 43
2.1 Population and its characteristic relationships . . . . . . . . . . . . . . 43

2.1.1 The Malthusian growth modelа . . . . . . . . . . . . . . . . . . 44
2.1.2 The Logistic equation . . . . . . . . . . . . . . . . . . . . . . . . 44
2.1.3 A stochastic model of population growth . . . . . . . . . . . . . 46

2.2 Models of interaction of two types . . . . . . . . . . . . . . . . . . . . . 48
2.2.1 Competition between the two species . . . . . . . . . . . . . . . 48

3



4 Content

2.2.2 The predator-prey model . . . . . . . . . . . . . . . . . . . . . . 49
2.2.3 Generalized Models of Two Types Interaction . . . . . . . . . . 52
2.2.4 Microbial Population Simulation . . . . . . . . . . . . . . . . . . 53

2.3 Modeling of infectious diseases . . . . . . . . . . . . . . . . . . . . . 57
2.3.1 Модель SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.3.2 SIR Model of the epidemic . . . . . . . . . . . . . . . . . . . . . 59
2.3.3 The Simplest Mathematical Model of Infectious Disease . . . . . 62
2.3.4 Immunogenetic Description of Antivirus Immune Response Model 73

Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Exersices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
List of Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3 Spatially Inhomogeneous Models 85
3.1 Reaction-Diffusion Type Equation. Wave Solution . . . . . . . . . . . 86
3.2 Models of the reaction-diffusion-advection type . . . . . . . . . . . . . . 89
3.3 Modeling of blood flow dynamics in vessels with stenosis . . . . . . . . 92
3.4 Mathematical Simulation of the Process of Blood Clot Formation in the

Blood Circulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Questions and exercises. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
List of Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



Preface

Currently, high requirements are imposed on the modern biology and medicine.
The total amount of scientific information on the structure of a biological object or
any disease increases every year and one person and even a group of people cannot
accurately assess the importance of the available material. That’s when mathematics
comes to rescue and helps to structure the available materials. For example, statis-
tical data allows for making forecasts and revealing problematic areas which require
new ways and methods for their solution. As regards the detailed study of biomass
processes, their experimental study is limited, and the mathematical simulation (mod-
eling) is the most effective tool for their study. The use of the mathematic models
allows for making the biological phenomena analysis more accurate. These models
may be either purely statistical or dynamic. Honeycomb models and plant leaf posi-
tion models belong to the first type while the population growth processes or those of
epidemic advance belong to the second type. This tool development basically implies:
1) building a self-contained dynamic model of the process describing the biological
environment patterns based on the ordinary difference equations system; 2) building
a self-contained mechanical and mathematical models of the process describing the
biological environment patterns based on the continuum mechanics partial differential
equations system. It is well known that the above specified equations are basically
solved using numerical methods due to their complexity and diversity. The degree of
the mathematical methods elaboration in a scientific discipline serves as an objective
characteristic of the depth of the studied subject knowledge.

The study book consists of 3 (three) chapters describing mathematical methods
for simulation some population dynamics models, those of infectious diseases as well
as circulatory dynamics models. This educational aid’s structure was made in such a
way that allows for biomedical problems simulation using the mathematics and practi-
cally not requiring deep understanding of the process but requiring understanding the
mathematical methods’ principles.

The first chapter describes the basic mathematical methods of biomedical processes.
The possibility of creating a mathematical basis for the field of taxonomy, as the science
of classification, including theory, methods and applications is considered. The basic
concepts of dynamical systems, methods of studying dynamical systems are considered
also, some information is given on numerical methods for solving partial differential
equations.

The second chapter are presented the population models and the characteristic
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relationships are described. Also in this chapter are described the models of infectious
diseases, provides a qualitative analysis of the simplest model of the disease, the possible
forms of the dynamics of the disease and their classification are shown.

In the third chapter the spatial-heterogeneous models are presented and some hemo-
dynamic problems are considered. The structure of this study book is designed to intro-
duce students this vast field of science by choosing models and tasks from biomedicine,
reflecting the diversity of existing mathematical approaches, subordinating the material
to a certain logical sequence.



Chapter 1

Mathematical methods in biomedicine

The first chapter considers possibility of development of a mathematical basis for
the field of taxonomy as a science of classification including theory, methods and ap-
plications; mathematical methods sphere of application is of special interest. This
chapter also gives definition of some fundamental terms such as systematics, classifi-
cation, taxon, describes the basic principles of classification, the formation of the very
taxons and also describes the ways of similarity quantification.

1.1 Numerical Taxonomy
One of the main problems of biology is to include an organism in an appropriate

systematic group once it has been named. Systematics means a scientific research
of organisms diversity including not only description of these organisms and their re-
ferring to certain groups but also an explanation of such grouping. Classification is
referring organisms to certain groups based on certain criteria, such, for example, as:
morphological similarity or origin similarity. Taxonomy is determined as a science of
classification including theory, rules, methods and applications. Taxon is any taxon-
omy group resulting from application of a certain classification method. Organisms
may be grouped into one taxon based on: 1) significant phenetic similarity; 2) presence
of signs suggesting a common origin, or 3) a real kinship. There are monothetic and
polythetic groups, i.e. the groups of similar or different sets of features.

1.1.1 Numerical Taxonomy Principles

The main unit used in the taxonomy study is called the operational taxonomic unit
or OTU. The below specified various methods of similarity calculation apply to any
operational taxonomic units be they individual organisms or any abstract class of units.

In addition to monothetic and polytheistic, there is also the simplest case of classi-
fication - dichotomous classification based on the presence or absence of one feature or
another; in this particular case, the presence can be designated by 1, and the absence
can be expressed through 0. The main stages, of which consists the taxon formation
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procedure using the mathematical methods, are as follows:

Stage 1 The number of t operational taxonomic units subject to
classification is selected and for every of such OTU the
sufficiently large number of n corresponding character-
istic features is studied and coded. It is usually recom-
mended that the number n would be within the range
of 50 to 100 or more. If the number n is too small, the
final taxon structure may be too sensitive to the random
choice of features and the statistical accuracy of similar-
ity coefficient may be too low. The input data may be
expressed in the form of the n× t matrix.

Stage 2 All OTUs are compared with each other to determine
the degree of similarity based on the corresponding set
n of numerically coded features. The resultant set of
measured similarity coefficients may be expressed in the
form of t × t matrix. This matrix is, of course, sym-
metrical and, therefore, it is necessary to calculate and
record only half of its elements below or above the main
diagonal.

Stage 3 Based on the calculated similarity coefficients matrix, all
OTUs may be subdivided into the corresponding groups.
Very often, there may be several of such groups. Within
any such group, taxonomic units are much more sim-
ilar than the units belonging to different groups. In
many cases, combining several groups into higher rank
groups may result in a hierarchic structure. The com-
plete scheme of such taxonomic "tree" is later repre-
sented in the form of a dendrogram (tree diagram).

Stage 4 Classification correctness verification by means of an ex-
perimental assessment of the process forecasting.

Therefore, the taxonomic analysis method presented here has a clear logical basis.
There are three main ways of the quantitative expression of similarity, namely:

quantitative expression through association coefficients, correlation coefficients and dis-
tance indicators.

1.1.2 Similarity Assessment. Association Coefficient

Many various association coefficients are used in biology, ecology, zoology, psychol-
ogy, etc. Nevertheless, all those coefficients are based on comparison of two sets of
features for any certain pair of operational taxonomic units.

Let us consider j-th and k-th thaxonomic units as an example. Let us suppose that
the number of features available for both OTUs is n11, and the number of "missing"
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features is n00; let us express the total number of features available for the first and
missing in the second taxonomic unit through n10 and the reverse combination as n01.

Table 2. Comparison of two taxonomic units’ characteristic features.

0 1 Summ
k-th О.Т.Е 0 n00 n01 n0∗
j-th О.Т.Е 1 n10 n11 n∗0

Summ n∗0 n∗1 n

It is a common practice to write the number of matching and mismatching pairs of
characteristic features designated correspondingly as m and u, where

m = n00 + n11, u = n01 + n10, m+ u = n.

Therefore, there are m of features that are matching for both OTUs and mismatch-
ing u features. The simplest association coefficient is just a relative number of matching
features.

S1 =
m

n
,

This correlation has the following properties: S1 → 1 atm→ n, i.e. u→ 0, S1 → 0
at m→ 0. Therefore, complete matching is expressed by 1 and complete mismatching
by 0.

Save for coincidences by the absence of features, coefficient usage is more preferable.

S2 =
n11

n11 + u
,

Same as above, complete matching u→ 0 and S2 → 1, while complete mismatching
is n11 → 0, S2 → 0.

1.1.3 Correlation Coefficient. Distance Factor

Correlation coefficients are used for measurement of the degree of correlation be-
tween two features and they are applied to the continuous variables. Let us suppose
that all elements of the main matrix n × t are continuous variables. Then, for j-th
taxonomic unit we will have n measurements designated as xij, i = 1, ..., n. Let’s
suppose that the average value of the taxonomic units is equal to x̄j. Likewise, for
the k-th taxonomic units there are measurements xik, i = 1, ..., n for average values
x̄k. The correlation coefficient of the mixed moments between these two groups of
measurements is equal.

rjk =

∑n
i=1(xij − x̄j)(xik − x̄k)

[
∑n

i=1(xij − x̄j)2
∑n

i=1(xik − x̄k)2]1/2
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This coefficient varies from -1 in the event of complete negative correlation to +1
in the event of complete positive correlation.

Distance Factor

The use of some "distance" parameter is another way of determining the degree of
similarity of two taxonomic units. Let us suppose that there are totally three features
(i.e. n = 3) and changes revealed that those features are designated by the following
values x1j, x2j, x3j for j-th OTU and x1k, x2k and x3k for k-th OTU. Then, these
two taxonomic units may be univocally shown in the three-dimensional space by dots
(x1j, x2j, x3j) and (x1k, x2k, x3k), distance between which ∆jk is determined by the
expression

∆2
jk = (x1j − x1k)

2 + (x2j − x2k)
2 + (x3j − x3k)

2

Generalized expression of distance between the j-th and k-th taxonomic units in
the event of n features is as follows:

∆2
jk =

n∑
i=1

(xij − xik)2.

Distance ∆jk between two dots is equal to zero if the values of xij and xik for all i
(i.e. for every feature) match precisely. Any difference leads to increase of this value
and, therefore, it is quite sensible to consider this distance as a difference indicator.

Another method is to normalize the data on the matrix rows, as it was described
when considering the correlation coefficients. If normalized changes are used, zij than
the above distance calculation formula shall be replaced with the following formula.

∆2
jk =

n∑
i=1

(zij − zik)2.

Value ∆jk depends not only on the very results of changes zij, but also on the
number of compared features n. In one case only, when the comparisons of all pairs
of taxonomic units are based on one and the same value of n, this is of no significant
importance. To simplify comparison in the events when different n values are used, it
is better to calculate the mean square value for distance

d2
jk =

∆2
jk

n
.

In terms of numerical taxonomy, taxonomic distance parameters are the simplest
and the most convenient.



1.1. Numerical Taxonomy 11

1.1.4 Analysis Methods in the Numerical Taxonomy

Described below are several simple methods of hierarchical analysis, namely: the
most distant neighbours method or full connection method, the nearest neighbour
method or single connection method and the weighted pair-wise average. One of the
methods is the method of the most distant neighbour or full connection.

Let us suppose that it is necessary classify the given set of objects by the nearest
neighbour method. The distance between two classes is determined as distance between
the nearest representatives of the classes. For this purpose, a matrix of distance between
the objects is calculated. At each step of the distance matrix the minimum value is
determined corresponding the distance between two the closest objects. The found
objects are combined into one new object. This procedure is repeated until all the
considered objects are combined. Let us suppose that the following distance matrix is
given:

1 2 3 4
1 0 2 .06 4.03 6.32
2 2.06 0 4.12 2.25
3 4.03 4.12 0 3.50
4 6.32 2.25 3.50 0

Step 1 In accordance with the classification criteria, combination happens between the
objects the distance between the nearest representatives thereof is least of: 1 and 2, 3
and 4. The distance of combination is 2.06. It is necessary to carry out recalculation
of the distance matrix with due account for the new object:

1,2 3 4
1,2 0 4.12 6.32
3 4.12 0 3.50
4 6.32 3.50 0

Step 2 The given step’s objects are as follows: (1,2), 3, 4. In accordance with the new
distance matrix, 3 and 4 are the closest objects. Distance of combination - 3.5. It is
necessary to carry out recalculation of the distance matrix with due account for the
new object:

1,2 3,4
1,2 0 6.32
3,4 6.32 0
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Step 3 The given step’s objects are as follows: (1,2), and (3, 4). Distance between them
is equal to 6.32; this distance between the 1st and 4th objects. Hierarchy formation is
completed. The results of classification by the nearest neighbour method are given in
the form of a tree diagram:

Figure 1.1.1

When the nearest neighbour method is used, special attention shall be paid to
selection of measure of distance between the objects. Based on such measure, the initial
distance matrix is formed that determines the whole further classification process.

The Nearest Neighbour Method or Single Connection Method

The given method of hierarchical analysis differs from the previous one by determin-
ing the distance between the classes, i.e. distance between two classes is determined as
the distance between the nearest representatives thereof. Let us suppose that it is nec-
essary classify the given set of objects by the nearest neighbour method. The distance
between two classes is determined as distance between the nearest representatives of
the classes. A matrix of distance between the objects is calculated. At each step of the
distance matrix the minimum value is determined corresponding the distance between
two the closest objects. The found objects are combined into one new object. This
procedure is repeated until all the considered objects are combined. Let us suppose
that the following distance matrix is given:

1 2 3 4
1 0 2.06 4.03 6.32
2 2.06 0 2.5 4.12
3 4.03 2.5 0 2.24
4 6.32 4.12 2.24 0
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Step 1. In accordance with the classification criteria, combination happens between
the objects the distance between the nearest representatives thereof is least of: 1 and 2,
3 and 4. The distance of combination is 2.06. It is necessary to carry out recalculation
of the distance matrix with due account for:

1,2 3 4
1,2 0 2.5 4.12
3 2.5 0 2.24
4 4.12 2.24 0

Step 2. The given step’s objects are as follows: (1,2), 3, 4. In accordance with the
new distance matrix, 3 and 4 are the closest objects. Distance of combination - 2.24.
It is necessary to carry out recalculation of the distance matrix with due account for
the new object:

1,2 3,4
1,2 0 2.5
3,4 2.5 0

Step 3. The given step’s objects are as follows: (1,2), and (3, 4). Distance between
them is equal to 2.50; this is the distance between the 2nd and 3rd objects. Hierarchy
formation is completed. The results of classification by the nearest neighbour method
are given in the form of a tree diagram:

Figure 1.1.2
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Weighted Average Pair-wise Method

Difference of the given method from the previous ones consists in the fact that
distance between the classes is determined as an average arithmetic distance between
their nearest representatives. Let us suppose that the object k was formed by means
of combination of u and v. It is necessary to calculate the distance of cluster from the
cluster k. Distance between these clusters will be determined by the following formula:

D((u, v), w) =
Duw +Dvw

2
.

Therefore, it is obvious that the hierarchic analysis methods differ not only in the
used similarity and difference measurements but also by classification algorithms.

1.2 Dynamic Systems

1.2.1 Basic concepts. Phase spaces, phase trajectories.

Let the state of any system (in physics, chemistry, biology, etc.) be described by
variables x1, x2, ..., xn which change with time t. We consider a system described by
variables x1, x2, ..., xn which change with time t. The velocity of change of quantities
x1, x2, ..., xn depending on the t is a derivative of these quantities from t and the
functions of these quantities together with the parameters influencing the velocity of
change lead to differential equations.

A dynamical system is a system of ordinary differential equations of the forms:
ẋ1 = f1(x1, x2, ..., xn),

ẋ2 = f2(x1, x2, ..., xn),

..............................

ẋn = fn(x1, x2, ..., xn)

(1.1)

Where, ẋ1 =
dx1

dt
, ẋ2 =

dx2

dt
, ..., ẋn =

dxn
dt

.
For a fixed t the variables x1(t), x2(t), ..., xn(t) can be considered as the coordinates

of a point of the n - dimensional space (which is called the phase space). With the
variation of the variable t, the point (x1(t), x2(t), ..., xn(t)) is a depicting point, describes
in the phase space some kind of a curve - the phase trajectory. On the phase trajectory
the arrows are indicate showing the direction of movement of the depicting points with
increasing of t. In vector form the system (1.1) can be written in the form:

ẋ = f(x1, x2, ..., xn) (1.2)

где, ẋ = (ẋ1, ẋ2, ..., ẋn), f = (f1, f2, ..., fn). We denote the solution of this system by
x = φ(t) = (φ1(t), φ2(t), ...φn(t)). It is assumed that the right-hand sides of the system
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(1) have continuous first-order partial derivatives in x1, x2, ..., xn. Then it follows from
the theory of differential equations that for any t = t0 and any pointM0(x01, x02, ...x0n)
the only solution of the system (1.1) exists, passing through the point M0 at the time
t = t0. We consider the equation (first-order system) ẋ = x and its general solution
x = Cet.

Figure 1.2

Figure 1.3

The Fig. 1.2 shows the integral curves of this equation. The phase trajectories are
the projections of the integral curves onto the line (Figure 1.3).

Thus, the integral curves give complete information about the solutions of the
system, and the phase trajectories carry less information. It can be seen from Fig. 1.2
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that the velocity of change of x increases with increasing of t, this is not visible in the
phase trajectory. However, it is easier to study phase trajectories (without knowledge
of integral curves). To obtain integral curves, it is necessary to solve a system of
differential equations, which is often impossible; moreover, if a solution is obtained for
the system, it is so tedious, that the study of its properties becomes a complex problem.

We consider the following properties of phase trajectories:
Property 1. If x = φ(t) is a solution of the system (1.2), then for any real number

c, x = φ(t+ C) there is also a solution of the system (1.2).
Property 2. Two phase trajectories of the system (1.2) either do not have

common points, or coincide. Thus, the phase space of the system (1.2) consists of
disjoint phase trajectories, i.e. through each point one and only one phase trajectory
goes through.

Definition: The point a = (a1, a2, ...an) is called the equilibrium position of the
system (2), if f(a) = 0. In other words, a - is the solution of the system f(x) = 0.

For example, for a system{
ẋ = y,

ẏ = −x

(0; 0) – is the only equilibrium position.

The system

{
ẋ = x(x− y),

ẏ = x2 − 3y + 2

has three equilibrium positions: (1;1), (2;2), (0;2/3).

Property 3. If a is the equilibrium position of system (1.2), then x = a is the
solution of system (1.2), and the point x = a is its phase trajectory.

Property 4. Every phase trajectory of system (1.2) has one of three types:
- smooth curve without self-intersections,
- closed smooth curve,
- point.
The solution of the system (1.2) passing through the point x0 = (x01, x02, ..x0n) will

be denoted as x = x(t, x0), (x0 = x(0, x)

Property 5. x(t1 + t2, x0) = x(t2, x(t1, x0)- is a group property . That is, if the
movement begins along the phase trajectory from the point x0 and goes along t on
t1 + t2, then it appears at the same point as moving from the point x(t1, x0) on t2.

The qualitative theory of differential equations deals with the study of the properties
of a dynamical system without solving it. Figure 1.4 shows curves that can not be phase
trajectories.

The investigation of a dynamical system consists of studying of phase trajecto-
ries with different behaviors - the phase portrait of a dynamic system or individual
trajectory properties.
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Figure 1.4

1.2.2 One-dimensional linear systems. Stability of the equilib-
rium position of one-dimensional systems

We consider the one-dimensional system:

ẋ = f(x) (1.3)

where x ∈ R1, f(x) – numeric function.

The phase space here is a straight line. It is clear that if f(x) > 0 at some interval,
then ẋ > 0, with time the coordinate x grows and the depicting point moves along the
phase line to the right, if f(x) < 0, then - to the left. If f(x) = 0, then x is the position
of equilibrium.

Example. To represent the phase portrait of the equation

ẋ = x(x− 1)(x+ 2)3(x− 3)2

We find the positions of equilibrium and use the method of intervals to determine the
signs of the right-hand side of the equation (Figure 1.5): After this, we represent the

Figure 1.5

phase portrait (Figure 1.6). From this figure it is clear that there exists a neighborhood
of the point O as such that for any initial point x0 from this neighborhood

lim
x→∞

x(t, x0) = 0,
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Figure 1.6

i.e, the depicting point, having started the motion "near" to x = 0, tends to this
equilibrium position with the passage of time. This equilibrium position is called
asymptotically stable. The equilibrium positions x = −2 ,x = 1 ,x = 3 are called
unstable.

stability of state equilibrium can be defined as follows: if, for a sufficiently small
deviation from the equilibrium position, the system never goes far from a singular
point, then the singular point will be a stable equilibrium state, which corresponds to
a stable regime of the system functioning.

A mathematical definition of the stability of the equilibrium state of the equation
dx/dt = f(x) is as follows:
The state of equilibrium is stable by Lyapunov, given an arbitrarily small positive
number ε, one can always find such δ, that

|x(t)− x̄| < ε для t0 < t < +∞

если
|x(t0)− x̄| < δ (1.4)

In other words, for a stable equilibrium state the following statement is true: if at
a time the deviation from the equilibrium state is small (|x(t0)− x̄| < δ), then at any
subsequent time t > t0 the deviation of the solution of the system from the state of
equilibrium will also be small: |x(t)− x̄| < ε.

In other words: steady state is called stable if small deviations do not lead the
system too far from the vicinity of this steady state.

A steady state is called asymptotically stable if small deviations from it decrease
with the time. A steady state is called unstable if small deviations increase with the
time.

1.2.3 Two-dimensional linear systems. The equilibrium posi-
tion and the stability of two-dimensional linear systems

We consider phase portraits of two-dimensional systems:{
ẋ = f1(x, y)

ẏ = f2(x, y).
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We begin our study with linear systems:{
ẋ = ax+ by

ẏ = cx+ dy
(1.5)

where a, b, c, d– real numbers.
We first consider the degenerate case ad − bc = 0. We divide the second equation

of system (1.5) by the first

ẏ

ẋ
=
dy

dt
:
dx

dt
=
dy

dx
≈ cx+ dy

ax+ by
.

The right-hand side of the equation is shortened, then:

dy

dx
= k.

Where from y = kx+m, where k, m are real numbers. The phase trajectories (1.5)
are located on parallel lines y = kx+m, and all points of the line ax+ by = 0 are the
equilibrium positions of the system (1.5).

In the case when the system (1.5) has the form{
ẋ = 0

ẏ = cx+ dy

it is necessary to divide the first equation by the second:

dx

dy
= 0

In case, if {
ẋ = 0

ẏ = 0

all points of phase plane are equilibrium state.
Now, it is ad− bc 6= 0. In this case, the system if equilibrium{

ax+ by = 0

cx+ dy = 0

Has the only solution (0;0), therefore, (1.5) has the only equilibrium state (0;0).
We make linear transformation in (1.5){

u = Ax+By

v = Ex+ Fy
(1.6)
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Where A,B,E, F are real numbers, AF −BE 6= 0. We can choose the coefficient’s A,
B, E, F as such to allow the new system to have the appearance{

u̇ = λ1u,

v̇ = λ2v.
(1.7)

{
u̇ = Aẋ+Bẏ

v̇ = Eẋ+ F ẏ{
u̇ = A(ax+ by) +B(cx+ dy) = λ1u = λ1(Ax+By)

v̇ = E(ax+ by) + F (cx+ dy) = λ2v = λ2(Ex+ Fy){
A(ax+ by) +B(cx+ dy) = λ1(Ax+By)

E(ax+ by) + F (cx+ dy) = λ2(Ex+ Fy).

Equating the coefficients under x and y, we have
Aa+Bc = λ1A,

Ab+Bd = λ1B,

Ea+ Fc = λ2E,

Eb+ Fd = λ2F,

that is, {
(a− λ1)A+ cB = 0,

bA+ (d− λ1)B = 0,{
(a− λ2)E + cF = 0,

bE + (d− λ2F ) = 0.

These systems have non-zero solutions if λ1 и λ2 are the solutions of equation∣∣∣∣a− λ c
b d− λ

∣∣∣∣ =

∣∣∣∣a− λ b
c d− λ

∣∣∣∣ = 0 (1.8)

or, revealing the determinant, we get:

λ2 − (a+ d)λ+ ad− bc = 0.

Equation (1.8) is called the characteristic equation of the system (1.5), and λ1, λ2

are called characteristic numbers.
Let us consider various cases.

1. λ1 и λ2 действительные и λ2 > λ1 > 0. Solving each equation of the system (1.7)
separately, we obtain

u = C1e
λ1t, v = C2e

λ2t (1.9)
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то есть при C1 6= 0.

v = C2e
λ2t = |C1|

−
λ2

λ1C2|C1e
λ1t|

λ2

λ1 = |C1|
−
λ2

λ1C2|u|
λ2

λ1 = C3|u|
λ2

λ1 . (1.10)

As
λ2

λ1

> 1, then the phase trajectories of the system (1.7) have the form shown in Fig.
1.7.

Figure 1.7

When C1 = 0 and C2 = 0 it follows from (1.9) that on the lines u = 0 and v = 0 the
phase trajectories are also located. As λ1 > 0 and λ2 > 0, then from (1.9) we obtain

lim
t→∞

u =∞, lim
t→∞

v =∞,

that is, the arrows are directed from the point (0; 0). This equilibrium position is
called an unstable node.

If λ1 > λ2 > 0 then 0 < λ2
λ1
< 1 and the phase portrait is shown in Fig. 1.8.

2. λ1 and λ2 are real, and λ2 < λ1 < 0. As λ2
λ1
> 1 then the phase trajectories of

the system (1.7) have the same form as in Fig. 1.7. But it follows from (1.9) that

lim
t→∞

u = 0, lim
t→∞

v = 0.

The equilibrium position in this case is called a stable node.
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Figure 1.8

Figure 1.9

If λ1 < λ2 < 0 then the phase trajectories have the same form as in Fig. 1.8, but
the depicting points move along them to the origin of coordinates. Then the phase
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portrait is shown in Fig. 1.9.
3. λ1 and λ2 are real, and λ1 = λ2 = λ. If the system (1.5) has the form{

ẋ = λx,

ẏ = λy,
(1.11)

then x = C1e
λt, y = C2e

λt и y =
C2

C1

x = C3x – lines moving through the origin of

coordinates. The point (0;0) is a dicritical node that is stable at λ < 0 (Figure 1.10)
and unstable for λ > 0 (Figure 1.11).

Figure 1.10

Now we give the location of the phase trajectories of the system (1.5) with λ < 0
(Fig. 1.12) and λ > 0 (Fig. 1.13). The equilibrium position in this case is called a
degenerate node (respectively, stable and unstable).

4. λ1 и λ2 are real and of different signs. In (1.10)
λ2

λ1

< 0, and, besides, it follows

from (1.9) that when λ1 > 0, λ2 < 0, C1 6= 0.

lim
t→∞

u =∞, lim
t→∞

v = 0,

and at λ1 < 0, λ2 > 0, C2 6= 0,

lim
t→∞

u = 0, lim
t→∞

v =∞.

The equilibrium position is called the saddle.
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Figure 1.11

Figure 1.12

5. λ1 = p+ iq, λ2 = p− iq, p 6= 0, q 6= 0. It can be proved that the system (1.5) can
be lead to the following form by special linear transformations:{

u̇ = pu+ qv,

v̇ = −qu+ pv
(1.12)

Passing here to the polar coordinates

u = ρcos(θ), v = ρsin(θ),

we have:



1.2. Dynamic Systems 25

Figure 1.13


dρ

dt
cosθ − ρsinθdθ

dt
= pρcosθ + qρsinθ

dρ

dt
sinθ + ρcosθ

dθ

dt
= −qρcosθ + pρsinθ

Multiplying the first equation of this system by cosθ, and the second by sinθ, and
adding the resulting equations, we obtain

dρ

dt
= pρ. (1.13)

We find more

dθ

dt
= θ̇ = (arctan

v

u
)∗ =

1

1 + (
v

u
)2

v̇u− vu̇
u2

=
u2

u2 + v2
∗(−qu+ pv)u− v(pu+ qv)

u2
= −q.

It follows from (1.13) that if p > 0, then the depicting point moves away from the
origin of coordinates with increasing of time, if p < 0, then approaching. In this case,
it moves clockwise in a spiral (θ̄ < 0) or counterclockwise (θ̄ > 0) depending on the
sign of q.

Summarizing the above, we obtain that if the real parts p of the λ1, λ2 are positive,
the phase trajectories of the system (1.12) have the form shown in Fig. 1.16 or in Fig.
1.17. The equilibrium position "0" is called in this case an unstable focus.
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Figure 1.14

Figure 1.15

For the case p < 0 the phase trajectories are shown in Fig. 1.18 and in Fig. 1.19.
The equilibrium position 0 in this case is a – stable focus.

6. λ1 = iq, λ2 = iq, q > 0. ВIn this case (1.13) gives ρ = C1 that is, phase trajec-
tories are circles with the center at the origin of coordinates (Fig. 1.20 or Fig. 1.21).
The equilibrium position is called the center. Note that if we return to the variables x
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Figure 1.16 Figure 1.17

Figure 1.18 Figure 1.19

and y, that is, to the system (1.5), then the phase portraits will differ from the phase
portraits of the systems (1.7) and (1.12) by rotation and stretching.

7. One or both of the characteristic numbers is equal to zero. Substituting in (1.8)
λ = 0 we obtain ad − bc = 0, and this case was considered at the beginning of the
section.

It is seen that in the case of a node and a saddle, there are four trajectories, each
representing a half-line, lying on two straight lines y = k1x and y = k2x.

If the equilibrium position is a node, then the remaining trajectories touch one of
these lines at the origin of coordinates. For phase trajectories in the vicinity of the
saddle these lines are asymptotes (and are called separatrices of the saddle).

Let us considered the behavior of the phase trajectories of the system{
ẋ = −3y,

ẏ = 2x− y.
(1.14)



28 Ch. 1. Mathematical methods in biomedicine

Figure 1.20 Figure 1.21

The characteristic equation for (1.14)

∣∣∣∣−λ −3
2 −1− λ

∣∣∣∣ =0

where, λ1 = −1

2
−
√

23

2
, λ2 = −1

2
+

√
23

2
i, - roots of the equation of equilibrium, (0;0)

– is a stable focus.

Figure 1.22

Example.
Consider the search for stationary states given by second-order nonlinear differential
equations:
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dx

dt
= x− 9xy − x2

dy

dt
= 3xy − 4y − 2y2

(1.15)

Linearize the system (1.15) with the following substitution:{
x = x̄+ ξ

y = ȳ + η
dξ

dt
= x̄+ ξ − 9(x̄+ ξ)(ȳ + η)− (x̄+ ξ)2

dη

dt
= 3(x̄+ ξ)(ȳ + η)− 4(ȳ + η)− 2(ȳ + η)2

dξ

dt
= x̄+ ξ − 9(x̄ȳ + x̄η + ξȳ + ξη)− x̄2 − 2x̄ξ − ξ2

dη

dt
= 3(x̄ȳ + x̄η + ξȳ + ξη)− 4ȳ − 4η − 2ȳ2 − 4ȳη − 2η2


dξ

dt
= x̄− 9x̄ȳ − x̄2 + ξ(1− 9ȳ − 2x̄)− 9x̄η − ξ2 − 9ξη

dη

dt
= 3x̄ȳ − 4ȳ − 2ȳ2 + 3ξȳ + η(3x̄− 4− 4ȳ)− 2η2 + 3ξη

x̄− 9x̄ȳ − x̄2 = 0; x̄ȳ − 4ȳ − 2ȳ2 = 0;

P ′x(x̄, ȳ) = a = 1− 9ȳ − 2x̄; P ′y(x̄, ȳ) = b = −9x̄;

Q′x(x̄, ȳ) = c = 3ȳ; Q′y(x̄, ȳ) = d = 3x̄− 4− 4ȳ;

We cut off the nonlinear part. 
dξ

dt
= aξ + bη

dη

dt
= cξ + dη

(1.16)

Let us find four singular points. To this end, we equate system (1.15) to zero:{
x− 9xy − x2 = 0

3xy − 4y − 2y2 = 0{
x(1− 9y − x) = 0

y(3x− 4− 2y) = 0
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1. x1 = 0, y1 = 0; 2. x2 = 0, y2 = −2; 3. x3 = 1, y3 = 0;

4.

{
1− 9y − x = 0

3x− 4− 2y = 0{
x = 1− 9y

3− 27y − 4− 2y = 0
−29y = 1

x4 =
38

29
, y4 = − 1

29
;

We consider the system (1.16) at each of the four singular points. For the first point
(0, 0) we obtain the following coefficients:

a = 1− 9ȳ − 2x̄ = 1;

b = −9x̄ = 0;

c = 3ȳ = 0; d = 3x̄− 4− 4ȳ = 4;
dξ

dt
= ξ

dη

dt
= −4η

D = (a+ d)2 − 4(ad− bc) = 9 + 16 = 25

λ1,2 =
(a+ d)±

√
D

2
=
−3± 5

2
= 1; −4.

Horizontal isocline:
dξ

dt
= 0, ξ = 0.

Vertical isocline:
dη

dt
= 0, η = 0.
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Figure 1.23 – Phase portrait is saddle

Consider the second stationary point: (0,-2)

a = 1− 9ȳ − 2x̄ = 19; b = −9x̄ = 0;
c = 3ȳ = −6; d = 3x̄− 4− 4ȳ = 4;


dξ

dt
= 19ξ

dη

dt
= −6ξ + 4η

D = (a+ d)2 − 4(ad− bc) = 232 − 4 ∗ 76 = 225

λ1,2 =
(a+ d)±

√
D

2
=

23± 15

2
= 19; 8.

Phase portrait is unstable node.

Horizontal isocline:
dξ

dt
= 0, ξ = 0.

Vertical isocline:
dη

dt
= 0, η =

3

2
ξ.
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Figure 1.24 – Phase portrait is unstable node

Consider the third stationary point: (1,0):

a = 1− 9ȳ − 2x̄ = −1; b = −9x̄ = −9;

c = 3ȳ = 0; d = 3x̄− 4− 4ȳ = −1;
dξ

dt
= −ξ − 9η

dη

dt
= −η

D = (a+ d)2 − 4(ad− bc) = 4− 4 = 0

λ1,2 =
(a+ d)±

√
D

2
=
−2

2
= −1; −1.

The phase portrait is a stable node. Horizontal isocline:

dξ

dt
= 0, η = −1

9
ξ.

Vertical isocline:
dη

dt
= 0, η = 0.
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Figure 1.25 – Phase portrait is a stable degenerate node

Fourth stationary point - (
38

29
,− 1

29
)

a = 1− 9ȳ − 2x̄ = −38

29
; b = −9x̄ = −342

29
;

c = 3ȳ = − 3

29
; d = 3x̄− 4− 4ȳ =

2

29
;

dξ

dt
= −38

29
ξ − 342

29
η

dη

dt
= − 3

29
ξ +

2

29
η

D = (a+ d)2 − 4(ad− bc) =
5704

841

λ1,2 =
(a+ d)±

√
D

2
=
−1.24± 2.6

2
= 0.68; −1.92.

Phase portrait is saddle. Horizontal isocline:

dξ

dt
= 0, η = − 38

342
ξ.

Vertical isocline:
dη

dt
= 0, η =

3

2
ξ.
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Figure 1.26 – phase portrait for the fourth stationary point is saddle

1.3 Some information on numerical methods for so-
lution of the partial differential equations

In this part of the chapter we give some basic information on numerical methods
for solution of the partial differential equations.

1.3.1 Finite-difference approximation of derivatives

We consider the function p(x, y, z, t) of three spatial coordinates and time, the
values of which are determined at the points of the space-time grid, separated by equal
intervals (steps) along the corresponding directions. Dimensionless coordinates are
entered:

i =
x

δx
, j =

y

δy
, k =

z

δz
, t =

T

δt
,

where, δx, δy – are steps on horizontal coordinates, δz -is a vertical coordinate step,
δt –is a time step. The value of a function p(x, y, z, t) at the point xi, yj, zk, tn will be
denoted as pnijk, that is pnijk = p(xi, yj, zk, t

n).
There are a number of ways to replace derivatives of functions by approximate finite

difference relations. The choice of a suitable method for the difference approximation
of the derivatives is determined by the specific features of the particular problem being
solved. We consider two of them, the function of one of the coordinates, for example
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x. Approximate values of the derivatives can be written in the form:

(
∂p

∂x
)i ≈ (δ1

xp)i =
1

δx
(pi+1 − pi) (1.17)

(
∂p

∂x
)i ≈ (δ2

xp)i =
1

2δx
(pi+1 − pi−1) (1.18)

The first method of approximation of derivatives is called a two-point (one-sided
difference upwind), the second method is a three-point approximation (centered dif-
ference). There are other more precise finite difference relations. Approximate values
of derivatives of higher orders can be obtained using approximate expressions for first-
order derivatives. Below is the finite difference approximation for the second derivative:

(
∂2p

∂x2
)i ≈ (δxxp)i =

1

(δx)2
(pi+1 − 2pi + pi−1). (1.19)

The above relations can easily be extended to the case of a function of several variables,
for example, for the Laplace operator the following finite difference approximation is
obtained:

(∆p)ij =
∂2p

∂x2
+
∂2p

∂y2
≈ (δxxpij) + (δyypij) =

=
1

(δx)2
(pi+1,j − 2pi,j + pi−1,j) + (

1

(δy)2
(pi,j+1 − 2pij + pi,j−1)

1.3.2 Estimation of the accuracy of finite-difference approxima-
tion of derivatives

In solving this problem, an important step is to estimate the accuracy of the finite
difference approximation of the derivatives. For this purpose, the difference between
the approximate and exact values of the derivatives at the point i is introduced:

ε = δxp−
∂p

∂x
(1.20)

The use of the expansion of the Taylor series

p(x+ δx) = p(x) +
∂p

∂x
δx+

1

2!

∂2p

∂x2
(δx)2 +

1

3!

∂3p

∂x3
(δx)3 + ...

leads to the relations:
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pi+1 = pi + (
∂p

∂x
)iδx+

1

2!
(
∂2p

∂x2
)i(δx)2 +

1

3!
(
∂3p

∂x3
)i(δx)3 + ...

pi−1 = pi + (
∂p

∂x
)i(−δx) +

1

2!
(
∂2p

∂x2
)i(−δx)2 +

1

3!
(
∂3p

∂x3
)i(−δx)3 + ...

ubstitution of the obtained expression in (1.20) leads:

ε1 = (δ1
x)p−

∂p

∂x
=

1

2!
(
∂2p

∂x2
)i(δx)2 +

1

3!
(
∂3p

∂x3
)i(δx)3 + ... = O(δx)

ε2 = (δ2
x)p−

∂p

∂x
=

1

2 ∗ 3!
(
∂3p

∂x3
)i(δx)3 + ... = O((δx)2)

Considering the differences, one can see that the leading term of the series expressing
the difference ε has a multiplier in the first case δx, in the second - (δx)2. Since the
grid spacing is small, we can say that these series have in the first case the first order
of accuracy, in the second - the second, and is denoted by symbols O(δx), O((δx)2).

1.3.3 Implicit and Explicit schemes

To solve the partial differential equations problems, the difference approximation of
differential equations containing time derivatives is of particular interest. Here we con-
sider two schemes: explicit and implicit. For simplicity, the simplest linear differential
equation is considered:

∂v

∂t
+ c

∂v

∂y
= 0 (1.21)

where c – constant.
When the desired variables can be expressed in terms of known parameters, such

schemes are explicit. A finite-difference analogue of equation (1.21) can be written in
the form:

(
∂v

∂t
)nj + c(

∂v

∂y
)nj = 0

The use of (1.18) for the derivative with respect to the spatial coordinate, and to the
time derivative of (1.17), leads to the following two types of finite difference equations:

vn+1
j − vnj +

α

2
(vnj+1 − vnj−1) = 0 (1.22)

vn+1
j − vn−1

j + α(vnj+1 − vnj−1) = 0 (1.23)

где α = c δt
δy
.
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Assuming that the values v function at a given and preceding time, that is under
n, n− 1 are known, using any of the expressions (1.22), (1.23) it is possible to express
values at a future time, that is, a value vn+1

j through known functions explicitly:

vn+1
j = vnj −

α

2
(vnj+1 − vnj−1)

vn+1
j = vn−1

j − α(vnj+1 − vnj−1) = 0.

If the time derivatives and other terms of the differential equation are attributed to
different points in time the implicit schemes are obtained. In this case, the unknown
variables are not expressed explicitly. For example, if the time derivative is attributed
to the moment in time n, and the other terms of the equation to the moment of time
n+ 1,

(
∂v

∂t
)nj + α(

∂v

∂y
)n+1
j = 0

then applying the second order of approximation of the derivatives one can obtain the
following finite difference equation:

vn+1
j − vn−1

j + α(vnj+1 − vnj−1) = 0 (1.24)

If the time derivative is attributed to the moment of time n the other terms of the
equation can be expressed in terms of the function values at different time, including
moment n+ 1

(
∂v

∂t
)nj =

1

2
[(
∂v

∂y
)n+1
j + (

∂v

∂y
)n−1
j ] (1.25)

and applying to the derivatives of t and n+ 1 the second way of approximating the
derivatives, can be obtained:

vn+1
j − vn−1

j +
α

2
(vn+1
j+1 − vn+1

j−1 + vn−1
j+1 − vn−1

j−1 ) = 0 (1.26)

The relations (1.24) and (1.26) give a connection between the future value of the
function at the moment of time n + 1 and the value of the function at the previous
moment of time. The function at the point (j, n + 1) can not be expressed through
the other functions explicitly, that is why similarly finite difference schemes are called
implicit. Since the implicit schemes do not allow one to calculate the required variables,
in practice these relationships are represented in the form of difference equations that
can be solved by specially constructed methods (iterative). The choice of the scheme
for approximation the equations is determined by the features of the problem being
solved.
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1.3.4 Estimation of the Stability of Finite-Difference Schemes

When solving finite-difference equations, it is necessary to repeatedly perform sim-
ilar computational procedures. If you do not take special measures, then if you repeat
the same calculations repeatedly, the small errors in the initial data or in the process
of calculation may increase and distort the decision. This phenomena is called compu-
tational instability. We consider it using the equation (1.21) as an example. We first
obtain an exact solution of the equation under the condition that at the initial time
the function v(y) has the form:

v(y) = Aeimy,

where A – wave amplitude, m = 2π/L – wave number, L – wavelength, i =
√
−1.

In accordance with the form of the initial condition, we find the solution of (1.21)
in the form:

v(y, t) = Aei(my−σt),

where σ = 2π/T – circular frequency, T – period. Velocity c = σ/m – – wave velocity.
It is easy to see that

∂v

∂t
= −iσAei(my−σt), ∂v

∂y
= −imAei(my−σt),

Substituting these expressions into equation (1.19), we obtain

iAei(my−σt)[−σ + cm] = 0.

where from σ = cm, means
v(y, t) = Aeim(y−ct).

The resulting solution reflects the movement of the wave without changing the
amplitude of the wave, which means the stability of the solution. If we go over to
the corresponding finite-difference equations and represent the required function at the
initial time in the form:

v0
j = Aeimjδy,

and the solution of the finite-difference equations will be search in an analogous form:

vnj = Aei(mjδy−σnδt),

then it is easy to verify that

vn−1
j = Aei(mjδy−σ(n−1)δt) = vnj e

iσδt,

vnj+1 = vnj e
imδy,

vnj−1 = vnj e
−imδy,
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vn+1
j+1 = vnj e

j(mδy−σδt),

vn+1
j−1 = vnj e

i(−mδy−σδt).

We consider now an explicit scheme upwind differences, i.e. scheme (1.17). Substi-
tuting the expressions just obtained in (1.20), we arrive at the equation

vnj e
−iσδt − vnj +

α

2
(vnj e

imδy − vnj e−imδy) = 0

or
vnjm[e−iσδt − 1 +

α

2
(eimδy − e−imδy)] = 0.

As vnj 6= 0, then it follows that

e−iσδt − 1 +
α

2
(eimδy − e−imδy) = 0

We will take into account that according to Euler’s formula eiz−e−iz = 2isinz, suppose
that σ = σr + iσi, where σr и σi – are real and imaginary parts σ, and note that

e−iσδt = e−i(σr+iσi)δt = e−iσrδteσiδt)eσiδt[cos(σrδt)− isin(σrδt)]

Then we obtain

eσiδt[cos(σrδt)− isin(σrδt)]− 1 + iαsin(mδy) = 0

Separating the real and imaginary parts, we find:

eσiδtcos(σrδt) = 1

eσiδtsin(σrδt) = αsin(mδy)

Raising both sides of the equalities into squares and adding them, we find

e2σiδt = 1 + α2sin2(mδy)

Since, the right-hand side of this equation is always greater than one, then e2σiδt > 1
,which means,

2σiδt > 0

. Hence, always σi > 0. We now analyze the resulting solution

vnj = Aei(mjδy−σnδt) = Aei[mjδy−(σr+iσi)bδt] = Aeσinδtei(mjδy−σrnδt)

It can be seen that the first multiplier for the amplitude A at σi > 0 will increase
with increasing of time, which means the amplitude of the initial wave will increase.
The increase in amplitude will be the stronger, the larger the time step. At an infinitely
small step with respect to the time the amplitude will not increase. Hence it can be
concluded that an explicit scheme with one-sided upwind difference has computational
instability.
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Questions:

1. Describe the main groups of numerical taxonomy.
2. What are the main principles of numerical taxonomy?
3. Uncover the differences between the simply-connected method and the "full
link" method.
4. Provide a definition of the dynamic system, give examples. 5. What is the
depicting point of a dynamic system?
6. Explain, what the phase trajectory is, name the basic properties of the phase
trajectories.
7. Explain the stability of the equilibrium position of one-dimensional systems.
8. What is the asymptotically stable equilibrium position of dynamical systems?
9. Provide a definition of stability by Lyapunov.
10. Explain what the characteristic equation of the dynamic system is?
11. Explain what the characteristic numbers of the dynamic system are?
12. Determine the conditions and describe the equilibrium position - an unstable
node.
13. Determine the conditions and describe the equilibrium position - a stable
node.
14. Determine the conditions and describe the equilibrium position - saddle.
15. Determine the conditions and describe the equilibrium position — a steady
focus.
16. Determine the conditions and describe the position - centre.
17. Estimate the accuracy of finite-difference approximation of the second deriva-

tive
∂2p

∂x2
using the central difference (II method of representing of the first deriva-

tive).
18. Investigate the stability scheme with a central difference (1.24).
19. Investigate on stability an implicit scheme for approximation of equation
(1.22).

Exercises:
1. Build a similarity matrix by statistical data.

2. Determine the taxonomic groups using the method of the most remote neighbors
and build a dendrogram for the following matrix of characteristics:
1 0 3.06 20.3 7.52 5.03
2 3.06 0 7.50 8.24 3.45
3 20.3 7.50 0 2.25 3.65
4 7.52 8.24 2.25 0 4.81
5 5.03 3.45 3.65 4.81 0
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1 0 2.06 40.3 6.32 2.08
2 2.06 0 3.50 4.12 5.43
3 4.03 3.50 0 2.25 3.65
4 6.32 4.12 2.25 0 4.81
5 2.08 5.43 3.65 4.81 0

3. Build an algorithm to determine taxonomic groups using the "medium link"
method.

4. Draw the phase portraits of the following equations:

(a) ẋ = 2x− x2

(b) u̇ = (u− 1)(u2 − 4)

(c) ṗ = p2 + 1

(d) ẋ = 0

(e) ẋ = x5(x− 1)8(x+ 2)9(3− x)8

(f) v̇ = sinv.

(g) ẋ = 9x− x2

(h) u̇ = (u− 2)(u2 − 9)

(i) ṗ = p2 + 4

(j) ẋ = x2(x− 1)3(x+ 2)9(3− x)7

(k) v̇ = cosu.

5. Research the behavior of the phase trajectories of the following systems:

(a)

{
ẋ = 5x− y,
ẏ = 3x+ y.

(b)

{
ẋ = −2x+ y,

ẏ = x− 2y.
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(c)

{
ẋ = y,

ẏ = 3x− y.

(d)

{
ẋ = x− y,
ẏ = x+ y.

(e)

{
ẋ = 10x− 100y,

ẏ = x+ 10y.

(f)

{
ẋ = x− 2y,

ẏ = x− y.

(g)

{
ẋ = 7x− 2y,

ẏ = x− 1.01y.

(h)

{
ẋ = y,

ẏ = 3x− y.

(i)

{
ẋ = x− y,
ẏ = x+ y.

(j)

{
ẋ = 5x− 50y,

ẏ = x+ 10y.

(k)

{
ẋ = 3x− 2y,

ẏ = x− 3y.

(l)

{
ẋ = 7x− 2y,

ẏ = x− 1.01y.

(m)

{
ẋ = 3x− y,
ẏ = 5x+ y.
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Chapter 2

Mathematical modeling of the
biomedical processes

2.1 Population and its characteristic relationships
Ecology is a science that explores the structure and functioning of a population,

community, ecosystem in space and time, in natural and human conditions. A popu-
lation is usually understood as the aggregate of a certain number of individuals. Many
biological studies deal with such problems as the development and evolution of species,
competition between species, the influence of environmental factors, the spread of epi-
demics, etc. None of these studies can be absolutely accurate if it does not begin with
the construction of some acceptable mathematical model of the population in question.

Relationships in populationsare intraspecific interactions. By the nature of these
interactions, populations of different species are extremely diverse. In populations,
there are all types of connections inherent in living organisms, but the most common
are mutually beneficial and competitive relationships.

The population size is the total number of individuals in a given territory or in
a given volume. Population density is the number of individuals per unit area or
volume, for example, 150 pines per 1 hectare, or 0.5 grams of cyclops per water. They
characterize the population density of these species. There are three types of population
dynamics of numbers:

1) stable; 2) changeable; 3) explosive.
Types of population dynamics of numbers regulate their number and adapt to

changing environmental conditions by updating and replacing individuals. Individuals
appear in the population through birth and immigration, but disappear as a result of
death and emigration.

One of the simplest models of population growth belongs to T. Malthus, who at
the end of the 18th century. noted that populations tend to increase exponentially. In
nature, the number of most living creatures can indeed increase in geometric progres-
sion, but the growth of populations is constrained by factors such as the struggle for
existence, disease, natural death and destruction by predators. Usually, if the popula-
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tion begins to develop in an environment with a sufficient amount of food and with a
relatively small number of predators, then initially its population grows very quickly.
Over time, food reserves are depleted, overpopulation leads to conditions less favorable
for survival, fertility is reduced and mortality increases. Under certain conditions, an
equilibrium state is reached and the population size becomes more or less constant.
Obviously, it is very important to know the exact ratio between the population size at
different times and the rates of reproduction and death.

2.1.1 The Malthusian growth modelа

The Malthusian model of population growth is a classic model of unlimited growth.
Let N(t) be the number of individuals in a population at time t, and let b and d be
the average per capita birth rate and death rate, respectively. In a short time ∆t, the
number of births in the population is b∆tN , and the number of deaths is d∆tN . An
equation for N at time t+ ∆t is then determined to be:

N(t+ ∆t) = N(t) + b∆tN(t)− d∆tN(t),

which can be rewritten as:

(N(t+ ∆t)−N(t))/∆t = (b− d)N(t),

and as ∆t→ 0,
dN

dt
= (b− d)N. (2.1)

With an initial population size of N0, and with r = b− d positive, the solution for
N = N(t) grows exponentially: N(t) = N0e

rt.

2.1.2 The Logistic equation

In accordance with the exponential law, an isolated population would develop under
conditions of unlimited resources. As it was said above, in nature such conditions are
extremely rare. It is assumed that the environment has an internal capacity of K, and
populations exceeding this size increase mortality. To model population growth with
an environmental carrying capacity K, we look for a nonlinear equation of the form

dN

dt
= rNF (N),

where F (N) provides a model for environmental regulation. This function must
satisfy the following conditions:

1. F (N) = 1 (the population grows exponentially with growth rate r when N is
small),

2. F (N) = 0 (the population stops growing at the carrying capacity),
3. F (N) < 0 при N > K (the population decays when it is larger than the carrying

capacity).
The simplest function F (N) satisfying these conditions is linear and given by
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F (N) = 1−N/K

The resulting model is the well-known logistic equation

dN

dt
= rN(1−N/K). (2.2)

This equation describes many biological processes.
In the logistic equation (2.2), the fixed points are N∗ = 0, K. A sketch of F (N) =

rN(1−N/K) versus N , with r, K > 0 in Fig. 2.1 immediately shows that N∗ = 0 is
an unstable fixed point and N∗ = K is a stable fixed point.

Figure 2.1

Applying the analytical approach and calculating the derivative of the function
F ′(N) = r(1 − 2N/K), we find that F ′(0) = r > 0 and F ′(K) = −r < 0.Again we
conclude that N∗ = 0 is unstable and N∗ = K is stable.

We represent the analytical solution of the logistic equation.We begin by nondi-
mensionalizing time and population size: τ = t/t∗, η = N/N∗, therefore, the logistic
equation (2.2) becomes:

dη

dτ
= rt∗η(1−N∗η/K),

which assumes the simplest form with the choices t∗ = 1/r and N∗ = K. There-
fore, our dimensionless variables are τ = rt, η = N/K ,and the logistic equation, in
dimensionless form, becomes

dη

dτ
= η(1− η), (2.3)
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with the dimensionless initial condition η(0) = η0 = N0/K, where N0 is the initial
population size. Note that the dimensionless logistic equation (2.3) has no free param-
eters, while the dimensional form of the equation (2.2) contains r and K. Reduction in
the number of free parameters (here, two: r andK) by the number of independent units
(here, also two: time and population size) is a general feature of nondimensionalization.

Solving the dimensionless logistic equation (2.3) can proceed by separating the
variables. Separating and integrating from τ = 0 to τ and η = 0 to η yields∫ η

η0

dη

η(1− η)
=

∫ τ

0

dτ.

The integral on the left-hand-side can be performed using the method of partial
fractions. Returning to dimensional variables, we finally have:

N(t) =
N0

N0/K + (1−N0/K)e−rt
.

The conclusion of the Malthusian growth model implicitly assumed a large popu-
lation size. Usually smaller populations exhibit stochastic effects, and this can greatly
complicate the simulation.

2.1.3 A stochastic model of population growth

The population models we examined were deterministic. However, there are two
aspects in which the deterministic model can not serve as an accurate reflection of
real ecological systems. First, it does not take into account the probabilistic nature
of the processes of reproduction and death; secondly, does not take into account the
random oscillations occurring in the medium with time and lead to random fluctuations
of the model parameters. Taking these factors into account leads to a significant
complication of the mathematical apparatus. Therefore, usually researchers try to build
deterministic models, confining themselves to mentioning the possible consequences
of accounting stochastics. If the deterministic model indicates a stable equilibrium,
the stochastic model predicts a long-term survival. If a deterministic model predicts
periodic declines in the number of one or more species, the stochastic model will give
some positive probability of extinction of these species. Finally, if the deterministic
model does not reveal equilibrium or the equilibrium is unstable, the stochastic model
predicts a high probability of extinction.

The size of the population N is now considered to be a discrete random variable. We
define the time-dependent probability mass function pN(t) of N to be the probability
that the population is of size N at time t. Since N must take on one of the values from
zero to infinity, we have

∞∑
N=0

pN(t) = 1
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for all t ≥ 0. Again, let b be the average per capita birth rate. Suppose that for
∆t → 0 the probability that a person gives birth for a time ∆t is given by b∆t. For
example, if the average per capita birthrate is one offspring every 365-day year, then the
probability that a given individual gives birth on a given day is 1/365. Furthermore, we
will suppose that at t = 0, the population size is known to be N0, so that pN0(0) = 1,
with all other pN ’s at t = 0 equal to zero.

We can determine a system of differential equations for the probability mass func-
tion pN(t) as follows. For a population to be of size N > 0 at a time t + ∆t, either
it was of size N − 1 at time t and one birth occurred, or it was of size N at time t and
there were no births; that is

pN(t+ ∆t) = pN−1(t)b(N − 1)∆t+ pN(t)(1− bN∆t) (2.4)

Subtracting pN(t) from both sides, dividing by ∆t and taking the limit ∆t→ 0, we
obtain ordinary differential equations,

dpN
dt

= b[(N − 1)pN−1 −NpN ], N = 1, 2, .... (2.5)

где, p0(t) = p0(0).

We first review how to solve a first-order linear differential equation of the form

dy

dt
+ ay = g(t), y(0) = y0 (2.6)

where y = y(t) and a is constant. First, we look for an integrating factor µ such
that

d

dt
(µy) = µ(

dy

dt
+ ay).

Differentiating the left-hand-side and multiplying out the right-hand-side results in
µ:

y
dµ

dt
+ µ

dy

dt
= µ

dy

dt
+ µay,

which leads to the following equation:

dµ

dt
= µa

We may integrate this equation with an arbitrary initial condition, so for simplicity
we take µ(0) = 1. Therefore, µ(t) = eat. Hence,

d(eaty)

dt
= eatg(t)

Integrating this equation from 0 to t yields, we get

eaty(t)− y(0) =

∫ t

0

easg(s)ds
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Therefore, the solution is

y(t) = e−at(y(0) +

∫ t

0

easg(s)ds) (2.7)

Equations (2.5) яare equations (2.6) with:

a = bN и g(t) = b(N − 1)PN−1

With the population size known to be N0 at t = 0, the initial conditions can be
written succinctly as pN(0) = δN,N0 , where δij is the Kronecker delta, defined as

δi,j =

{
0, if i 6= j

1, if i = j

Thus, formally integrating (2.5) and using (2.7) we obtain the solution in the fol-
lowing form:

pN(t) = e−bNt[δN,N0 + b(N − 1)

∫ t

0

ebNspN−1(s)ds].

2.2 Models of interaction of two types

2.2.1 Competition between the two species

Suppose that two species compete for the same resources. To build a model, we
can start with logistic equations for both species. Different species would have different
growth rates and different carrying capacities. If we let N1 and N2 be the number of
individuals of species 1 and species 2, then

dN1

dt
= r1N1(1−N1/K1),

dN2

dt
= r2N2(1−N2/K2), (2.8)

These are un coupled equations so that asymptotically N1 → K1 и N2 → K2.
How do we model the competition between species? If N1 is much smaller than

K1, and N2 much smaller than K2, then resources are plentiful and populations grow
exponentially with growth rates r1 and r2. If species one and two compete, then the
growth of species one reduces resources available to species two, and vice-versa. Since
we do not know the impact species one and two have on each other, we introduce
two additional parameters to model the competition. A reasonable modification that
couples the two logistic equations is

dN1

dt
= r1N1(1− N1 + a12N2

K1

),



2.2. Models of interaction of two types 49

dN2

dt
= r2N2(1− a21N1 +N2

K2

) (2.9)

where a12 and a21 are dimensionless parameters that model the consumption of
species one’s resources by species two, and vice-versa. For example, suppose that both
species eat exactly the same food, but species two consumes twice as much as species
one. Since one individual of species two consumes the equivalent of two individuals of
species one, the correct model is a12 = 2 and a21 = 1/2. Another example supposes
that species one and two occupy the same niche, consume resources at the same rate,
but may have different growth rates and carrying capacities. Can the species coexist,
or does one species eventually drive the other to extinction? It is possible to answer
this question without actually solving the differential equations. With a12 = a21 = 1
as appropriate for this example, the coupled logistic equations (2.9) become

dN1

dt
= r1N1

(
1− N1 +N2

K1

)
,

dN2

dt
= r2N2

(
1− N1 +N2

K2

)
(2.10)

We assume that K1 > K2. The only fixed points other than the trivial one
(N1, N2) = (0, 0) are (N1, N2) = (K1, 0) and (N1, N2) = (0, K2). Stability can be
computed analytically by a two-dimensional Taylor series expansion, but here a sim-
pler argument can suffice. We first consider (N1, N2) = (K1, ε), with ε small. Since
K1 > K2, observe from (2.10) that N2 < 0 so that species two goes extinct. Therefore
(N1, N2) = (K1, 0) is a stable fixed point. We have thus found that, within our coupled
logistic model, species that occupy the same niche and consume resources at the same
rate cannot coexist and that the species with the largest carrying capacity will survive
and drive the other species to extinction. This is the so-called principle of competitive
exclusion, also called K-selection since the species with the largest carrying capacity
wins. In fact, ecologists also talk about r-selection; that is, the species with the largest
growth rate wins. Our coupled logistic model does not model r-selection, demonstrat-
ing the potential limitations of a too simple mathematical model. For some values of
a12 and a21, our model admits a stable equilibrium solution where two species coexist.
The stable coexistence of two species within our model is possible only if a12K2 < K1
and a21K1 < K2. The stable coexistence of two species in our model is possible.

2.2.2 The predator-prey model

Lotka and Volterra proposed in the 1920s a mathematical model for the population
dynamics of a predator and prey, and these Lotka-Volterra predator-prey equations
have since become an iconic model of mathematical biology. To develop these equations,
suppose that a predator population feeds on a prey population, that the number of prey
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grow exponentially in the absence of predators (there is unlimited food available to the
prey), and that the number of predators decay exponentially in the absence of prey
(predators must eat prey or starve). Contact between predators and prey increases
the number of predators and decreases the number of prey. Let U(t) and V (t) be the
number of prey and predators at time t. To develop a coupled differential equation
model, we consider population sizes at time t+ ∆t. Exponential growth of prey in the
absence of predators and exponential decay of predators in the absence of prey can be
modeled by the usual linear terms. The coupling between prey and predator must be
modeled with two additional parameters. We write the population sizes at time t+ ∆t
as

U(t+ ∆t) = U(t) + α∆tU(t)− γ∆tU(t)V (t),

V (t+ ∆t) = V (t) + εγ∆tU(t)V (t)− β∆tV (t).

The parameters α and β are the average per capita birthrate of the prey and the
death rate of the predators, in the absence of the other species. The parameter γ is the
fraction of prey caught per predator per unit time; the total number of prey caught by
predators during time ∆t is γ∆tUV . The prey eaten is then converted into newborn
predators (view this as a conversion of biomass), with conversion factor ε, so that the
number of predators during time ∆t increases by εγ∆tUV .

Converting these equations into differential equations by letting ∆t→ 0, we obtain
the well-known Lotka-Volterra predator-prey equations:

dU

dt
= αU − γUV,

dV

dt
= εγUV − βV. (2.11)

We now reconsider the Lotka-Volterra equations (2.11). Fixed point solutions are
found by solving

U̇ = V̇ = 0.

Solutions are

(U∗, V∗) = (0, 0) or (U∗, V∗) =

(
β

εγ
,
α

γ

)
.

The first fixed point (0, 0) is unstable since the prey population grows exponentially
if it is initially small. To determine the stability of the second fixed point, we write
the Lotka-Volterra equation in the form:

dU

dt
= F (U, V )

dV

dt
= G(U, V ),
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where
F (U, V ) = αU − γUV, G(U, V ) = εγUV − βV.

The partial derivatives are then computed to be:

FU = α− γV, FV = −γU

GU = εγV, GV = εγU − β.

The Jacobian at the fixed point (U∗, V∗) =

(
β

εγ
,
α

γ

)
is:

J∗ =

(
0 −β/ε
εα 0

)
.

Characteristic variables are determined from the equation:

det(J∗ − λI) =

∣∣∣∣ −λ −β/εεα −λ

∣∣∣∣ = λ2 − αβ = 0.

has the solutions λ± = ±i
√
αβ, which are pure imaginary.

When the eigenvalues of the two-by-two Jacobian are pure imaginary, the fixed
point is called a center and the perturbation neither grows nor decays, but oscillates.
Here, the angular frequency of oscillation is ω =

√
αβ, and the period of the oscillation

is 2π/ω.
The Lotka-Volterra equations has four free parameters α, β, γ and ε. Theorem pre-

dicts that nondimensionalizing the equations can reduce the number of free parameters
by three to a manageable single dimensionless grouping of parameters. We choose to
nondimensionalize time using the angular frequency of oscillation and the number of
prey and predators using their fixed point values.

We introduce dimensionless variables in the form:

t̄ =
√
αβε, Ū = U/U∗ = εγβU, V̄ = V/V∗ = γαV. (2.12)

Substitution of (2.12) into the Lotka-Volterra equations (2.11) results in thedimen-
sionless equations:

dŪ

dt
= r(Ū − Ū V̄ ),

dV̄

dt
=

1

r
(Ū V̄ − V̄ ), (2.13)

With single dimensionless grouping r =
√

α
β
. Specification of r together with initial

conditions completely determines the solution. It should be noted here that the long-
time solution of the Lotka-Volterra equations depends on the initial conditions. This
asymptotic dependence on the initial conditions is usually considered a flaw of the
model.
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2.2.3 Generalized Models of Two Types Interaction

As it was mentioned above, the large number of models describing interaction of
types was developed the right parts of which represented the functions of the interacting
populations. The task of developing the common criteria allowing for determining the
functions that can describe the particular pattern of the behavior of the temporary
population size, including stable fluctuations was dealt with. The best know of these
models were developed by Kolmogorov and Rosenzweig.

A.N. Kolmogorov considered the generalized model of biological species interaction
of "Predator-Prey" or "Parasite-Carrier" type. The model is a system of two equations
of general type.

dx

dt
= k1(x)x− L(x)y

dy

dt
= k2(x)y (2.14)

The model is based on the following assumptions:

Assumption 1 Predators do not interact with each other, i.e. the coefficient
of predators reproduction k2 and the number of its preys L,
consumed by one predator in a unit of time does not depend on
y.

Assumption 2 Increase in the number of preys in the presence of predators
is equal to the increase in the absence of predators minus
the number of preys consumed by the predators. Functions
k1(x), k2(x), L(x) are continuous and are determined on the pos-
itive semi-axis x, y ≥ 0.

Assumption 3 dk1/dx < 0. This means that the preys reproduction coefficient
in the absence of predators decreases monotonously with increase
in the number of preys reflecting the restricted nature of food
and other resources.

Assumption 4 dk2/dx > 0, k2(0) < 0 < k2(∞). With the increase in the num-
ber of preys, the coefficient of predators reproduction decreases
monotonically with an increase in the number of preys, transfer-
ring from the negative values (when there is nothing to eat) to
the positive ones.

Assumption 5 Number of preys consumed by one predator per a unit of time
is L(x) > 0 at N > 0; L(0) = 0.

Time independent solutions (two or three) have the following coordinates:

(1). x̄ = 0; ȳ = 0.
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Central point of coordinates irrespective of parameters’ values is in the form of
saddle.

(2). x̄ = A, ȳ = 0. (2.15)

The value ofA is determined from the following equation: k1(A) = 0. Стационарное
решение (2.15) седло, если B < A, B определяется из уравнения:

k2(B) = 0.

Time-independent solution (2.15) - saddle, if B < A, the value of B is determined by
the following equation:

k2(B) = 0.

Point (2.15) moves in the positive values area (positive square) if B > A. This is a
stable node. The last case is that of death of a predator and survival of a prey.

(3). x̄ = B, ȳ = C. (2.16)

The value of C is determined from the following equation:

k2(B) = 0; k1(B)B − L(B)C = 0.

Point (2.16) - a node, stability of which depends on the sign of the value σ

σ2 = −k1(B)−k1(B)B + L(B)C.

Если σ > 0, the point is stable, if σ < 0 the point is unstable and there may be
boundary cycles around it.

2.2.4 Microbial Population Simulation

Microbiological populations represent a really blood experimental object for verifi-
cation of concepts, results of both ecological and evolutional theories. For the most part
microorganisms are one-celled organisms; they have the high surface to volume ratio
and therefore, high intensity of exchange with environment, high rate of reproduction
and large increase in biomass. There is another factor, which is relative homogeneity of
the microorganisms culture within the propagator volume. This allows for neglecting
spatial effects. In microbiology, empirical treatment to model building is widely used.
There is limited growth of microogranisms in the natural continuous-flow systems and
in the most common type of continuous propagators - chemostats, where the culture
diluting rate or flow rate is set. Chemostat theory was first developed by Mono (1950)
and Herbert (1956) and has been improved since then. The modern models take into
account structural inhomogenuity of biomass, age inhomogenuity of culture and other
details of cultivation. Subject to continuous mixing, the whole volume of the prop-
agator may be considered as homogeneous, concentration of supporting medium and
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cells at every point of propagator is considered to be the same and the behaviour of
those concentrations in time may be described using the system of ordinary differential
equations:

dx

dt
= µ(S)x−Dx

dy

dt
= DS0 − αµ(S)x−DS

µ(S) =
µmS

Km − S
(2.17)

The variables and the description of the reduced system of equations (2.17) are
given below:

S — supporting medium concentration
x — cells content in propagator
S0 — content of supporting medium put into the propagator
D — velocity of culture dilution
α−1 — «economic coefficient», indicating the part of consumed supporting

medium used for biomass increase
µ(S) — increase in biomass through supporting medium
D(x) — biomass outflow from the propagator
αµ(S)x — amount of supporting medium consumed by the culture cells
DS — unused supporting medium outflow from the propagator
DS0 — supporting medium inflow into the propagator

Velocity of biomass growth is assumed to be depending on the supporting medium
concentration in accordance with the Mono formula (third equation 2.17). Where: KM

- Michaelis constant is one of the most important values for the enzymatic reactions
that are determined experimentally having sense and dimensionality of the supporting
medium content at which the reaction velocity is equal to half the maximum µm -
maximum growth velocity. The considered model is simplified and requires additional
information for description of real processes. For example, at the large concentrations,
supporting medium may have an inhibiting action and the rate formula shall be as
follows:

µ(S) =
µmS

Km + S + AS2
. (2.18)

Stationary modes study.

Let us enter sizeless concentration, time and velocity of flow

x′ = αx/KS, y = S/KS, y0 = S0/KS, t′ = tµα, D′ = D/µα
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With new variables (let us leave out prime marks of the new variables), the system
is as follows:

dx

dt
= µ(y)x−Dx

dy

dt
= −µ(y)x+D(y0 − y)

µ(y) =
y

1 + y
(2.19)

Let us calculate the steady-state concentration for biomass and substrate. Let us
make the right parts of the equation equal to zero:(

ȳ

1 + ȳ
−D

)
x̄ = 0

− ȳ

1 + ȳ
x̄+D(y0 − ȳ) = 0 (2.20)

The algebraic equation system (2.20) has two solutions; correspondingly, the differ-
ential equations system (2.19) has two stationary states:

x̄1 = 0, ȳ1 = y0, (2.21)

x̄2 = y0 −
D

1−D
, ȳ2 =

D

1−D
, (2.22)

Dimensionless concentration of cells x has sense only at the value of x > 0 and
the dimensionless concentration of substrate y is limited with the value y0 = S0/K -
inflowing substrate medium concentration. Zero steady-state value of biomass (2.22)
has sense only when dimensionless rate of flow D is below the certain value.

D ≤ y0

1 + y0

= D0 (2.23)

Boundary value of the flow rate is called a washout rate. In the dimensional form
its value is:

Dα =
µαy0

KS + y0

(2.24)

At the flow rate exceeding Db, biomass increase cannot compensate its outflow and
the culture is completely washed out from the propagator.

Let us determine the nature of stability of steady-state conditions of the system
using the system linearization method in the neighbourhood of the steady-state condi-
tion.

Characteristic determinant of the system (2.19) is as follows:

∣∣∣∣∣∣∣
µ(ȳ)−D − λ x̄

(1 + ȳ)2

−µ(ȳ)
x̄

(1 + ȳ)2
−D − λ

∣∣∣∣∣∣∣ (2.25)
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Let us explore the nature of the washout mode stability - special point with the
coordinates (2.21). In this case

µ(y0) =
y0

1 + y0

= Dα (2.26)

then, the characteristic determinant takes the form of

∣∣∣∣ Dα −D − λ 0
−Dα −D − λ

∣∣∣∣ = 0 (2.27)

The root of characteristic equation (2.27)

λ1 = −D

λ2 = Dα −D (2.28)

are real and have various signs at D < DB, which means the dilution rate below
the washout rate. Thereat, the (0, y0) point is unstable - saddle.

If D > DB - both roots are negative and special point (2.21) is the stable node. This
mode is called a washout mode. Supporting medium concentration in the propagator is
equal; thereat, the inflowing substrate concentration S0 and the biomass concentration
is equal to zero. If an inoculant is placed in the propagator, microorganisms will be
washed out therefrom before reproduction.

For the second special point with (2.22) coordinates, characteristic equitation roots
are equal to:

λ1 = −D

λ2 = −(Dα −D)(1 + y0)(1−D). (2.29)

this equilibrium condition, which is not the zero one in terms of biomass, exists in
the positive quadrant of the phase plane only at the dilution rate value D < DB. Since

Dα =
y0

1 + y0

≤ 1

all three multiplicators used in the expression for λ2 in (2.29) are positive. Corre-
spondingly, λ2 < 0 and the (2.22) point is the stable node. This is the working state
of the flow-through propagator.
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Infectious diseases at the present stage of human development continue to be a
serious threat, which people have to reckon with in carrying out their activities in
various fields. In emergency situations, knowledge of the dynamics of the risk of an
infectious disease will allow timely implementation of a set of measures to protect the
population, including preventive and curative nature. Along with this, the formulation
of experiments in this area is practically impossible and the mathematical modeling of
processes and phenomena taking place at the same time comes to the fore, the basis
of which will be statistical information on morbidity.Along with this, the formulation
of experiments in this area is practically impossible and the mathematical modeling of
processes and phenomena taking place at the same time comes to the fore, the basis
of which will be statistical information on morbidity. A qualitative prognosis of the
spread of the disease is achievable only on the basis of adequate mathematical models.
This chapter presents the most basic mathematical models of infectious disease and
epidemics, such as SI and SIR.These models form the basis for more detailed and
expanded models currently used by the world health organizations, both to predict the
future spread of the disease, and to develop strategies for containment and eradication
of diseases. Also in the chapter are the mathematical models in immunology developed
by Marchuk. In some literature, the term "infectious disease" is understood as the
relationship established between members of the biocenosis, one of which (antigen)
due to the mechanisms of pathogenicity is able to exist in another, and this other
(organism) by means of the immunity system is able to counteract the pathogenic
action. One of the main ways to protect against infectious diseases is the system of
immunity, the main function of which is to maintain the genetic permanence of the
internal environment of the human body and ensure the normal functioning of all its
systems.

2.3.1 Модель SI

The simplest model of an infectious disease categorizes people as either susceptible
or infective (S (susceptible) and I (infective)). One can imagine that susceptible people
are healthy and infective people are sick. A susceptible person can become infective
by contact with an infective. Here, and in all subsequent models, we assume that
the population under study is well mixed so that every person has equal probability
of coming into contact with every other person. We derive the governing differential
equation for the SI model by considering the number of people that become infective
during time ∆t.

Let β∆t - be the probability that a random infective person infects a random
susceptible person during time ∆t. Then with S susceptible and I infective people,
the expected number of newly infected people in the total population during time ∆t
is β∆tSI. Thus,
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I (t+ ∆t) = I (t) + β∆tS (t) I (t) ,

and in the limit ∆t→ 0,

dI

dt
= BSI (2.30)

We now assume a constant population size N , neglecting births and deaths, so that
S + I = N . We can eliminate S from (2.30) and rewrite the equation as:

dI

dt
= βNI (1− I/N) ,

which can be recognized as a logistic equation, with growth rate βN and carrying
capacity N . Therefore I → N as t → ∞,and the entire population will become
infective.

The SI model may be extended to the SIS, model, where an infective can recover
and become susceptible again. We assume that the probability that an infective recov-
ers during time ∆t, is given by γ∆t. Then the total number of infective people that
recover during time ∆t, is given by I × γ∆t, and:

I (t+ ∆t) = I (t) + β∆tS (t) I (t)− γ∆tI (t)

or as ∆t→ 0,

dI

dt
= BSI − γI (2.31)

Using S + I = N , S we eliminate from (2.31) and define the basic reproductive ratio
as:

R0 = βN/γ

Equation (2.31) may then be rewritten as

dI

dt
= γ (R0 − 1) I (1− I/N (1− 1/R0)) ,

which is again a logistic equation, but now with growth rate γ (R0 − 1) and carrying
capacity N (1− 1/R0).The disease will disappear if the growth rate is negative, that is,
R0 < 1, and it will become endemic if the growth rate is positive, that is, R0 > 1. For
an endemic disease with R0 > 1 the number of infected people approaches the carrying
capacity: t→∞.

We can give a biological interpretation to the basic reproductive ratio R0. Let l(t) -
be the probability that an individual initially infected at t = 0, is still infective at time
t. Since the probability of being infective at time t + ∆t is equal to the probability
of being infective at time t multiplied by the probability of not recovering during time
∆t, we have:
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l(t+ ∆t) = l(t)(1− γ∆t).

or as ∆t→ 0,

dI

dt
= −γl.

With initial condition l (0) = 1, the decision is write in the form:

l (t) = e−γt

Now, the expected number of secondary infections produced by a single primary
infective over the time period (t, t+ ∆t), is given by the probability that the primary
infective is still infectious at time t multiplied by the expected number of secondary
infections produced by a single infective during time ∆t; that is, l (t)× S (t) β∆t. We
assume that the total number of secondary infections from a single infective individual
is small relative to the population size N . Therefore, the expected number of sec-
ondary infectives produced by a single primary infective introduced into a completely
susceptible population is:∫ ∞

0

βl (t)S (t) dt ≈ βN

∫ ∞
0

l (t) dt = βN

∫ ∞
0

e−γtdt =
βN

γ
R0,

where we have approximated S (t) ≈ N during the time period in which the in-
fective remains infectious. If a single infected individual introduced into a completely
susceptible population produces more than one secondary infection before recovering,
then R0 > 1, and the disease becomes endemic.

The spread of infectious diseases is a complex process with a multitude of inter-
acting factors. The key role of mathematical epidemiology is to create patterns of
pathogen distribution. These models serve as a mathematical basis for understanding
the complex dynamics of the spread of the disease. In the next section, the classical
SIR model will be described and investigated.

2.3.2 SIR Model of the epidemic

The SIR model, first published by Kermack and McKendrick in 1927, is undoubt-
edly the most famous mathematical model for the spread of an infectious disease. Here,
people are characterized into three classes: susceptible S, infective I and removed R.
Removed individuals are no longer susceptible nor infective for whatever reason; for
example, they have recovered from the disease and are now immune, or they have been
vaccinated, or they have been isolated from the rest of the population, or perhaps they
have died from the disease. As in the SIS model, we assume that infectives leave the
I class with constant rate γ, but in the SIR model they move directly into the R class.
The corresponding coupled differential equations are:
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dS

dt
= −βSI,

dI

dt
= −βSI − γI,

dR

dt
= γI,

with the constant population constraint S+ I +R = N .For convenience, we nondi-
mensionalize this equation using N for population size and γ - for time; that is, let:

S =
S

N
, I =

I

N
, R =

R

N
, t = γt,

and define the dimensionless basic reproductive ratio as:

R0 = βNγ (2.32)

The dimensionless SIR equations are then given by:

dS

dt
= −R0SI,

dI

dt
= R0SI − γI, (2.33)

dR

dt
= I,

with dimensionless constraint S + I +R = 1.
Let

(
Ŝ∗, Î∗, R̂∗

)
be the fixed points of (2.33). Setting dŜ/t̂ = dÎ/dt̂ = dR̂/dt̂ = 0,

we immediately observe from the equation for dR̂/dt̂ that Î = 0. Since with Î = 0, we
have R̂ = 1− Ŝ, and all stationary points are given as

(
Ŝ∗, Î∗, R̂∗

)
=
(
Ŝ∗, 0, 1− Ŝ∗

)
.

We will use the SIR model to address two fundamental questions: First- under what
condition does an epidemic occur? Second - if an epidemic occurs, what fraction of a
well-mixed population gets sick?

An epidemic occurs when a small number of infectives introduced into a susceptible
population results in an increasing number of infectives.Let us determine the stabil-
ity of a stationary point-the epidemic.The linear stability problem may be solved by
considering only the equation for èç dÎ/dt̂ from (2.33). With Î << 1 and Ŝ = Ŝ we
have

dÎ

dt̂
=
(
R0Ŝ0 − 1

)
Î ,
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that an epidemic occurs if R0Ŝ0 − 1 > 0. With the basic reproductive ratio given
by (2.32) and Ŝ0 = S0/N ,where S0 - is the number of initial susceptible individuals, an
epidemic occurs if:

R0Ŝ0 =
βS0

γ
> 1

An epidemic occurs if an infective individual introduced into a population of S0

susceptible individuals infects on average more than one other person.
We now address the second question: If an epidemic occurs, what fraction of the

population gets sick? For simplicity, we assume that the entire initial population is
susceptible to the disease, so that Ŝ0 = 1. We expect the solution of the governing
equations (2.33) to approach a fixed point asymptotically in time (so that the final
number of infectives will be zero), and we define this fixed point to be

(
Ŝ, Î , R̂

)
=(

1− R̂∞, 0, R̂∞
)
with R̂∞ - equal to the fraction of the population that gets sick. To

compute R̂∞ it is simpler to work with a transformed version of (2.33). By the chain
rule, dŜ/dt̂ =

(
dŜ/dR̂

)(
dR̂/dt̂

)
, so that

dŜ

dR̂
=
dŜ/dt̂

dR̂/dt̂
= −R0Ŝ,

Separating and integrating from the initial to final conditions:∫ Î−R̂∞

1

dŜ

Ŝ
= −R0

∫ R̂∞

0

dR̂,

which upon integration and simplification, results in the following transcendental
equation for R̂∞:

1− R̂∞ − e−R0R̂∞ = 0,

an equation that can be solved numerically using Newton’s method. We have:

F
(
R̂∞

)
= 1− R̂∞ − e−R0R̂∞ ,

F
′
(
R̂∞

)
= −1 + R̂0e

−R0R̂∞ ;

for fixed R0 and a suitable initial condition for R(0)
∞ the solution will be determined as

follows:

R̂n+1
∞ = R̂n

∞ −
F

(
ˆ

R
(n)
∞

)
F ′
(

ˆ
R

(n)
∞

) .
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2.3.3 The Simplest Mathematical Model of Infectious Disease

This section describes immune response system proposed by Marchuk. It is be-
lieved that predecessors of immunocomponent cells (lymphocytes and leucocytes) are
produced in the bone marrow same as the predecessors of blood cells. Let’s designate
these cells as S. Once in thymus gland, one part of such cells initiates development
of a clone T - lymphocytes that further proliferate and differentiate in Th helper lym-
phocytes, Te effector (killer) lymphocytes and Tc suppressing lymphocytes (Fig. 2.3.1).
The other part of the bone marrow cells produces predecessors B of lymphocytes that
further transform into B lymphocytes. A part of stem cells remaining in the bone
marrow develop into mature macrophages and the other types of peripheral blood
leucocytes (Figure 2.3.2).

Figure 2.3.1

Figure 2.3.2

Each of populations T of lymphocytes performs its own function in the immune
process. Thus, Th helper lymphocytes interact with specific antigen and contributes
to transformation of B cells in plasma cells. Effector lymphocytes are Te basically
responsible for genetic purity of its organism’s cells. They destroy the degenerated
cells with changed genetic structure due to mutation or damage by antigen. Tc -
suppressors maintain the level of insusceptibility to organism’s own antigens and to
various antigens dwelling in organism. Suppressors also play an important part in
immune response regulation. B-lymphocytes and macrophages are differentiated by
different functions.
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In the healthy organism, plasmatic cell are being continuously formed. These plas-
matic cells produce Ig immunoglobulins capable of binding and neutralizing antigens.
Bacterial or viral disease presupposes a period of latent development of a disease,
when the antigens penetrated into the body reproduce without any pronounced reac-
tion on the part of the immune system. During this period, the immune system is
tuned to reaction of a specific antigen neutralization. Its essence consists in the fol-
lowing: The antibody response process is the joint activity of the following thee types
of cells: macrophage, B - lymphocytes; T - lymphocyte; Macrophage is the main cell
supplying antigen. Antigen V having met with macrophages M is consumed by them,
processed and after that macrophages form a group of antigen determinants on its
surface. This situation is depicted by the figure 2.3.3. Macrophages supply this group
B - lymphocytes resulting in binding the antigen determinants V with the surface of
B lymphocytes (figure 2.3.4).

Figure 2.3.3

Figure 2.3.4

Figure 2.3.5

In the presence Th of an assistant activated by the antigen, stimulation of B lympho-
cyte is triggered that, in turn, begins to divide and differentiate toward plasmatic cells
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Figure 2.3.6

(fig.2.3.5). This cascade process of plasmatic cells clone formation lasts from several
hours to several days (figure 2.3.6).

Therefore, in order to include B - lymphocytes in the antibody response process, a
set of signals is required and this set is formed by surface receptor binding with antigen
with participation of Th helper. The above specified immunity process was called as
humoral; nevertheless, cell immunity ensured with the help of Te lymphocytes that
destroy degenerative cells alien for the organism are of importance.

The existing mathematical models allow the following classification of immune re-
sponse to antigen: subclinical form, acute form with recovery, acute form with lethal
outcome, chronic form.

Building the Simplest Disease Model

The simplest mathematical model of infectious disease describing immunity system
will be built based on the relation of the balance for each of the components of the
immune response. There will be no difference between the cellular and humoral im-
munities involved in antigen control in constructing the simplest model. This model
implies that the organism has sufficient resource of macrophages utilizing the immune
response products as well as other non-specific factors necessary for normal function-
ing of immune system. The following three components are considered in the model:
antigen, antibody and plasmatic cell. Either pathogenic bacteria or viruses act in this
model as antigens. When there is a disease, the degree of lesion of an organ exposed to
the antigen attack is of considerable importance since ultimately it results in decreased
activity of immune system. Mathematical models shall reflect this.

The following are the main factors of and infectious disease: V (t) - it content of
pathogenic reproducing antigens, F (t) - it content of antibodies. Antibodies shall mean
immune system’s medium neutralizing the antigenes (immunoglobulins, cell receptors),
C (t) - it content of plasma cells, m(t) - it relative characteristic feature of an affected
organ.

An equation describing the change in the number of antigens in the organism is as
follows:

dV = βV dt− γFV dt, (2.34)
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Where the first term in the left part describes increase in the antigen number dV
over the time interval dt due to reproduction. It is pro rata to V some number β that
is called the antigen reproduction coefficient, γFV dt describes the number of antigens
neutralized by the antibodies F over the time period dt, γ - coefficient connected with
probability of antigen neutralizing by antibodies. Division of (2.34) by dt results in the
equation

dV

dt
= (β − γF )V. (2.35)

Using the simplest hypothesis of plasmatic cells’ cascade population formation we arrive
at the equation that describes plasmatic cells increase over the normal level C∗ which
is the constant level of plasmatic cells content in a healthy organism:

d (C − C∗) = dC = Q (t− τ) dt, (2.36)

Q (t) = αFV. (2.37)

The more complete equation will look like that:

dC = αF (t− τ)V (t− τ) dt− µc (C − C∗) dt. (2.38)

The first term in the right part (2.38) describes generation of plasmatic cells, τ
- time over which the plasmatic cells cascade is formed, α - coefficient taking into
account probability of antigen-antibody encounter, cascade reaction triggering and the
number of newly formed cells. The second term in this formula describes reduction of
the plasmatic cells number due to ageing, µc - coefficient equal to the value reciprocal
to the time of their life. Division of (2.38) by dt results in the following equation

dC

dt
= αF (t− τ)V (t− τ)− µc (C − C∗) . (2.39)

Equation for the balance of the antibodies reacting with antigen is derived from the
following formula:

dF = ρCdt− ηγFV dt− µfFdt. (2.40)

Where ρCdt describes antibodies generation by plasmatic cells over a certain period
of time dt, ρ - stands for the rate of antibodies generation by one plasmatic cell, the
term ηγFV dt stands for decrease in the number of antibodies over the dt period of
time due to binding to antigens. (η is number of antibodies required for neutralization
of one antigen). The third term µfFdt describes decrease in the number of antibod-
ies due to ageing, where µf is a coefficient reciprocally proportional to the antibody
decomposition time. By division of (2.40) by dt we arrive at the following equation:

dF

dt
= ρC − (µf + ηγV )F. (2.41)
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The hypothesis that such organs production capacity depends on the extent of a
target organ lesion leads to consideration of an equation for relative characteristic of
the target organ lesion. Let us introduce the m value through the formula

m = 1− M ′

M
. (2.42)

This will be a relative characteristic feature of the target organ lesion where M is a
characteristic parameter of a healthy organ (mass or area) and M ′ is a characteristic
feature of a healthy part of the lesion affected organ. For the healthy organ this
parameter is, quite naturally, equal to zero while for the affected organ its value is
equal to 1 (one). The forth equation is introduced for this characteristic feature

dm

dt
= σV − µmm. (2.43)

The first term in the right part of (2.43) characterizes the degree of the target organ
lesion. It is assumed that over the period dt of time increase in the relative parameter
of the affected organ is pro rata to the number of antigens that is described by the term
σV , where σ - is a certain constant value, which is specific for each particular disease.
Decrease in this characteristic parameter happens due to the restorative activity of an
organism. This term depends on the m value with the proportionality coefficient µm
characterizing the reciprocal value of the restoration period of e times.

In the given mode, the factor of the vital organs lesion factor may be taken into
account in equation (2.39) by replacing the coefficient α with the αξ (m) product.

Therefore, we arrive at the following system of non-linear ordinary differential equa-
tion:

dV

dt
= (β − γF )V,

dC

dt
= ξ (m)αV (t− τ)F (t− τ)− µc (C − C∗) ,

dF

dt
= ρC − (µf + ηγV )F, (2.44)

dm

dt
= σV − µmm.

Let us add the initial data to the equation system (2.44) at t = t0. Usually, input
conditions for the lag equations are set within the range of [t0− τ, t0]. Nevertheless, in
the biological sense of the described processes, there were no viruses in the organism
before the moment of contamination t0: V (t) ≡ 0 at t < t0, and, therefore, the
initial condition can be set at the t0 point. Later on, when the initial conditions for
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the equations of this type are considered, their setting at this point will mean that
V (t) ≡ 0 at t < t0. Therefore,

V (t0) = V0, C (t0) = C0,

F (t0) = F0, m (t0) = m0. (2.45)

So, let us call the equation system (2.44) with the initial data (2.45) as the simplest
mathematical model of a disease.

Let us use t0 = 0 as the initial moment in the (2.44) system of equations and let us
suppose that the initial conditions remain positive (non-negative) and all parameters
of the model are constant and positive values.

Qualitative Analysis of the Simplest Disease Model

General Results. The equation system (2.44) along with the initial data (2.45)
describes the dynamics of infection development at the background of immune response.
All constant values of the equation system are positive at t = t0 = 0.

V0 ≥ 0, C0 ≥ 0, F0 ≥ 0, m0 ≥ 0. (2.46)

Solution of (2.44) problem, (2.45) exists and solely at all t ≥ 0.
Steady-state Solutions. Let us equate all right parts to zero in order to arrive

at steady-state solutions in the equation system (2.44):

(β − γF )V = 0,

ξ (m)αV F − µc (C − C∗) = 0,

ρC − (µf + ηγV )F = 0, (2.47)

σV − µmm = 0.

Here V (t− τ) = V = const, F (t− τ) = F = const, value C∗ is connected with F ∗
by the relation

C∗ = µfF
∗/ρ,
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where C∗ and F ∗ are the values C and F for the healthy organism at V = 0. One
of the steady-state solutions is as follows:

V = 0, C = C∗, F = F ∗ = ρC∗/µf , m = 0, (2.48)

that describes the healthy organism condition. For analysis of this condition sta-
bility, let us consider small perturbations of unknown functions from the equilibrium
condition (2.48) by assuming that

V = V ′, C = C∗ + C ′, F = F ∗ + F ′ m = m′. (2.49)

Let us put this expression in the equation system (2.44) and, considering the V ′,
C ′, F ′ and m′ values as small, let us discard the second order values:

dV ′

dt
− (β − γF ∗)V ′ = 0,

dC ′

dt
+ µcC

′ = αF ∗V ′ (t− τ) ,

dF ′

dt
+ µfF

′ = ρC ′ − ηγF ∗V ′, (2.50)

dm′

dt
+ µmm

′ = σV ′.

Let us solve this equation system at the following initial data:

V ′ = V1, C
′ = C1, F

′ = F1, m
′ = m1 at t = 0. (2.51)

Solution of the first equation (2.50) at V ′ = V1, t = 0, is as follows:

V ′ = V1e
(β−γF ∗)t. (2.52)

solution (2.52) tends toward zero with time subject to the condition

β < γF ∗. (2.53)

With due account for this condition, the solution will take the following form:

V ′ = V1e
−(γF ∗−β)t = V1e

−β1t, (2.54)

where β1 = γF ∗ − β > 0.
Since V ′ is different from zero only at t > 0, then, within the range of [−τ, 0);

V ′ = 0, and, correspondingly, for all t < τ ; V ′ (t− τ) = 0. This means solution of the
second of equations (2.50) at t < τ that will be as follows:

C ′ = C1e
−µct (2.55)
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At t ≥ τ with due account for the initial condition C ′ (τ) = C1e
−µcτ derived from

(2.44) and that in accordance with (2.54), V ′ (t− τ) = V1e
−β1(t−τ),solution for C ′ (t) is

as follows:
in the event of β1 6= µc :

C ′ (t) = C1e
−µct +

αF ∗

µc − β1

V1

[
eβ1(t−τ) − e−µc(t−τ)

]
; (2.56)

in the event of β1 = µc :

C ′ (t) = C1e
−µct + αF ∗V1 (t− τ) e−β1(t−τ). (2.57)

General solution of the third equation is as follows:

F (t) = e−µf t
[∫

ρC ′ (s) eµf sds−
∫
ηγF ∗V ′ (s) eµf sds+ A

]
, (2.58)

where constant A is determined through the corresponding initial condition. Here
F ′ (t)→ 0 at t→∞, if β1 > 0. The same is true for the solution of the forth equation
from (2.50), that has the structure similar to (2.56), (2.57):

а) in the event of β1 6= µm :

m′ (t) = ε4e
−µmt +

σ

µm − β1

ε1

(
e−β1t − e−µmt

)
;

б) in the event of β1 = µm :

m′ (t) = ε4e
−µmt + σε1te

−β1t.

Therefore, all small disturbances of steady-state solution (2.48) at
β < γF ∗ tends toward zero with time meaning an asymptotical stability of the given
solution.

Possible Forms of Disease Dynamics and Their Classification

Analysis of disease model (2.44) allows to consider the qualitative pattern of the
V (t) solution - concentration of antigens at one set of coefficients or another. Let us
consider two extreme cases that, in essence, are the boundaries for the solution V (t).
Let us assume that an organism does not produce antigens of the given specificity, i.e.:
F (t) = F 0 = 0 for all t ≥ 0 è ρ ≡ 0. In this particular case, equation for V (t) will be
as follows:

dV

dt
= βV.

Solution of this equation is through the formula

V (t) = V 0eβt,
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where V0 is an initial concentration of antigens (contamination dose) at the moment
of time t = 0. As regards dynamics of an organ lesion, it can be described by the
following equation:

dm

dt
+ µmm = σV 0eβt,

solution of which subject to the condition of m = 0 at t = 0 shall be as follows:

m =
σV 0

β + µm

(
eβt − e−µmt

)
.

It is not too difficult to see that in the absence of restorative processes in the affected
organ, i.e. at µm = 0,

m =
σV 0

β

(
eβt − 1

)
and with all t ≥ 0

V = V 0eβt, F = 0, m =
σV 0

β

(
eβt − 1

)
. (2.59)

This solution corresponds to the course of disease with lethal outcome because of
the absence of any factors compensating the growth of antigens. The considered case
is the extreme one. As a matter of practice, these events are quite rare. Nevertheless,
sometimes the response of an immune system to antigen activity turns out to be so
weak that the ideal case described herein is a good approximation. This situation,
for example, occurs with some people of senior age immune system of which does not
react properly to the antigen action or with the people with the secondary or congenital
immunodeficiency.

The second extreme event occurs in the conditions of high-grade immune response
(sensitivity) when the level of the antibodies present in an organism that are specific
to the given antigen turns out to be sufficient to destroy all antigens presenting in
the organism without triggering antibody production process. In this particular case,
equation for V (t) will be as follows:

dV

dt
= (β − γF )V,

Where β � γF . Assuming the contamination dose V 0 to be small, the F value
may be considered as a constant value determined by the normal level of F ∗ antibodies.
Then, the above specified equation will be as follows:

dV

dt
= (β − γF ∗)V,

and its solution will be as follows

V = V 0e−(γF ∗−β)t.
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This means that antigen population in the organism will be decreasing exponen-
tially. In the extreme case β = 0 we’ll arrive at

V = V 0e−γF
∗t.

So, we have arrived at the two extreme solutions corresponding to the lethal out-
come and high immunobarrier. At the set values of model coefficients and the initial
conditions, correspondingly, all the values of various dynamics of disease will be within
the shaded area shown on the figure 2.3.7.

Figure 2.3.7

Figure 2.3.8
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Let us consider less trivial cases of disease dynamics. Let us assume that contami-
nation of a healthy organism contamination with an initial dose of antigens V 0 happens
at t = 0 and the condition β > γF ∗ becomes true. Then the initial conditions of (2.44)
model will be as follows:

V (0) = V 0, C (0) = C∗, F (0) = F ∗, m (0) = 0.

Antigen content at t > 0 begins to grow since dV/dt > 0 is around the point
t = 0 due to β > γF ∗. At the moment of time t > t1 V (t) reaches its maximum,
i.e. V (t1) = Vmax, wherein F (t1) = β/γ. At t > t1, in the context of the model, F (t)
exceeds the level of β/γ and V (t) reduces while F (t) > β/γ is true, since dV/dt < 0.

The situation is possible when F (t) > β/γ is true over the quite an extensive time
period (t1, t2) and V (t) over this period of time drops to the small values (practically
to zero). This situation is shown on the figure 2.3.8. Solution of this type may be
called as an acute form of disease.

If the time interval (t1, t2) is quite narrow, then, in the point t = t2, F (t2) = β/γ,
and V (t) reaches its minimum Vmin, before dropping to the small values, and at t > t2
V (t) it begins to grow again since dV/dt > 0 at t = t1 + ε due to F (t) < β/γ, where
ε is a small value. Further on, the quality of the process does not change and local
maximums are interchanged with local minimums V (t) (Fig. 2.3.9). Solution of this
type represents chronic form of disease.

Figure 2.3.9

Therefore, relation between ∆t = t
′
1− t1 and ∆T = t2− t1 intervals determines the
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outcome of a disease. If ∆T > ∆t, it means an acute form of disease (fig. 2.3.8). If
∆T = ∆t, it means a chronic form of disease (fig. 2.3.9). The higher is the maximum
number of produced antibodies Fmax, the higher is the ∆T = t2− t1, and, correspond-
ingly, the lower is the probability of a chronic form occurrence.

Therefore, an outcome of a disease depends on whether or not the antigen derivative
dV/dt may become negative and the duration of time it retains its sign. It is obvious
that dV/dt < 0 if V (t) > 0 and F (t) > β/γ. In the suggested model, V (t) ≥ 0, at that,
equality to zero is possible only in the event of V 0 = 0. Thus, it was supposed that
there is contamination of an organism, i.e. V 0 > 0, so, the true inequation F (t) > β/γ
is the necessary and sufficient condition for negativity of dV/dt. If the immunobarrier
is not cleared (V 0 < V ), the following cases are possible:

Case 1 dV/dt < 0 dV/dt < 0 over the infinitely large period of time. Solution
of this type is called a subclinical form of disease. In the event of β >
γF ∗dV/dt > 0 at t close to zero, V (t) increases. Let us assume that V (t)
reaches maximum at the point of t = t1 and after that point it decreases.

Case 2 dV/dt < 0 over the quite an extensive period of time (t1, t2). This repre-
sents an acute form of disease (see figure 2.3.8).

Case 3 dV/dt < 0 over a small period of time (t1, t2). This represents a chronic
form of disease (see figure 2.3.9). If the points t1 do not exist, then, the
fourth case happens.

Case 4 dV/dt > 0 over the infinitely large period of time. This corresponds to
the lethal outcome.

Thus, the modelling allowed us to identify four types of solutions that can be in-
terpreted as a form of disease progression. The subclinical form is expressed by a
steady output of antigens from the body, since in this case the antigens cannot over-
come the immunological barrier. The acute form is characterized by a rapid increase
in the concentration of antigens, a pronounced immune response and a sharp decline
in the number of pathogens of the disease to values close to zero, which is understood
as recovery. The chronic form is characterized by the presence in the body of a non-
zero population of antigens with a sluggish dynamics. This form is associated with
insufficiently effective stimulation of the immune system. The lethal outcome is asso-
ciated with severe damage to the body, which is no longer able to ensure the normal
functioning of the body.

2.3.4 Immunogenetic Description of Antivirus Immune Response
Model

In modern medicine, the term is understood as the totality of physiological and
pathological processes arising and developing in the body when pathogenic microor-
ganisms or viruses are introduced into it that cause a violation of the constancy of
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its internal environment and physiological functions. One of the main ways to protect
the body from living bodies and substances bearing the signs of genetic foreignness is
the immune system. The essence of the reaction of the immune system to the appear-
ance of genetically foreign material (antigen), including pathogens, is the production
of specific antibodies and killer cells capable of neutralizing and destroying antigens.

Immune response to the intrinsic pathogens of viral infections includes both types
of immune response - humoral with the production of antibodies by the B-system of
lymphocytes and cellular with accumulation of cytotoxic T -lymphocytes-effectors. The
main type of immune response ensuring protection of the organism is the cellular one.
Cytolytic T lymphocyte-effectors accumulated as the result of immune response detect
the viral infected cells and destroys them acting as killers (assassinators) of its own
organism’s cells. Therefore, antiviral immune response of cellular type is of autoimmune
nature. This is the only way to clean the organism of viruses if, of course, intracellular
protective mechanisms (interferon, enzymes, controlling the nucleic acid replication) of
the viral infected cells won’t be able to deal with this reproduction themselves.

Antivirus Immune Response Model Formulation

Formulation of the equations describing the development of the cellular type an-
tiviral immune response is based on the following assumptions:

Assumption 1 Macrophages M representing the antigens of virus V , which
we will designate as MV , stimulate Ta-helper lymphocytes,
which we will designate as HE, and Te-effector lymphocytes,
which we designate as E, accumulated effectors (E) kill virus-
infected cells CV sensitive to the given tissue virus (C).

Assumption 2 It is assumed that quantity of macrophagsM in the organism
is sufficient for MV to be developed in the quantity pro rata
the number of viruses.

Assumption 3 Stimulation of T -helpers (HE) depends on the extent of pre-
vious quantity of the given specificity and also of the number
of MV .

Assumption 4 It is assumed that HE stimulated by MV are divided, i.e.
their number will increase. Subject to the sufficient number of
MV , HERESULTING from division are stimulated again. After
interaction with the E cells, helper-cell (HE) completes its life
cycle.

Assumption 5 It was assumed that under the effect of two signals - from
MV and HE, the E cell gives rise to the clone of effector cells
(E) with killing effect on CV . As a result of the above, the
number of newly occurring 4E cells depends on the preceding
number of E cells of the given specificity in organism and on
the number of MV and that of stimulated HE.
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Assumption 6 Over a certain period of time, infected cells perform their nor-
mal functions. They die either because of the development of
irreversible viral damage, or in the elimination of CV cells by
T -effectors (E). Therefore, the affected mass of the virus-
sensitive tissue consists of the number of cells killed by the
virus and the number of cells killed by the effector lympho-
cytes.

Assumption 7 Macrophages stimulate the helper lymphocyte (HB) and B-
cells.

Assumption 8 Stimulation of helper-lymphocytes (HB) depends on the ex-
tent of the value of the previous clone of the given specificity
and also on the number of MV .

Assumption 9 It is assumed that HB is included similarly to HE and is also
characterized by monogamy with respect to B cells.

Assumption 10 Under the effect of two signals - from MV and HE, the B cell
gives rise to the clone of plasmatic cells P similar to E cell.

Assumption 11 The produced antibodies are bound and eliminated only by
extracellular viral particles released from the cells infected by
virus after its destruction. The number of such viruses is
pro rata the number of infected cells killed by virus and the
number of cells killed by effector lymphocytes.

Assumption 12 Let us assume that all viruses in this model are "free", i.e.
they are freely circulating outside cells in hemolymph and
blood plasm and that all intracell processes are described
through viruses replication coefficient with plasma penetra-
tion.

When describing a system of equations, the balance ratios are recorded for a time
point t on an interval Deltat that is so small that various processes of interaction
between viruses and the immune system can be considered additive. All the quantita-
tive characteristics of the various components in the final balance relations, which for
Deltat rightarrow0 take the form of differential equations, are normalized to a unit of
time.

In accordance with the above specified facts and assumptions on dynamics of an-
tiviral immune response, let us single out the following variable models:
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Variable table.
Vf (t) -number of viruses freely circulating in organism
MV (t) -the number of macrophages stimulated (by antigens)
HE (t) -the number of T -lymphocyte-helpers of cellular immunity
HB (t) - the number of T -lymphocyte-helpers of humoral immunity
E (t) -кthe number of T -effector (killer) cells
B (t) -the number of B-lymphocytes
P (t) -the number of plasmatic cells
E (t) -the number of antibodies
CV (t) -the number of the target organ’s cells infected with viruses
m (t) - non-functional part of the virus infected target organ

In describing the system of equations, balance ratios are written for the instant t
within the interval ∆t, which is so small that the various processes of viruses and the
immune system interaction that happens within it can be considered as an additive
one. All quantitative characteristics of various components in the final balance ratios
that assume the form of a differential equation at ∆t→ 0 are normalized per a unit of
time. Let us write the balance equation to determine the number of free viruses:

dVf
dt

= γCV + nbCECV − γV FFVEf − γVMMVf − γV C (C∗ − CV −m)Vf (2.60)

In the left part of (2.60) equation, the dVf/dt characterizes the rate of change in the
population of viruses in organism; the first term in the right part takes into account
an increase in virus population per a unit of time in the course of their replication
in infected cells CV . ν coefficient depends on the virus replication rate. This model
implies that the new viruses occurring in the virus infected cells penetrate the blood
plasm and become "free". It is those free viruses that stimulate M cells MV , transfer
them in and afterwards are destroyed by antibodies.

The second term describes plasma penetration by viruses from the virus infected
cells CV being destroyed by E effector lymphocytes.

The third and fourth terms in (2.60) describe decrease in the number of free viruses
due to interaction ofM macrophages with F antibodies. The last term of the equation
(3.29) describes reduction of Vf population through penetration by free viruses into
healthy cells and their infection; at that, finiteness of the number of the target organ
available for infection is taken into account. The values γVM , γV F , γV C are the constants
characterizing the values of time of Vf viruses interaction with macrophages, antibodies
and healthy cells correspondingly.

The balance equation for the number of macrophages connected with viruses (stim-
ulated macrophages) is as follows: MV

dMV

dt
= γMV VfM − αMMV (2.61)

The first term on the right (2.61) describes the increase the number of macrophages
bound with viruses per a unit of time. Here, same as in the equation (2.60), M is the
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number of all macrophages in the organism that is considered to be known determined
by the homeostasis. Coefficient γMV is a reciprocal value of time of interaction between
viruses and M . The second term in equation (2.61) takes into account decrease in the
population MV cells through the natural processing or ageing. Coefficient αM is equal
to the reciprocal value of an average time of life MV of cells in organism.

Let us further consider the equation of the balance of the helper lymphocytes num-
ber, HE - cells ensuring proliferation of E -cells:

dHE

dt
= b

(E)
H P

(E)
H

(
t− τ (E)

H

)
− b(E)

H MVHE − b(HE)
H MVHEE + αEH (H∗E −HE) (2.62)

P
(E)
H (t) = ρ

(E)
H MV (t)HE (t) .

The first term on the right (?? describes an increase in the number of T -helper
lymphocytes through their division under the effect of contact with the stimulated
macrophage MV . It takes into account delay in the process of occurrence of new HE

- cells after their interaction with stimulated macrophage MV through τEH . Coefficient
bEH is the reciprocal value of an average time of interaction of HE - cell with MV .
The second term describes reduction in the number of HE cells that are divided after
contact with the virus stimulated macrophages. The third term in (2.62) describes
reduction of HE -cells in their interaction with E effector lymphocytes resulting in
increase in the number of effectors. Coefficient b(HE)

H takes into account the double
interaction time and ρ

(E)
H describes the number of the newly formed cells. The last

member in equation (2.62) takes into account maintenance of homeostasis of HE cells
equal to H∗E in the absence of immune response of organism and cells destruction due
to ageing. Coefficient αEH is equal to the reciprocal value of an average time of life HE

-cells. Members b(E)
H MVHE and b(HE)

H MVHEE in equation (2.61) are absent since we
assumed that after interaction of MV with HE and E stimulated macrophage does not
die but continues to perform its functions.

Let us write the equation for T -helper lymphocytes ensuring proliferation of B-cells
HB:

dHB

dt
= b

(B)
H ρ

(B)
H MV (t)

(
t− τ (B)

H

)
−b(B)

H MVHB−b(HB)
P MVHBB+αBH (H∗B −HB) (2.63)

Here, the first term on the right is connected with proliferation of HB-cells where
the delay in occurrence of new cells after the initial contact with HB-cell with virus-
stimulated macrophage is taken into account. The second term describes reduction
in the number of HBV-cells for the following division. The third term on the right
describes reduction of HB-cells as a result of interaction withMV and B-cells. The last
term in equation describes homeostasis (homeostasis-self-regulation, ability of an open
system to maintain continuity of its internal state by means of coordinated reaction
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aimed at maintenance of dynamic equilibrium). Constant ρ(E)
H describes the number

of cells resulting from division.
Balance equation of effectors E will be as follows:

dE

dt
= b

(E)
P PE (t− τE)− b(E)

P MVHEE − bECCVE + αE (E∗ − E) (2.64)

The first term on the right takes into account increase in the number of new effectors
occurring per a unit of time over the period of time τE due to stimulated effectors
division where b(E)

P is a coefficient taking into account the rate of cells stimulation.
The second term describes decrease in the number of cells through the process of
division. The third term in equation (2.64) takes into account decrease in population
of E effector lymphocytes through destruction of virus-infected cells. Here, bEC is the
coefficient equal to the reciprocal value of an average time of interaction of effectors
with CV cells. The last term describes homeostasis of E cells.

Let us now write an equation for the balance of E effector-lymphocytes stimulated
by the double interaction: on the one part - by stimulated macrophage MV and on the
other part - T -helper lymphocyte HE:

PE (t) = CMV (t)HE (t)E (t)

This relationship reflects the fact that the number of stimulated effectors is pro rata
the production of probability of double interaction of E with MV and HE. Here, ρE -
coefficient taking into account the number of cells resulting from proliferation.

Balance equation for B-cells is as follows:

dB

dt
= b

(B)
P ρBMV (t− τB)HB (t− τB)B (t− τB)− b(B)

P MVHBB+αBH (B∗ −B) (2.65)

The first two terms on the right describe, correspondingly, proliferation (increase)
of B-cells and their consumption for the following proliferation, where ρB is the number
of B cells resulting from division of cells. The last term (2.65) describes homeostasis.

Let us now write a balance equation for plasmatic cells. Let P be a content of
plasmatic cells. Then the dynamic will be described by the following equation:

dP

dt
= b

(P )
P ρPMV (t− τP )HB (t− τP )B (t− τP ) + αP (P ∗ − P ) (2.66)

The first term on the right describes the rate of formation and maturing of plasmatic
cells from the stimulated B-cells with due account for delay. The last term in the (2.66)
equation takes into account decrease in the number of the P cells due to ageing and
also maintenance of homeostasis in the absence of antigen stimulation.

Let us further write an equation for F antibodies:
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dF

dt
= ρFP − γFV VfF − αFF. (2.67)

The first term of this equation on the right describes formation of antibodies by
the clone of P plasmatic cells, and ρF stands for production of antibodies.

The second term describes consumption of antibodies for elimination of viruses; the
last - reduction of the number of antibodies due to the natural ageing.

Let us pass over to description of the virus-infected cells balance equation CV :

dCV
dt

= σVf (C∗ − CV −m)− bCECVE − bmCV (2.68)

This equation describes both infection of healthy cells C by "free" virus making
them CV and decrease in the number of infected cells due to elimination of such cells
by effectors and destruction by viruses.

Finally, let us write an equation for non-functioning part of an organ affected by
virus.

dm

dt
= bCECVE + bmCV − αmm (2.69)

In this equation, the first term in its right part takes into account the effect of
virus-infected cells elimination by effectors and the second term takes into account an
irreversible damage of cells CV by viruses resulting in inactivation of such cells. The
last term describes restoration of damaged cells by means of tissue regeneration. bCE,
bm, αm - the corresponding coefficients.

Let us combine the above equations into a system and call it a mathematical model
of antivirus immune response:

dVf
dt

= γCV + nbCECV − γV FFVEf − γVMMVf − γV C (C∗ − CV −m)Vf

dMV

dt
= γMV VfM − αMMV

dHE

dt
= b

(E)
H P

(E)
H

(
t− τ (E)

H

)
− b(E)

H MVHE − b(HE)
H MVHEE + αEH (H∗E −HE)

dHB

dt
= b

(B)
H ρ

(E)
H MV (t)

(
t− τ (B)

H

)
− b(B)

H MVHB − b(HB)
P MVHBB + αBH (H∗B −HB)
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dE

dt
= b

(E)
P PE (t− τE)− b(E)

P MVHEE − bECCVE + αE (E∗ − E)

dB

dt
= b

(B)
P PBMV

(
t− τ (B)

)
HB

(
t− τ (B)

)
B
(
t− τ (B)

)
− b(B)

P MVHBB + αBH (B∗ −B)

dP

dt
= b

(P )
P ρPMV (t− τP )HB (t− τP )HB (t− τP )B (t− τP ) + αP (P ∗ − P )

dF

dt
= ρFP − γFV VfF − αFF

dCV
dt

= σVf (C∗ − CV −m)− bCECVE − bmCV

dm

dt
= bCECVE + bmCV − αmm (2.70)

The initial data shall be added to this equation system. If an organism is not
infected by a virus, than the corresponding solution will be:

Vf = 0, MV = 0, HE = H∗E, HB = H∗B, E = E∗,

B = B∗, P = P ∗, F =
ρFP

∗

αF
, CV = 0, m = 0. (2.71)

The following situation is of interest: infection of a healthy organism with a low number
of free viruses V 0

f . In this context, let us assume that prior to the moment of infection
t0, i.e. at t < t0 the system is in the steady state (2.71) and at the moment t = t0 an
organism gets infected with a low dosage V 0

f (t0) = V 0
f . All the other components at

the moment t = t0 remain their steady-state values. Since the model is autonomous,
we can assume that t0 = 0 without loss of generality.

Let us suppose that all coefficients included in the equation system of the model
(2.70) are not negative; let us consider the initial conditions for the system (2.70) of
the general type:

Vf (0) = V 0
f , MV (0) = M0

V , HE (0) = H0
E, HB (0) = H0

B,

E (0) = E0, B (0) = B0, P (0) = P 0, F (0) = F 0,

CV (0) = C0
V , m (0) = m0,
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MV (t)HE (t) = ϕ1 (t) , τ
(E)
H ≤ t < 0,

MV (t)HB (t) = ϕ2 (t) , τ
(B)
H ≤ t < 0,

MV (t)HE (t)E (t) = ϕ3 (t) , τE ≤ t < 0,

where φ(t), — are the continuous functions.
The formulated mathematical model of antivirus immune response will further be

used for the purpose of computer-aided simulation exercise. It should be mentioned
that in mathematical simulation special attention shall be paid to correct selection of
differential equation coefficients phenomenologically reflecting various characteristics
of immune response.
Mathematical modeling of the immune response in the infectious diseases is intensively
developing, as a result of which new models are created, new immunological hypotheses
are formulated, and knowledge about the mechanisms of the development of the disease
and the possibilities of influencing its outcome is accumulated. Each solved problem
gives the rise to a new circle of questions, often interesting for representatives of related
fields of biological sciences. The following areas of future research are highlighted:
construction and study of mathematical models of diseases and processes of the immune
protection; justification and study of the general principles that determine the structure
and the functioning of the immune system; building models of the relationship between
the immune system and other protective and regulatory systems of the body; building
models that take into account the mechanisms of the influence of the environmental
factors on the function of the immune system. The use of the mathematical modeling
of the immune response contributes the development of the mathematical methods,
leads to the formulation of new problems, which in turn leads to the receipt of new
theoretical results in the immunology.

Question:

1. Describe the mathematical model of limited and unlimited growth of the popu-
lation.

2. Explain the difference in constructing continuous and discrete models of popu-
lation growth.

3. Point out the main differences between Kolmogorov’s model of interaction of two
species of populations from Volterra models.

4. What are the main assumptions of the generalized model of interaction of bio-
logical species?

5. Describe the Mono Model, open the essence of the hemostat.
6. Derive the system of dimensionless equations to describe the behavior of the

concentrates in the cultivator.
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7. Describe the simplest mathematical model of an infectious.
8. Make an assessment of the stability of the equilibrium state of the system.
9. Describe the extreme cases of disease outcome in the mathematical model of an

infectious disease based on the basic parameters.
10. Substantiate the assumption made in construction of an infectious disease

mathematical model.
11.Describe the chronic form of disease in the mathematical model of an infectious

disease based on the basic parameters analysis. 12. Describe the possible disease out-
comes in the mathematical model of an infectious disease based on the basic parameters
behaviour.

13. Describe the basic preconditions for construction of a mathematical model of
cellular immunity.

14. Describe the basic preconditions for construction of a mathematical model of
humoral immunity.

Exersices:

1. Relationships such as predator-prey or parasite-host can be described by a system
of equations: 

dx

dt
= x(6− 3y − 0.5x)

dy

dt
= y(5 + 0.8x− y)

Find the coordinates of the singular points. Determine the type of each of the
determined stationary states.

2. The competition between two populations can be described by a system of equa-
tions: 

dx

dt
= x(4− y − 5x)

dy

dt
= y(1− 0.5x− 3y)

Find the coordinates of the singular points. Determine the type of each of the
found states.

3. Solve the simplest disease model equations for the case β < γF ∗ (subclinical form
of disease) and single out situations with effective or normal response (αρ > µcηγ)
and with weak response or immunodeficiency (αρ < µcηγ).

(a) Show that an effective (normal) immune response is capable of preventing
development of infection or quick suppression of its development. In the
latter case, the course of disease resembles an acute form with recovery;
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(b) Show that in the event of a weak immune response, excess by an antigen of
an immunobarrier (V 0 > V ∗) will ultimately result in death of an organism.

4. Acute form of disease. Solve the simplest model of disease as the source of an
acute form of disease with recovery of an organism with normal immune system.
In this particular case, β > γF ∗ and, correspondingly, there is no immunobarrier
to the disease agents.

5. Hypertoxic form of disease. Provide a numerical solution for the case of immune
response delay due to the immunodeficiency for the large values of delay τd > τ ,
where τ is a normal duration of the clone formation process and τd is increased
duration. So, we have a mathematical model with a set of parameters character-
ized by a large value τd as compared with τ , describing the hypertoxic form of a
disease.

6. Chronic form of disease. Provide a numerical solution for the model of chronic
form of disease depending on the contamination dosage of V (0) (a), antigen
replication rate β (β1 < β2 < β3) (б)

7. To propose a numerical solution of the equations of the simplest model of the
disease in the case of β < γF ∗ (subclinical form of the disease), and distinguish
situations with an effective, or "normal", answer (αρ < µcηγ ) and with a weak
response, or "immunodeficiency" (αρ > µcηγ ).

(a) To show that an Effective (normal) immune response is able to prevent the
development of the infection or even quickly stop it’s spreading. In the latter
case, the course of the disease resembles an acute form with recovery.

(b) To show that the excess of the immunological barrier by the antigen (V0 >
V ∗) with the weak immune response, ultimately leads to the death of the
organism.

8. Acute form of the disease. Provide a solution to the simplest model of the disease,
such as the occurrence of an acute form of the disease with recovery in the case
of an organism with a normal immune system. In this case, β < γF ∗, and,
therefore, there is no immunological barrier to pathogens.

9. Hypertoxic form of the disease. Proposing a numerical solution for the case
of the delayed immune response, due to the presence of immunodeficiencies, is
implemented with large values of the delay τd > τ , где τ is the normal duration
of the cloning process, and τd is increased. So, we have a mathematical model,
with a set of parameters characterized by a larger value of τd compared to τ ,
describing the hypertoxic form of the disease.

10. Chronic disease. To present a numerical solution of the model in the chronic form
of the disease depending on the dose of infection with V (0) (а), reproduction rate
of the antigen β (β1 < β2 < β3) (b)
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Project 1. Effect of the temperature response of an organism on disease dynamics.
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Chapter 3

Spatially Inhomogeneous Models

Mathematical models of populations considered herein above take into account only
the process of reproduction (birth rate) and mortality. These models are called point
or lumped models. Those are the models where the course of processes at all points
of space is similar. Nevertheless, biological processes same as all natural processes in
general happen in space and in time and are heterogeneous.

While previously the evolution of the system in time was described by the systems
of ordinary differential equations, in this particular case of spatially-inhomogeneous
systems evolution over time will be described by the partial differential equations. At
that, "reaction-diffusion" type equations are very often used as a simulation tool. It is
well-known that in the linear physical system, the transfer-diffusion processes result in
leveling of concentrations of substances for the whole volume. Nevertheless, all biologi-
cal systems are unbalanced and the processes that run in them are irreversible processes.
That is exactly what allows the living systems to use the substance and energy flows
for building and maintaining a structural and functional orderliness. Correspondingly,
the mathematical models of biological systems shall largely be the non-linear models.
Same as in the case with the point systems, some information on the non-linear system
behaviour, in particular, on properties of its steady-state solutions, may be obtained
by study of linearized system. One of the possible ways of spatially inhomogeneous
systems description is to subdivide the whole system into small cells (spatial "grid").
Thereat, the whole system may be characterized by a large but finite set of numbers -
concentration of substances in those cells. This approach is used for numerical solution
of problems; it is convenient for calculations.

This chapter also considers certain problems of hemodynamics, blood circulation
through the vessels, occurring due to difference of hydrostatic pressure at various sites
of blood-vascular system. Incompressible liquid flow equations are the initial ones
for the model. Various methods of natural experiments are used for forecasting the
stenosis occurrence in blood. Nevertheless, mathematical methods of calculation of
hemodynamic parameters in the area of thrombosis is of greater interest. Using the
numerical methods of the input equations solution make it possible to calculate the ba-
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sic hemodynamic parameters of blood circulation and stenosis development forecasting
as a result of thrombosis.

3.1 Reaction-Diffusion Type Equation. Wave Solu-
tion

One of the simplest types of reaction-diffusion equation is the following equation

∂u

∂t
= ku(1− u) +D

∂2u

∂x2
(3.1)

where k, D are positive constants. Here, the scalar function u(x, t) satisfies the set
initial and boundary conditions. Equation (3.1) was suggested by Fisher as a stochastic
model of gene dynamics in population that has selective advantage. A.N. Kolmogorov
etc. is the more general type of equation for the given class of problems:

∂u

∂t
= F (u) +D

∂2u

∂x2
,

where F (u) is the scalar function of u variable.

Let us consider the conclusion made through equation (3.1) based on the considered
particle flow movement. Let us suppose that a flow of particles is moving along the
x axis. Let us express particle density through u(x, t), i.e. the number of particles
per a unit of length at the moment of time t at the point with x coordinate. Let’s
use Φ(x, t) to express the flow, i.e. the number of particles running through the point
with x coordinate per a unit of time at the moment t. If no particles are formed (or
disappear) within the interval [x, x + ∆x], the number of particles located within the
span of the given interval [x, x+∆x] over the time ∆t can be calculated by the following
formula:

N = −
x+∆x∫
x

u(x, t)dx+

x+∆x∫
x

u(x, t+ ∆t)dx =

x+∆x∫
x

(u(x, t+ ∆t)− u(x, t))dx. (3.2)

The first part of this formula represents the number of particles that located within
the span of the interval [x, x + ∆x] at the moment of time t, while the second part -
the number of particles within the span of the interval at the moment of time t+ ∆t.
The very same number of particles may be expressed as is specified below using the
flow function Φ(x, t):

N = −
t+∆t∫
t

Φ(x+ ∆x, t)dt+

t+∆t∫
t

Φ(x, t)dt = −
t+∆t∫
t

(Φ(x+ ∆x, t)− Φ(x, t))dt. (3.3)
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Here, the first expression at the right part represents the number of particles that
moved beyond the boundaries of the interval over the time ∆t at the point x.

Integrand part in (3.2) and (3.3) can be correspondingly represented as

∂u

∂t
(x, τ)∆τ и

∂Φ

∂x
(ξ, t)∆x , where τ ∈ [t, t+ ∆t] и ξ ∈ [x, x+ ∆x] .

At ∆x and ∆t tending toward zero, we arrive at the equation that expresses the
flow conservation law:

∂u(x, t)

∂t
+
∂Φ(x, t)

∂x
= 0 (3.4)

If there is a source of origin (or disappearance) of particles within the span of
an interval [x, x + ∆x] depending on the flow density characterized by the function
F (u(x, t)), the following expression shall be added to take into account the particles
balance:

t+∆t∫
t

x+∆x∫
x

F (u(x, t))dxdt.

Thereat, the law of conservation (3.4) will assume the form of

∂u(x, t)

∂t
+
∂Φ(x, t)

∂x
= F (u)

.

Let’s suppose that there is the Fick’s law between the flow function and density.

Φ(x, t) = −c(u)
∂u

∂x
, (3.5)

where c(u)– is some non-negative function. Then the equation (3.5) will assume the
form:

∂u

∂t
= F (u) +

∂

∂x

(
c(u)

∂u

∂x

)
. (3.6)

In the particular case, when c(u) = D = const and F (u) = ku (1− u), Fisher-
Kolmogorov equation (3.1) follows from (3.6). The type of the function c(u) depends
on specific conditions. Thus, for example, if c(u) = u, then we arrive at the following
equation:

∂u

∂t
= F (u) +

∂

∂x

(
u
∂u

∂x

)
.

In this particular case the diffusion coefficient is pro rata the population density.
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All the above arguments are generalized for multidimensional case x ∈ Rn too. In
this particular case, the flow equation will assume the following form:

∂u(x, t)

∂t
+ div(Φ(x, t)) = F (u),

Here, div(Φ(x, t)) =
∑n

i=1

∂Φi(x, t)

∂xi
), Φ(x, t) = (Φ1(x, t), Φ2(x, t), . . . , Φn(x, t)) – is

the flow vector.

Stability of Spatially Homogenous Steady-State Solutions

Let us assume that the following system is set in the restricted area Ω ⊂ Rn:

ut = f(u) +D∆u. (3.7)

Here, u(x, t) = (u1(x, t), . . . , un(x, t)) , x ∈ Ω, t ∈ (0,∞), f(u) – is the vector-
function determining the reaction of components ui(x, t).

F (u) = (f1(u), . . . , fn(u)), D = (dij)i,j=1...n — matrix of diffusion, elements of
which are constant non-negative values. At the moment t = 0, the initial conditions
(Koshi data) were set:

u(x, 0) = ϕ(x) = (ϕ1(x), . . . , ϕn(x)) . (3.8)

In the event of a closed system at the boundary G of area Ω, Neuman’s conditions
are true

∂u

∂n

∣∣∣∣
x∈Г

= 0↔ ∂ui
∂n

∣∣∣∣
x∈Г

= 0, i = 1, . . . , n, (3.9)

where n — an external normal to the G boundary.

The (3.7)-(3.9) problem is called the initial boundary value problem for the system
of semi-linear equations of the parabolic type.

Definition 1 Vector functions ν(x), being the solutions to the problem

f(ν) +D∆ν = 0,
∂ν

∂l

∣∣∣∣
x∈Г

= 0, (3.10)

are called the equilibrium positions of the dynamic system (3.7).

Definition 2 Equilibrium positions ν(x) of the dynamic system (3.7) is called stable
if for arbitrarily small ε > 0 there is such a δ > 0 that for any solutions of the
system (7) ũ(x, t) with initial conditions ϕ̃(x) such that ‖ν(x)− ϕ̃(x)‖H1(Ω) < δ is true
‖ν(x)− ũ(x, t)‖H1(Ω) < ε for all t > 0. If, additionally, the condition ũ(x, t)→ ν(x) is
true in H1(Ω) at t→∞, the equilibrium position ν(x) is called asymptotically stable.



Let us mention here that solution ũ(x, t) to the system (3.7) with initial data ϕ̃(x)
should satisfy the boundary condition (3.9).

Study of equilibrium positions stability may be carried out using the theorem being
analogous to the Lyapunov’s theorem on stability at the first approximation for the
finite-dimensional systems.

Let us suppose that ν(x) is the system (3.7) equilibrium position. If ν(x) 6= const,
than let us call this equilibrium position as spatially inhomogeneou. Let us consider
the Jacobian martix of the system (3.7) calculated in the equilibrium position,

A(x) =

(
∂f

∂u

) ∣∣∣∣
u=ν(x)

and the corresponding boundary problem for the own values:

A(x)z(x) +D∆z(x) = λz(x),
∂z

∂m

∣∣∣∣
x∈Г

= 0, z ∈ H1(Ω). (3.11)

If Rez < 0 for all own tasks, then the spatially inhomogeneous equilibrium position
is asymptotically stable. Due to non-linear nature of function f(u), the problem (3.10)
to determine the spatially inhomogeneous equilibrium position of the system (3.7) is
no simpler than the initial problem and allows for analytical solution in exceptional
cases only. Above we have considered the space-time types of the behavior of the
system, which can be described with the help of the concept of random displacement
of individuals in a space similar to the Brownian motion of particle-diffusion. Such a
representation is transferred from static physics.

3.2 Models of the reaction-diffusion-advection type

For real living systems, along with random displacement, there is a directional
movement that can be determined by external forces, for example, by air or water
currents, or by the action of some positive or negative stimulus (taxis). A directional
component of population distribution is called advection. In view of this component,
the spread of population density P (x, t), where x is the spatial coordinate, t) - time is
described by the equation:

∂p

∂t
= F (P )− div (vP ) + δ∆P. (3.12)

Here, F (P ) is the term describing the local birth-death processes, δ∆P – random
migrations (diffusion), the advective term div(vP ) describes the directed population
density flux with velocity v. If the population is in a moving environment (air, water),
the individuals naturally move along with this environment. In the general case, the
rate is not constant and is determined by both the motion of the environment and
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the taxis processes-the intrinsic motion of the individuals of the population in the
direction of the positive stimulus or in the direction opposite to the negative stimulus.
As a rule, the assumption of the proportionality of the velocity of directional motion to
the gradient of the chemical stimulus is used. The movement of the predator population
towards the gradient of the spatial distribution of the population of the victim is called
trophotaxis (praytaxis). Most models suggest that the victims move randomly, and
predators are capable of both random movements (diffusion) and directed movement
(advection). The corresponding equations take the form:

∂N

∂t
= F (N,P ) + δN∆N,

∂P

∂t
= G (N,P )− div (vP ) + δP∆P,

v = ψ∇N

(3.13)

Here N , P are the densities of prey and predator populations, respectively, F (N,P ),
G(N,P ) are the species interaction functions, δN , δP are the diffusion coefficients; v
- the advective velocity of the predator’s own displacement at each point of space is
proportional to the density gradient of the victim population. The study of autonomous
models of the type (3.13) showed that the occurrence of inhomogeneous space-time
regimes in them is due to the presence in local systems of periodic regimes associated
with the substantial nonlinearity of trophic functions or the nonlinear dependence of the
taxis flux on population density. This means that the characteristic time of formation
of spatially inhomogeneous structures is comparable with the characteristic time of
the birth-death processes. Meanwhile, often the aggregation of predators in places of
accumulation of victims is a behavioral reaction that occurs at much faster times than
the processes of reproduction and death. The description of trophotaxis by advective
accelerations in the simulation of reaction-diffusion-taxis systems uses the assumption
that taxis is determined not by speed, but by advective acceleration. Thus, the inertia
of displacement is taken into account, which is ignored in taxis models of the form
(3.11), assuming an instant adaptation of the taxis speed to the stimulus gradient.
This means that not speed, but acceleration of displacement of predator density is
determined by the density gradient of the victims. The analogy with mechanics is clear:
not speed, but acceleration of body displacement is proportional to the acting force.
Observations of schooled animals show that the change in their speed of movement
depends on the magnitude of the stimulus gradient. Vegetable insects change their
speed of movement (accelerated) depending on the quality and proximity of the stern
spot. Schoolfish change direction depending on the difference between the current and
preferred temperature. The dependence of the acceleration of motion on the stimulus
gradient formed the basis for models describing the behavior of individual individuals.
Let the advective acceleration at each point of space be proportional to the gradient
of the distribution density of the victims:
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∂v

∂t
= k∇N, (3.14)

k > 0, In population models with advective acceleration, it is assumed that in the flock
of predators, the magnitude and direction of the velocities of individual individuals are
equalized. This effect is described by the term "velocity diffusion". The equation for
changing the speed (advective acceleration) takes the form:

∂v

∂t
= k

∂N

∂x
+ δv

∂2N

∂x2
, (3.15)

where N(x, t) is the density of the population at the point x at time t; v(x, t) - instan-
taneous velocity of displacement of predator density; k is the taxis coefficient, which
characterizes the sensitivity of the predator to the heterogeneity of the distribution of
the victims; δv is the diffusion coefficient of the velocity.

The predator-prey model with advective acceleration in dimensionless variables has
the form:

∂N

∂t
= N (1−N)− aNP

1 + ahN
+ δN

∂2N

∂x2
,

∂P

∂t
=

aNP

1 + ahN
−mP − ∂ (Pv)

∂x
+ δp

∂2P

∂x2
,

∂v

∂t
= k

∂N

∂x
+ δv

∂2v

∂x2
.

(3.16)

The problem was solved for impenetrable boundaries - zero flows on the borders:

v|x=0,L =
∂N

∂x
|x=0,L =

∂P

∂x
|x=0,L = 0 (3.17)

The model has spatially homogeneous solutions corresponding to the stationary states
of the local system (3.16). There are three of them: zero for both species, corresponding
to system degradation, zero for predators, and corresponding to non-zero numbers of
both populations:

N,P , v =

(
m

a (1−mh)
,
a (1−mh)−m
a2 (1−mh)2 , 0

)
. (3.18)

The spatially homogeneous regime (3.18) is stable to small perturbations, the victim
search efficiency coefficient, is contained in the interval:

m

1−mh
< a <

1 +mh

h (1−mh)
. (3.19)

The analysis of the model (3.16) shows how the search activity of a predator, expressed
in a nonzero value of the taxis coefficient k, causes the appearance of spatially inho-
mogeneous structures from the initially stable homogeneous periodic regime and the
periodic mode C0. With growth of k, a homogeneous stationary state loses its sta-
bility, and in its neighborhood a periodic regime is inhomogeneous in space, which



92 Ch. 3. Spatially Inhomogeneous Models

becomes more complicated with a further increase in the taxis coefficient k, undergoes
a cascade of period doubling, and subsequently becomes aperiodic. Variations in the
average numbers of a predator and prey in a spatially inhomogeneous regime are much
less than in a homogeneous regime for a fairly wide range of k. The trophotaxis model
with advective acceleration (3.16) has properties that allow the paradox of biological
control to be resolved.

At large values of the parameter a - the efficiency factor of predation - the oscil-
lations of the numbers of both species with a large amplitude are established. The
number of victims periodically reaches values close to the values of the capacity of the
medium. This fact is the reason for the paradox of biocontrol, which consists in the fact
that the traditional models of population dynamics are not able to describe both the
stationary (Lagrange-stable) dynamics of the predator-driver system and the low pest
population. The spatial model (3.16) satisfies the requirements for models of biological
control. In the case of high predator voracity and in the absence of directional taxis
(there are only random movements of individuals-diffusion), there is a low number of
victims in the model, but an unstable stationary regime and a stable uniform periodic
C0 regime with a high amplitude. For sufficiently high values of the taxis coefficient k,
the oscillatory mode of C0 becomes unstable, and a stable an inhomogeneous dynamic
structure in which the amplitude of fluctuations of the population-averaged popula-
tions of populations is much smaller than the amplitude of a spatially uniform periodic
regime C0. Thus, the predator-prey system stabilizes at a low population size of the
victim.

3.3 Modeling of blood flow dynamics in vessels with
stenosis

Recently, there has been an increase in interest in hemodynamic problems - the
study of the properties of the movement of blood in blood vessels, especially in con-
ditions of narrowing of the vessel. The dynamics of blood flow in blood vessels with
thrombi is one of the urgent problems of hemodynamics. To predict the occurrence of
stenosis in the blood, various methods of field experiments are used. However, the most
interesting are the mathematical methods for calculating hemodynamic parameters in
the region of thrombus formation. We note that in the mechanics of continuous media
the flow of a fluid with nontrivial rheological properties in vessels of a given geome-
try has been studied repeatedly, including the flow of blood. The most widely known
among specialists was Poiseuille’s classical paper on the flow of blood in a cylindrical
vessel, which to this day has not lost its significance. In this section, the formulation
of the problem of the movement of blood in vessels with stenosis, the basic equations
and the method for their solution are considered. The problem is considered in a two-
dimensional formulation, the blood flow is considered to be an incompressible fluid.
As a section of the vessel, a channel of length L and height H, the entire region D, is
adopted.
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The system of Navier-Stokes equations supplemented by the continuity equation is
the initial one. The calculated region is shown in Fig. 4.1, where an atherosclerotic
plaque with the size D0 (stenosis region) is shown.

Figure 3.1

The system of initial equations can be written in dimensionless form:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂z2

)
, (3.20)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −∂p

∂z
+

1

Re

(
∂2w

∂x2
+
∂2w

∂z2

)
, (3.21)

∂u

∂x
+
∂w

∂z
= 0. (3.22)

where, Re =
UL

ν
– is Reynolds number. As initial data, the initial velocity and pressure

fields are given. The initial velocity profile is defined as follows:

u(0, x, z) = uH ·
( z
H

)1/2

, w(0, x, z) = 0, 0 ≤ x ≤ L, 0 ≤ z ≤ H.

Hydrostatic pressure is assumed for the initial distribution. The considered excess
pressure P will be zero, that is P (0, x, z) = 0, 0 ≤ x ≤ L, 0 ≤ z ≤ H.

The boundary conditions:
In the input that is, when x = 0, the values of velocity, pressure, and temperature

coincide with the initial conditions:

u(t, 0, z) = u(0, 0, z), w(t, 0, z) = 0, t > 0, x = 0, 0 ≤ z ≤ H,

p(t, 0, z) = p(0, 0, z) = 0, t > 0, x = 0, 0 ≤ z ≤ H.
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At the output, that is, when x = L the following conditions are used:
∂f

∂x
= 0, f =

(u,w, p), x = L,
On the lower and upper boundary, that is, when z = 0, and z = H, the wall

condition is specified:

u(t, x, 0) = 0, w(t, x, 0) = 0, t > 0, z = 0, 0 ≤ x ≤ L,

p(t, x, 0) = 0, t > 0, z = 0, 0 ≤ x ≤ L.

To satisfy the boundary conditions on the stenosis , we apply the method of fictitious
domains described in Vabishevich’s work in the extended domain D∗ ∪ D. Then the
problem with stenosis for the system of equations (3.20) - (3.22) can be formulated as
follows:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂z2

)
− S · (u− u0), (3.23)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −∂p

∂z
+

1

Re

(
∂2w

∂x2
+
∂2w

∂z2

)
− S · (w − w0), (3.24)

где S(x, z) =

{
0, (x, z) ∈ D
ε−2, (x, z) ∈ D0

, ε – is small parameter, u0, w0, T0 – are the values

of the components of velocity and temperature at the lower boundary.

Method of Solution
For solution of the formulated problem numerically, the splitting method described

by Belotserkovsky is applied. Here, to approximate the convective terms, upwind
schemes is used which leads to an increase in the stability of the computational algo-
rithm for higher Reynolds and Peclet numbers. Let at some instant of time tn = n∆t
(∆t is time step, n - number of steps) known velocity fields V = (u,w), pressure p.
Then the definition of unknown functions at time tn+1 = (n+ 1)∆t represented in the
form of a three-stepe splitting scheme.

At the first step, intermediate velocities are determined by equations

ũ− u
∆t

= −u∂u
∂x
− w∂u

∂z
+

1

Re

(
∂2u

∂x2
+
∂2u

∂z2

)
− S · (u− u0), (3.25)

w̃ − w
∆t

= −u∂w
∂x
− w∂w

∂z
+

1

Re

(
∂2w

∂x2
+
∂2w

∂z2

)
− S · (w − w0) (3.26)

In the second step, the pressure field calculated from the Poisson equation is calcu-
lated from the intermediate velocity values from first step:

∂2p

∂x2
+
∂2p

∂z2
=

1

∆t

(
∂ũ

∂x
+
∂w̃

∂z

)
(3.27)



At the third step, the final (on the time layer n+ 1) velocity values are determined by
equations

u− ũ
∆t

=
∂p

∂x
(3.28)

w − w̃
∆t

=
∂p

∂z
(3.29)

The algorithm of the method is as follows:

1 step. According to the velocity field known from the initial data, the intermediate
velocity field from equations (3.25), (3.26) is found. This determines the right-hand
side of equation (3.27).

2 step. After this, the Poisson equation (3.27) is solved in order to determine the
pressure.

3 step. Later, the velocity field is corrected on the current time layer using equa-
tions (3.28), (3.29).

When calculating the parameters at the 1st step, the time advance is carried out
in time with the stability condition by limit on the maximum time step:

0, 25(|u|+ |w|)2∆tRe ≤ 1 и ∆t/(Re∆x2) ≤ 0, 25

In determining the stability of a numerical method, the von Neumann method was
used, in which the solution of the equations is represented by a Fourier series with a
finite number of terms and the stability is determined by the fact that each oscillation
decays.

3.4 Mathematical Simulation of the Process of Blood
Clot Formation in the Blood Circulation

Normal functioning of the blood coagulation system ensures maintaining liquid flow-
ing state of blood. Ability to ensure fast local reaction of organism in response to local
violation of normal conditions of flow is the particular feature of blood coagulation
system. In the real blood vessels, blood coagulation is activated by the factors active
at the place of damage. These factors trigger a series of biochemical reactions resulting
in formation of a thrombin. Some components of an inhibition system such as protein
C, are the enzymes activated directly by thrombin. Occurrence of a large number of
thrombins in the blood plasm triggers the reaction blocking its own production. Fib-
rinous clots (thrombus) formed in blood are spatially localized mass. By the present
moment a number of mathematical models describing the cinematics of triggering the
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key metabolites of the blood coagulation system has been developed.

Assumptions in the hemodynamic modeling

The vascular system is a complex network of branching vessels, spanning the length
of the scale from meters to microns. The main features of the normal arterial system
include compatible arterial walls, complex branching or tortuous arteries, as well as
the regeneration of non-Newtonian blood. On the largest scale cases, simulation of
the vasculature is similar to an alternating current circuit, where inductance and re-
sistance (total resistance of electrical equipment to alternating current) are inertial
and frictional (viscous) pulsating blood losses. Capacity is the correspondence of the
walls of blood vessels, which act similarly through alternating local storage and release
of the blood down the vessel. This last feature largely determines the phenomena of
wave propagation - attenuation, dispersion, reflection, which can be used to derive the
functional state of the vascular network from macroscopic measurements of pressure
and flow. To assess vascular resistance, diameters and lengths of vessels are required,
but otherwise the specific forms and connections of the vessel are largely insignificant,
except perhaps when its effects are modeled using the imposition of correction factors
or the resistance inconsistencies. The blood may be modeled as the Newtonian fluid,
possibly with an adjustment to the apparent viscosity based on the size of the vessels
included in the scheme. On the smallest scale, in arterioles and capillaries, where the
diameters of the blood vessels approach the diameters of the red blood cells, the blood
can no longer be considered as a homogeneous fluid with constant viscosity. As will
be discussed below, on this scale one should no longer think of the blood as a con-
tinuum; however, simple models were developed that incorporated the effect of this
discreteness on apparent viscosity. Individual arteries, usually branches, bends, sacs
and constrictions, which became the cause or the effect of focal vascular diseases such
as atherosclerosis and aneurysms, are considered. Due to the heart pulsation, it is often
possible to neglect the pulsating (non-stationary) flow effects, waiting for the dynamics
of the flow with low amplitude. Decades of research have emphasized an important role
of the vascular geometry, leading to the emergence of distinct and surprisingly complex
fluid mechanics in these vessels. As a result, the three-dimensional nature of the artery
shape is crucial to consider. Such models are usually considered in isolation from the
rest of the vascular network, or at least these effects are included in the input and
output boundary conditions. Hard walls and Newtonian rheology are almost always
accepted, although the relevance of these assumptions remains the subject of ongoing
debate.

Rheology and Turbulence

It is generally accepted that the blood flow in the large arteries is laminar under
normal physiological conditions, with the possible exception of the distal heart valves
and the ascending aorta. It is also widely believed that turbulence occurs only in
severe pathological conditions, especially after severe narrowing or stenosis, although
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there is some evidence that mild stenosis can cause turbulence. Until recently, CFD
studies have focused almost exclusively on nominally turbulent flows through idealized
stenoses, for which the detailed experimental data are available. The so-called two-
equilibrium turbulence models can be satisfactory for modeling stable turbulent flows,
but tend to be excessively dissipative for transient, relaminarizing flows experienced
under physiological conditions. More recent studies have focused on modeling methods
with large eddies (LES) and even direct numerical simulation (DNS), the latter essen-
tially being solved by the Navier – Stokes equations, resolved to the expected smallest
length scales (i.e. Kolmogorov) eddies, where there is viscous dissipation. Regardless
of CFD methodology, discussions about the nature of physiological “turbulence” are
continuing, namely: is it a random and uncorrelated flow exhibiting a classical energy
cascade in the strict mechanical sense, or is it in some cases just an unstable flow char-
acterized by phenomena of vortex formation on frequencies significantly higher than
the heart rate. It is believed that the turbulence caused by external compression of
the artery causes the so-called Korotkoff sounds used to measure blood pressure. Noise
(“bruits”) can also be detected by a stethoscope located above a stenotic surface vessel,
such as the carotid artery, or by intracranial aneurysms, which may also have turbulent
flow. Based on the question of whether these pathological flow conditions are turbulent,
transient, or simply unstable, an important question arises about the physical scale of
flow structures. The assumption that blood can be modeled as a homogeneous fluid
is based on the assumption that arterial length scales ( mm) are orders of magnitude
larger than RBC length scales ( mkm).

Blood coagulation mechanism

Blood coagulation is a well-known process after a wound and leading to cessation
of bleeding (hemostasis). This goal is achieved by sealing the lesion with a clot (or
thrombus). Before we turn to the mathematical models of the process, it is necessary
to describe the concept of this incredibly complex biological process, as well as bleeding
disorders, which arise as a result of the lack or dysfunction of some of the many elements
that play a large role in it. Here been described the modern model of the blood coag-
ulation process, avoiding the complexities of the chemistry of many proteins involved
in the formation of a blood clot (as well as describing their complex structure), focus-
ing on an illustration of their action, presenting a general sketch of the phenomenon.
The circulatory system is equipped with incredibly complex chemical and mechanical
processes, ready to repair the damage that may occur in the blood vessels, sealing
them with a clot (or thrombus). The clot is a gel-like structure consisting of a polymer
(fibrin) network, capturing various blood components. The components, necessary for
the formation of a clot, are either present in the blood or are in the endothelium of the
blood vessels, namely in the outer membrane, in the main part of the vessel (sheath)
and in the innermost thin membrane. In fact, those that are contained in the walls
of the blood vessels become available immediately after a lesion of a thin membrane,
even in the presence of a tiny internal lesion. It is important to note that under normal
conditions they do not come into contact with blood. The coagulation mechanism is



98 Ch.3. Spatially Inhomogeneous Models

set in motion when it is really necessary, not acting under normal conditions, and at
the same time, the coagulation process stops before it closes the vessel, allowing the
blood to flow normally. Indeed, after the hemostasis process is complete, the throm-
bus will be gradually removed by another process known as fibrinolysis. To be more
precise, it is wrong to treat these processes consistently. Hemostasis and fibrinolysis
are both active, whether the blood clots grow or retreat as a result of an imbalance
between these two processes. In addition to the physiological process of hemostasis
after injury, it is well known that unwanted coagulation can occur due to a temporary
decrease in the blood flow or stagnation (or sometimes in places of flow stagnation,
usually accompanying abnormal vortices), which leads to the deep vein thrombosis, a
disease caused by bone injury. for example during implant prosthetics. The classic
coagulation cascade consists of an internal, external and common path. Over the past
few decades, the understanding of the coagulation cascade is changing and constantly
improving. The coagulation cascade consists of a) an initiation phase, b) an amplifica-
tion phase, and c) a propagation phase. The initiation phase begins with exposure to
tissue factor (TF), which is present in the subendolial cells with the blood flow during
vascular injury. TF binds to factor VIIa (FVIIa) and cleaves FIX and FX to form
FIXa and FXa, respectively. The index "a" indicates that the blood factors are in an
activated state, and the prefix "F" means a factor. FXa will then help convert FII to
FIIa (thrombin). This is followed by the amplification phase, in which FIIa plays a
central role, as shown in Figure 3.2.

Figure 3.2

FIIa converts FV to FVa, FXI to FXIa and FVIII to FVIIIa. These parallel pro-
cesses accelerate the production of FIIa and are therefore called the amplification phase.
In the propagation phase, FXIa also converts FIX to FIXa, which, together with FVI-
IIa, catalyzes the formation of FXa. Finally, FXIIIa catalyzes the formation of a
cross-linked fibrin network.

Modern computational methods for the blood clot modeling

This section classifies various computational methods used for the hemostasis and
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the thrombosis based on a spatial scales and a time scales.

Method - Level System

The method — a system of levels — is modeling the blood flow and coagulation on
a larger scale; many mathematical relationships are used to reproduce experimental
results. They are usually modeled using the CDR equations, and constants are es-
timated empirically from experiments. The advantage of these types of models with
less complexity allows you to simulate the qualitative behavior of events associated
with the blood coagulation. At the same time, due to the assumptions have made, the
smallest details of the processes are lost. A simple example of this type of method is the
modeling of fibrin coagulation using simple ordinary differential equations (ODE). The
blood coagulation factors are modeled as time dependent concentrations, and chemical
reactions are modeled using simple ODUs. Finally, the clotting time of fibrin from
fibrinogen in the presence of thrombin is modeled and compared with experiments. An
elegant way to simulate the kinetics of the enzymatic reaction and related products is
the Michaelis-Menten kinetics, which relates the reaction rate to the substrate concen-
tration. This method allows you to determine the formation of an enzymatic product
using a simple relationship, such as E + S

kf ,kr−−−→ ES
kc)−−→ E + P , where (E) binds

to the substrate (S) to form a complex (ES) which ultimately re-releases the product
(P ). They react with the direct velocity kf , the opposite velocity kr and the catalytic
velocity kc, they are collectively called reaction rate constants or simply rate constants.
These equations can be written as a system of nonlinear ODUs, which determine the
rate of change of reagents. Using this technique, it is possible to simulate the forma-
tion of the blood clot, where the blood factors, involved in the coagulation cascade, are
modeled as the Michaelis-Menten system of equations.

Then, based on physiologically observed concentrations and rate constants, the
reaction kinetics is been simulated. One of the drawbacks of these methods is the
dependence on empirical models and experimental values of the rate constants, which
makes the method susceptible to irregular kinetics. To take advantage of this method,
it is necessary to carefully check the rate constants with experimental results. A system
of reaction kinetics levels can be combined with spatial information to make it more
realistic. In one of these studies, scientists combine the NS equations and the CDR
equations to study the formation and division of the blood clot.

Continuous methods

While the methods of the level system may indicate the rate at which clotting
or disintegration occurs in a particular hemostatic process, they are not sufficient in
explaining coagulation and disintegration in terms of the physical length and the ge-
ometry scales. This becomes important when studying the blood clots in the complex
geometries and with various mechanical and environmental factors. In its simplest
form, the blood is modeled as the incompressible Newtonian fluid flowing between two
parallel flat plates. This will lead to the Poiseuille flow, and the velocity across the flow
section will be parabolic. The complexity of the models depends on the level of the
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detail of the blood components under consideration. The basic model is a combina-
tion of the NS equations for flow dynamics and the CDR equations for the space-time
evolution of concentration types. Most of the available continuous models suggest that
the blood vessels are like rigid walls and the blood components are massless particles.
This makes it possible to model equations only by directly solving the NS and the CDR
equations, neglecting the inverse effect of particles on the flow velocity. Until now, the
modeling of thrombus formation was considered as an increase in the concentration of
platelets, fibrin or other blood components.

Methods of Discrete Particles

Due to its versatile ability to simulate liquids both at nano and microscales, the
DPD (Dissipative Particle Dynamics) method drew the attention of researchers to the
blood flow modeling. Platelets are usually modeled as particles or balls and fibrin
in the form of polymer chains connected to each other by harmonic springs. When
only platelets are considered for modeling, the DPD system is only freely distributed
balls interacting with each other. Boundary conditions of pressure or velocity are
often applied to the system through the external forces. These external forces can
be determined by solving the simple Poiseuille flow or by connecting with the NS-
equations.

Multiscale methods

In multiscale methods, two or more computational methods are combined with
each other on different lengths or time scales, which differ from hybrid methods, which
combine two or more methods on the same scales. A typical scenario of the multiscale
modeling is the modeling of biochemical reactions of the blood factors using the MD
modeling, their spatial and temporal concentrations through the CDR equations and
the blood flow using the NS equations. Thus, it is possible to capture the macroscopic
behavior of the clot formation without losing the nanoscale characteristics.

Simulation of the clot mechanics

Here are the models that are used to study the mechanical properties of the fibrin
or the blood clot. The study of structure and mechanism of the blood clot is of great
importance, since it can predict physiological or pathological conditions in which it can
break off and lead to embolism or other conditions. The trend of numerical simulation
over the years shows that simpler models, such as the single-component continuum
models, are becoming redundant and are increasingly being replaced by the discrete
particle methods, such as the DPD, and with a new method called multi-scale model-
ing. Continuous model level methods are still suitable for predicting the behavior of
the upper level, based on the empirical data, which limits their use of the NS equations
in combination with the CDR equations and the study of the blood flow dynamics.
Bilateral communication of the NS equations with the CDRs or other methods is supe-
rior to unilateral communication in many aspects, such as an accurate distribution of
the blood flow, the blood clot deformation due to a high shear flow, etc. The DPD is a
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powerful fluid modeling method that currently finds place in many biological models.
The basic requirements for the use of the DPD in simulating the blood flow are put
forward by many authors and are constantly being improved. One of the advantages
of the DPD is that it allows you to simulate many of the complex blood components,
such as red blood cells, platelets and plasma as simple beads. These properties make
the DPD a better choice than the boundary element methods, the discrete element
method, etc. One of the biggest problems is modeling the blood as the non-Newtonian
fluid, where the DPD shows some perspectives. However, care must be taken when
introducing additional potentials into the DPD to simulate polymer chains, solid walls,
dynamic bonding and fracture, etc. Since the DPD was originally designed for flu-
ids with three basic soft interactive forces. Any modification to them will change the
dynamics, and the parameters must be confirmed with experimental values. The mul-
tiscale blood clot models can effectively imitate blood clotting dynamics, biochemical
reactions, concentration factors, etc. The model will have cascade sub-models that
can serve as independent models for predicting several specific characteristics, such
as fibrinogen-thrombin cleavage. A good multiscale model will have characteristics of
the blood volume behavior modeling, such as diffusion, viscosity, etc., the mechanical
properties of a thrombus under the shear flow, and dynamic properties to simulate the
rupture of a thrombus are taken into account on the basis of molecular mechanics.With
the development of more accurate models for the blood components, it will be promis-
ing to develop and model the realistic blood clot formation. The multiscale models
of erythrocytes can predict the behavior of erythrocytes in the plasma flow, models
of fibrin can mimic the atomic level to mesoscale properties. These achievements at
different scales will allow developing new accurate multiscale models for predicting the
process of the blood coagulation and its mechanics.

Mathematical Model
liquid form is considered to be incompressible and having the permanent viscosity;

all biochemical processes of the key metabolites controlling the blood coagulation are
taken into account. Mechanisms of reaction ensuring production of anticoagulating
agents have not been studied sufficiently well; therefore, the given section presents
a simplified mathematical model describing kinetics of production and diffusion over
the space of two factors only: coagulation factor - thrombin and the factor preventing
coagulation. The mathematical model boils down to transient equations of viscous
uncompressible liquid flow supplemented with the members of the convective transport
of metabolites.

divV = 0 (3.30)

∂V

∂t
+ (V∇)V = −∇p+ µ∆V (3.31)

∂θ

∂t
= D1∆θ − div(V θ) +

αθ2

θ + θ0

− γθφ− χ1θ, (3.32)
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∂φ

∂t
= D2∆φ− div(V φ) + βθ(1 +

φ2

φ2
0

)− χ2φ, (3.33)

∂ψ

∂t
= kθ (3.34)

where V is velocity vector, p is pressure, θ is clot activator (thrombin) concentration,

χ1 = α∗χ̄1, χ2 = α∗χ̄2, b =
βθ0

φ0α∗
, c =

φ0

ε
, φ is inhibitor content.

Thrombin catalyzes the reaction of the fibrin predecessor - fibrinogen turning into
fibrin-monomer, content of which is expressed through φ, which, in turn, is polymerized
subject to the condition of φ > φc producing a clot.

Numerical Solution Algorithm

The purpose of numerical solution of unsteady-state equation for viscous incom-
pressible liquid, the method of splitting into physical parameters, described in detail
in the clause 3.3, is applied. For the purpose of parietal thrombus accounting, the
method of immersed boundary is used, which means that an artificial force f , discrete
in time is introduced in the impulse equation. This artificial force is applied only on
the surface of an obstacle and within a body. The points of load application coincide
with the points of velocity components determining. When a load application point
coincides with a virtual boundary, an artificial force is applied in such a way so that
the boundary condition of sticking would be fulfilled. Parameters of a cell containing
a virtual boundary may not satisfy the mass conservation equation. Therefore, the
source/sink of mass q, is introduced for this cell. Taking into account an artificial
force fi = (fu, fv) and q, after the nondimensionalization procedure, the system (3.30)-
(3.34) will be rewritten with the following set of inherent scales: concentration θ0 and
φ0, linear size L and the inherent velocity scale V in the form of

divV − q = 0 (3.35)

∂V

∂t
+ (V∇)V = −∇p+

1

Re
∆V + fi (3.36)

∂θ

∂t
=

1

Pe
∆θ − div(θV ) +

1

M
(
θ(θ − χ̄1)

θ + 1
− γ̄θφ) (3.37)

∂φ

∂t
=

1

Pe
∆θ − div(φV ) +

1

M
(bθ(1− εφ)(1 + φ2)− χ2φ (3.38)

где M =
V

α∗L
, Pe =

LV

D
, b =

βθ0

φ0α∗
, c =

φ0

ε
.

Boundary conditions for the Navier-Stokes equations were assumed as follows: the
sticking conditions were assumed for the vessel walls and clot surface. The pressure
values were set for the left and right boundaries of the considered area. It was assumed
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that the vertical components at the input were equal to zero and the output bound-
ary conditions were free. Initial concentration at the vessel lesion site was set as the
boundary condition for the metabolite - thrombin.
For solution of equations describing the dynamics of distribution of blood coagulation
system’s main metabolites the second order spatial variables approximation implicit
scheme was used.

Certain Numerical Results and Their Analysis.

Concentration wave of the activator, which has a speed V∗ =
√

(D1(αχ1)) in non-
convective conditions, forms a polymerizing clot that blocks the bloodstream having
velocity of V . As noted in the work of Ataluikhanov at al. arrest of hemorrhage
as a result of thrombus growth is possible when these velocities are commensurable.
Counteraction to the coagulation autowave may be characterized by dimensionless
parameter Gu = V/V∗ = V/

√
(D1(αχ1)).

a

b

c

Figure 3.3 – thrombus formation at Re=0.01, Pe=10, Gu=1.7.
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a

b

c

Figure 3.4 – thrombus formation at Re=2, Pe=10, Gu=1.7.

Figure 3.3 shows the numerical results for the following parameters: Re = 0.01,
Pe = 10, Gu = 1.7 at different points in time. The initiation of blood coagulation
due to a local increase in the concentration of the activator is accompanied by the
formation of a thrombus, which displaces blood flow from the area adjacent to the
injury site. In the event of low blood flow velocities, the primary wave (the initial
perturbation wave is assumed) of activation of clotting is extinguished by the inhibitor
wave and the growth of the thrombus stops. The thrombus covers up to one-third of
the transverse vessel size. As it can be inferred from the flow line pictures, blood flow
is driven out of the area adjacent to the injury site. Localized blood clot formation is
determined by interaction of an activator and inhibitor with each other and also with
the hydrodynamic flow.

Increasing the value of the Reynolds number leads to the demolition of a blood clot
in the direction of flow, the blood clot takes an asymmetrical shape as it did in the first
case (Fig. 3.4). Stopping of the hemorrhage resulting from a thrombus growth is pos-
sible when these velocities are commensurable. Flow counteraction to the coagulation
autowave may be characterized by the dimensionless parameter Gu. The experimental
results were obtained where change in the Gu value resulted in an intensive convective
clot transfer. The anticlotting wave prevents further growth of thrombosis, blood flow
driving out becomes more intensive and further numerical experiments revealed that
blood clot detachment does not happen under these conditions.(рис 3.5).
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a

b

c

Figure 3.5 – thrombus formation at при Re=2, Pe=10, Gu=2.7 at times t=100 (a),
t=400 (b), t=500 (c).

Questions and exercises.
1. Using the dedimensionalization procedure, derive the equation (3.23) and (2.24).

2. Using the equation (3.20)-(3.22), derive the Poisson’s equation for pressure (3.27).

3. Describe the second order spatial variables approximation implicit scheme for
solution of equations describing the dynamics of distribution of blood coagulation
system’s main metabolites.

4. Using the von Neumann’s method, show that if central differences are used to
approximate the derivatives with respect to space, then the explicit first-order
method of solving the one-dimensional wave equation is unstable.
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