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1 | INTRODUCTION

Vhen different plasma components have distinct temperatures, the process through which those that have higher temper-
atures transfer energy to those with lower temperatures, which occurs through Coulomb collisions and the coupling of
collective modes, until all the components reach the same equilibrium temperature is known as temperature relaxation. Tem-
perature relaxation between electrons and ions in dense plasma is a key problem in understanding the interactions in high
energy density physics.!!"?! Particularly for inertial confinement fusion (ICF),* the values of energy transfer rates are nec-
essary to simulate energy depositions:>°! The experiments for diagnosing the process of temperature relaxation are currently
advancing rapidly’®! due to powerful lasers such as the OMEGA, X-ray free electron lasers, and the National Ignition
Facility.['%"12] To design and analyse the experiments, a simple computing simulation is required by applying classical and
semi-classical approximations to deal with the Coulomb collisions in the regime of interest. Various approaches are used
to study the relaxation processes in plasma,!'>~15 and one of the most accurate methods is the molecular dynamics (MD)
method.[16~201

Starting from the first kinetic models, many authors have considered the problem of temperature relaxation using a com-
putational experiment.?'=231 Theoretical models are typically limited by small deviations of the system from the equilibrium
state. It is possible to calculate the processes of energy relaxation between two subsystems far from equilibrium only using the
methods of numerical simulation.

In this work, the MD method is used to simulate temperature equalization in a fully ionized, hot, ideal plasma. As
an example, a positronium plasma, that is, a system with equal masses and equal but opposite charges, is considered. To

Abbreviations: ACF, autocorrelation function; BPS, Brown, Preston and Singleton; GMS, Gericke, Murillo, and Schlanges; ICF, inertial confinement
fusion; LS, Landau-Spitzer; MD, molecular dynamics.
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describe the interaction of particles in the MD simulation, we have chosen the Coulomb potential. The Coulomb potential
is a good model for ICF as an interaction potential. The bound electron—positron pairs in the calculations were observed
at close distances, and the Coulomb potential was smoothed by a spline of the third order.*! The system of equations
of motion of charged particles must have initial and boundary conditions. Mirror or periodic boundary conditions are
usually used as the boundary conditions; the Ewald summation procedure is sometimes applied for boundary conditions
as well.

In our calculations, the initial state was chosen to be strongly non-equilibrium, and the distribution function of electrons and
positrons at the initial moment was assumed to be the Maxwell function with very different temperatures. During relaxation of
the initial state, the temperatures are equalized. It should be noted that the plasma can be either in a trap or fly into a vacuum;
in any case, the interaction of the electron and positron subsystems leads to equalization of temperatures.

2 | FORMULATION OF THE PROBLEM

Let us consider a volume in which, at the initial moment of time, there are two components with different temperatures: a certain
number of electrons with positrons for a positronium plasma. The systems with different numbers of particles 2N =128, 512,
2,048, 4, 096 distributed inside the counting cell—a cube with an edge L—were considered. The dimensions of the cube were
chosen from the condition nL> = N, where n is a numerical density of ions, which was set to be equal to 10'?> cm™.

The two types of initial conditions were considered. The first type corresponds to the state when, at the initial moment
of time, all the particles are fixed and distributed equiprobably inside the counting cell. This type of initial condition cor-
responds to experiments with ultracold plasma created by selective ionization of a cold gas. It is discussed in detail in
ref. 25. The second type is the initial state when the particles at the initial moment of time are distributed equiprobably in the
counting cell, and their speeds have a Maxwell distribution with different temperatures for positively and negatively charged
particles.

Two types of boundary conditions were considered: mirror walls and ‘periodic boundary conditions. In the case of periodic
boundary conditions, the interaction of particles in only one cell was taken into account, that is, the Ewald summation procedure
was not used.

2.1.1 | The numerical solution technique

We have tried a variety of standard numerical methods of solving dynamic equations: the over-stepping schemes and the Euler,
Verlet, and Runge—Kutta methods. Substantial progress in the assessment of an enormous calculation size was achieved due to
the creation of an original method. Assume that at'a certain time moment, #y, all the particles’ coordinates r,(#y) and velocities
v (to) are known. The procedure to determine the ri(fo + Af) and v (ty + Ar) values, for the external (large) time step At, is as
follows.

One calculates the rio)(to + At/2) coordinate values corresponding to a rectilinear particle motion:

PO (to + At/2) = ri(to) + vi(to) - At/2.

Then, the values of the forces acting upon the particles are calculated:

(z+Dn

FO(y+At/2) = Y fulr) — ).
I#k

In order to reduce the computation size, one should take into account Newton’s third law: f; = — f. After that, one finds for
each particle the two others: the first is the nearest positively charged particle neighbour, and the second is the nearest negatively
charged particle neighbour. The force acting on each particle is calculated in the form of a sum of two termsFy, = F, ,EF) + F, /EN)'
The F, ]EN) is due to the given particle interaction with its nearest neighbours and with the particles for which the given particle is
the nearest neighbour. F ]EF) is a result of the interaction with all the other particles. Then, the Newton equations are integrated
over the time interval Af using a Runge—Kautta fourth order of accuracy procedure with an internal (small) time step 7 = At/N,
where N, represents the number of internal steps. Only the forces F IEN) are variable in the course of the integration:

F)=F (tg+At)2)+ EM (1), 19 <t<to+ At
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Having calculated ri(fo + Af) and vi(#p + Af), one should verify whether there are particles outside the cube volume.
With particles having penetrated through the cube wall, one should proceed according to the above formulated boundary
conditions.

Time steps in the range of 0.005 < At/z, <0.1 and N.~30were usually used in the calculations. Time evolution of the up to
8,000 particle systems were traced over the time interval 1~(200 — 1, 000) - 7. The total energy conservation law was fulfilled
in these conditions, with an accuracy better than 0.5% (usually 0.1%). The proposed algorithm provided the reversibility of the
system motion at time intervals of the order z.,. The time of the system evolution tracing is usually far greater than 7, so the
system motion is irreversible. However, the energy conservation in the reversibility tests was very fine—better than 0.1% for a
time interval of the order e-p collision time 7.

The non-ideality index of the classical Coulomb system is defined as follows:

722 Z2nl/3
I'= ~ s
aT T

ey

where a = (3/4zn)'” is the Wigner-Seitz radius. Large values of the non-ideality index can be obtained in various ways: due to
the large charge Z (the charge of dust particles in the plasma),?®! high ion density n (inertial thermonuclear fusion),’?” and low
temperature 7' (ultracold plasma).?®21. For simplicity, we consider the case of singly charged ions Z = 1.

If we assume that, at the initial moment of time, the two plasma components have a Maxwell distribution of velocities with
different temperatures, then the process of equalization of temperatures due to Coulomb collisions is described by the following

equation3%:
ar. _Tp-T dTy _T=Ty o

dt Tep dt Tpe

in which the rate of relaxation of the electron temperature is determined by the temperature difference and the characteristic

relaxation time: i
1 3memy (kB £e N kg € >‘/
Vep  84/2zmpetA\ e mpy )
To determine the relaxation time of the temperatures of electrons and ions, it is necessary to know the value of the Coulomb

logarithm A, which is known to reflect the long-range nature of the Coulomb interaction. For convergence of theoretical results,
the so-called cut-off radius was introduced. The Coulomb logarithm expressed in terms of cut-off radius has the form®°!:

3

Tep =

A = In 2mox )

'min

where bnax, bmin are maximal and minimal impact parameters, respectively. As the minimal impact parameter, the closest
approach distance b, = Ze’/kg T or the de Broglie thermal wave length Lp = 1/27xh2/m.k T, is measured. The thermal wave
length is measured when it is necessary to take into account the quantum effects. Based on the numerical calculations in the
work of Gericke, Murillo, and Schlanges (GMS),!*!] the following formula for the Coulomb logarithm was suggested:

on

Acms = %111(1 + A3 + R 1/[A*/87 + b2]), 5)

where Rijon = (3/47mp)1/3 is the distance of closest approach. This formula has a good agreement with the results obtained in
the framework of the T matrix theory. Based on dimensional continuation, Brown, Preston and Singleton (BPS)BZ derived a
Coulomb logarithm:

A 1
Agps = log | 22 ) + =[log(167) — y — 1], (©6)
Ly 2
where y is the Euler constant.

3 | CALCULATION OF TEMPERATURE EQUALIZATION

Let us first consider the influence of the following factors on the process of temperature equalization in the Coulomb system:
the type of boundary conditions and the number of particles in the system. Figure 1 shows the graphs of electron and ion
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FIGURE 1 Time dependence of electron and ion temperatures for two types of boundary conditions and for a different number of particles in

the system: the left panel—mirror; the right panel—periodic
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temperatures for two types of boundary conditions: the left panel—mirror; the right panel—periodic. Different vertical graphs
correspond to different numbers of particles in the system 2N =128, 512, 2048, 4096.

The above figures show that, for a small number of particles in the system; the temperature relaxation time strongly depends
on the type of boundary conditions. As expected, when the number of particles in the system increases, the dependence
decreases. It is interesting to note that, with a small number of particles in the system with periodic boundary conditions,
the temperature is equalized faster. This result can be explained by the fact that, under mirror boundary conditions, the par-
ticle distance to the wall is significantly shorter than the average inter-particle distance n~"3, and the average value of the
micro-field acting on the particle is 2> times smaller than the average micro-field. With a large number of particles at the ini-
tial time, the temperature relaxation curves for periodic and mirror boundary conditions are the same, with great accuracy, but
at large times, differences arise due to the fact that the periodic system has better conditions for the appearance of large-scale
fluctuations.

Figure 2 shows the values of the temperature of positrons and electrons using MD methods at n = 10'> cm™ in comparison
with the theoretical results of other authors such as GMS,!! BPS,3?! and Landau-Spitzer (LS).*! GMS investigated various
approximations in the evaluation of A, including issues with trajectories and cut-offs, and provided different evaluations of the
relaxation rate based on quantum kinetic theory. BPS used dimensional continuation to obtain expressions for the electron—ion
coupling rate accurate to the second order in the plasma coupling parameter. The MD data in Figure 2 are most closely matched
by GMS followed by BPS. The LSP% model predicts the slow relaxation, For the positronium plasmas, the simulations are
consistent with both GMS and BPS.

3

4 | RESULTS OF CALCULATIONS OF THE AUTOCORRELATION FLOW
FUNCTION

Consider the autocorrelation flow functions of positively and negatively charged particles (positrons and electrons). As in the
general case, our system is strictly neutral, and its total momentum is zero in the periodic system and oscillates around zero
in the system with mirror boundary conditions; we will consider the autocorrelation functions for a flow of particles with only
one sign:

N
J(t) = Z avi(0), @)

where ¢;, v; are the charge and velocity of the i particle, respectively. Then, the autocorrelator of the particle flux is determined
by the formula:
Z(2) = (J(0) - J(0))/{T}(0)). ®

The flow autocorrelator is an important characteristic of the considered Coulomb system. Its dependence on the number
of particles and the type of boundary conditions is of great interest. Therefore, calculations were carried out with a different
number of particles and two types of boundary conditions: mirror and periodic. Figure 3, the top panel, shows the dependence
of the autocorrelation function of the flow in the cube with mirror boundary conditions for the number of particles 2N = 128,
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FIGURE 4 Time dependence of the autocorrelation flow function
for a system with mirror boundary conditions in the linear scale

512, 2,048, 4,096. In Figure 3, the bottom panel presents similar graphs for the periodic system. In all figures, the solid curves
represent the dependence
Z(t)= exp(_Ta)plasma)7 ©)]

where @plasma 18 plasma frequency. Comparison of the curves in the lower row shows that they do not differ significantly from
each other, that is, the dependence of the ACF flow on the number of particles is rather weak for periodic boundary conditions.
However, the graphs in the upper and lower rows differ significantly, that is, the dependence on the type of boundary conditions
is very strong.

Another interesting fact, as seen from the figures, is that the correlation decay time in the system with periodic boundary
conditions is much longer, and the autocorrelation functions are more monotonic.

For a more explicit demonstration of this effect, Figure 4 shows the dependencies of the autocorrelation flow functions for
a system with mirror boundary conditions in a linear scale. Figure 5 shows similar results for a system with periodic boundary
conditions in a semi-logarithmic scale. For the system with mirror boundary conditions, a solid curve with dependence (9)
demonstrates that the initial period of the ACF is well described by an exponent with a characteristic correlation decay time
1/@wpasma- In the abovementioned graph for a system with periodic boundary conditions, the solid curve with the dependence
Z(7) = exp(—TwWplasma/27) shows that, for such a system, the characteristic time for the correlation decay coincides with good
accuracy with the Langmuir period.
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5 | CONCLUSIONS

In this paper, the MD method has been used to study the problem of temperature relaxation in a classical Coulomb system. The
dependence of the properties of such a system on the number of particles has been studied, and the cases of mirror and periodical
boundary conditions have been considered.

The analysis of the autocorrelation functions of the flux of particles of the same sign in the system showed that the correlation
decay time in a system with mirror boundary conditions is reciprocal to the plasma frequency, and in a system with periodic
boundary conditions, it has the order of the Langmuir oscillation period. It was also found that, in a system with periodic
boundary conditions, the temperature relaxation time is shorter than'in a system with mirror boundary conditions. Based on the
analysis of the results, the influence of the number of particles on the autocorrelation flux functions is insignificant.
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