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Numerical Algorithm for Solving
the Inverse Problem for the Helmholtz

Equation

M. A. Shishlenin1,2,3(B), S. E. Kasenov4, and Zh. A. Askerbekova4

1 Institute of Computational Mathematics and Mathematical Geophysics SB RAS,
Novosibirsk, Russia
mshishlenin@ngs.ru

2 Novosibirsk State University, Novosibirsk, Russia
3 Sobolev Institute of Mathematics, Novosibirsk, Russia

4 Al-Farabi Kazakh National University, Almaty, Kazakhstan

Abstract. In this paper we consider acoustic equation. The equation
by separation of variables is reduced to a boundary value problem for
the Helmholtz equation. We consider problem for the Helmholtz equa-
tion. We reduce the solution of the operator equation to the problem of
minimizing the functional. And we build numerical algorithm for solv-
ing the inverse problem. At the end of the article is given the numerical
calculations of this problem.

Keywords: Continuation problem · Regularization problem ·
Comparative analysis · Numerical methods · Landweber’s method

1 Introduction

For mathematical modelling of physical processes and the phenomena occurring
in nature, it is necessary to face ill-posed problems, including with the Cauchy
problem for the Helmholtz equation. The Helmholtz equation is used in many
physical processes associated with the propagation of waves and has numer-
ous applications. If the law of oscillations of the physical medium harmonically
depends on time, then the wave equation can be transformed to the Helmholtz
equation. In particular, the Cauchy problem for the Helmholtz equation describes
the propagation of electromagnetic or acoustic waves. The aim of the paper is
that an effective numerical solution for investigating inverse elliptic-type prob-
lems by the Landweber method. A significant theoretical and applied contribu-
tion to this topic has been accumulated in monographs by A.N. Tikhonova, M.M.
Lavrentyeva, V.K. Ivanova, A.V. Goncharsky. The Cauchy problem for elliptic
equations is of fundamental importance in all inverse problems. An important
application of the Helmholtz equation is the acoustic wave problem, which is
considered in the works of DeLillo, Isakov, Valdivia, Wang (2003) L. Marin,
L. Elliott, P. J. Heggs, D. B. Ingham, D. Lesnic and H. Wen. The Landweber
c© Springer Nature Switzerland AG 2019
Y. Shokin and Z. Shaimardanov (Eds.): CITech 2018, CCIS 998, pp. 197–207, 2019.
https://doi.org/10.1007/978-3-030-12203-4_20
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method is effective and makes it possible to substantially simplify the investiga-
tion of inverse problems [1,2].

There are a lot of application of the Cauchy problems for PDE [3–5]. In the
work [6] authors introduced a concept of very weak solution to a Cauchy problem
for elliptic equations. The Cauchy problem is regularized by a well-posed non-
local boundary value problem the solution of which is also understood in a
very weak sense. A stable finite difference scheme is suggested for solving the
non-local boundary value problem and then applied to stabilizing the Cauchy
problem. Numerical examples are presented for showing the efficiency of the
method.

In the work [7] it was investigated the ill-posedness of the Cauchy problem
for the wave equation. The conditional-stability estimate was proved.

In [8] it was investigated the continuation problem for the elliptic equation.
The continuation problem is formulated in operator form Aq = f . The singular
values of the operator A are presented and analyzed for the continuation problem
for the Helmholtz equation. Results of numerical experiments are presented.

2 Formulation of the Problem

Consider the acoustics equation [10] in domain Q = Ω × (0,+∞), where Ω =
(0, 1) × (0, 1):

c−2(x, y)Utt = ΔU − ∇ ln(ρ(x, y))∇U (x, y, t) ∈ Q (1)

Suppose that a harmonic oscillation regime was established in Ω:

U(x, y, t) = u(x, y)eiωt, (x, y, t) ∈ Q (2)

Putting (2) into (1) we obtain Helmholtz equation:

− ω2c−2u = Δu − ∇ ln(ρ(x, y))∇u, (x, y) ∈ Ω

We consider the initial-boundary value problem:

− ω2c−2u = Δu − ∇ ln(ρ(x, y))∇u, (x, y) ∈ Ω, (3)
u(0, y) = h1(y), y ∈ [0, 1], (4)
u(x, 0) = h2(x), x ∈ [0, 1], (5)
ux(0, y) = f1(y), y ∈ [0, 1], (6)
uy(x, 0) = f2(x), x ∈ [0, 1]. (7)

Problem (3)–(7) appears ill-posed. For a numerical solution of the problem,
we first reduce it to the inverse problem Aq = f with respect to some direct
(well-posed) problem. Further, we reduce the solution of the operator equation
Aq = f to the problem of minimizing the objective functional J(q) = 〈Aq −
f,Aq − f〉. After calculating the gradient J ′q of the objective functional, we
apply the method of Landweber to minimize it [11,12].
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3 The Conditional Stability Theorem

Let us consider the initial-boundary value problem:

Δu = 0, (x, y) ∈ Ω, (8)
u(0, y) = f1(y), ux(0, y) = h1(y), y ∈ [0, 1], (9)
u(x, 0) = f2(x), uy(x, 0) = h2(x), x ∈ [0, 1], (10)

Let us divide the problem into two parts:

Problem 1

Δu = 0,

u(0, y) = f1(y),
u(x, 0) = 0,
ux(0, y) = h1(y),
uy(x, 0) = 0.

Problem 2

Δu = 0,

u(0, y) = 0,
u(x, 0) = f2(x),
ux(0, y) = 0,
uy(x, 0) = h2(x).

Problem 1, we continue the field along the axis x, then at y = 1 we can admit
the boundary at zero. And also, problem 2, we continue the field along the axis y,
then at x = 1 we can admit the boundary at zero. Suppose h2(x) = 0, h1(y) = 0.

Problem 1

Δu = 0, (x, y) ∈ Ω, (11)
u(0, y) = f1(y), y ∈ [0, 1], (12)
u(x, 0) = 0, x ∈ [0, 1], (13)
ux(0, y) = 0, y ∈ [0, 1], (14)
u(x, 1) = 0, x ∈ [0, 1]. (15)

Problem 2

Δu = 0, (x, y) ∈ Ω, (16)
u(0, y) = 0, y ∈ [0, 1], (17)
u(x, 0) = f2(x), x ∈ [0, 1], (18)
u(1, y) = 0, y ∈ [0, 1], (19)
uy(x, 0) = 0, x ∈ [0, 1]. (20)

Theorem 1 (of the conditional stability). Let us suppose that for f1 ∈
L2(0, 1) and there is a solution u ∈ L2(Ω) of the problem (11)–(15). Then the
following estimate of conditional stability is right

1∫

0

u2(x, y)dy ≤
( 1∫

0

f2
1 (y)dy

)1−x( 1∫

0

u2(1, y)dy

)x

. (21)

Theorem 2 (of the conditional stability). Let us suppose that for f2 ∈
L2(0, 1) and there is a solution u ∈ L2(Ω) of the problem (16)–(20). Then the
following estimate of conditional stability is right

1∫

0

u2(x, y)dx ≤
( 1∫

0

f2
2 (x)dx

)1−y( 1∫

0

u2(x, 1)dx

)y

. (22)

More details proof such estimates are shown in works [13,14].
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4 Reduction of the Initial Problem to the Inverse
Problem

Let us show that the solution of the problem (3)–(7) is possible to reduce to the
solution of the inverse problem with respect to some direct (well-posed) problem
[?], [?].

As a direct problem, we consider the following one

− ω2c−2u = Δu − ∇ ln(ρ(x, y))∇u, (x, y) ∈ Ω, (23)
u(0, y) = h1(y), y ∈ [0, 1], (24)
u(x, 0) = h2(x), x ∈ [0, 1], (25)
u(1, y) = q1(y), y ∈ [0, 1], (26)
u(x, 1) = q2(x), x ∈ [0, 1]. (27)

The inverse problem to problem (23)–(27) consist in defining the function
q1(x), q2(y) by the additional information on the solution of direct problem.

ux(0, y) = f1(y), y ∈ [0, 1], (28)
uy(x, 0) = f2(x), x ∈ [0, 1]. (29)

We introduce the operator

A : (q1, q2) �→ (ux(0, y), uy(x, 0)). (30)

Then the inverse problem can be written in operator form

Aq = f.

We introduce the objective functional

J(q1, q2) =

1∫

0

[
ux(0, y; q1, q2) − f1(y)

]2
dy +

1∫

0

[
uy(x, 0; q1, q2) − f2(x)

]2
dx.

(31)

We shall minimize the quadratic functional (31) by Landweber’s method. Let
the approximation be known qn. The subsequent approximation is determined
from:

qn+1 = qn − αJ ′(qn) (32)

here α ∈ (0, ||A||−2) [10].
Let us note that the convergence of the Lanweber iteration can be sufficiently

increase if we apply the apriori information about the solution [9].
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Algorithm for Solving the Inverse Problem

1. We choose the initial approximation q0 = (q01 , q
0
2);

2. Let us assume that qn is known, then we solve the direct problem numerically

uxx + uyy −
(ρx

ρ
ux +

ρy

ρ
uy

)
+

(ω

c

)2

u = 0, (x, y) ∈ Ω,

u(0, y) = h1(y), u(1, y) = qn
1 (y), y ∈ [0, 1],

u(x, 0) = h2(x), u(x, 1) = qn
2 (x), x ∈ [0, 1].

3. We calculate the value of the functional

J(qn+1) =
1∫
0

[
ux(0, y; qn+1

1 ) − f1(y)
]2

dy +
1∫
0

[
uy(x, 0; qn+1

2 ) − f2(x)
]2

dx;

4. If the value of the functional is not sufficiently small, then go to next step;
5. We solve the conjugate problem

ψxx + ψyy +
(ρx

ρ
ψ

)
x

+
(ρy

ρ
ψ

)
y

+
(ω

c

)2

ψ = 0, (x, y) ∈ Ω,

ψ(0, y) = 2
(
ux(0, y; q1) − f1(y)

)
, ψ(1, y) = 0, y ∈ [0, 1],

ψ(x, 0) = 2
(
uy(x, 0; q2) − f2(x)

)
, ψ(x, 1) = 0, x ∈ [0, 1].

6. Calculate the gradient of the functional J ′(qn) =
( − ψx(1, y),−ψy(x, 1)

)
;

7. Calculate the following approximation qn+1 = qn − αJ ′(qn), then turn to
step 2.

5 Numerical Solution of the Inverse Problem

First we consider the initial problem in a discrete statement. We carry out a
numerical study of the stability of the problem in a discrete statement [?].

Discretization of the Original Problem
The corresponding difference problem for the original problem (3)–(7) has the
following

ui+1,j − 2ui,j + ui−1,j

h2
+

ui,j+1 − 2ui,j + ui,j−1

h2

− ρi+1,j − ρi−1,j

2hρi,j
· ui+1,j − ui−1,j

2h

− ρi,j+1 − ρi,j−1

2hρi,j
· ui,j+1 − ui,j−1

2h
+

(ω

c

)2

ui,j = 0, i, j = 1, N − 1,

u0,j = hj
1, j = 0, N,

ui,0 = hi
2, i = 0, N,

u1,j = hj
1 + h · f j

1 , j = 0, N,

ui,1 = hi
2 + h · f i

2, i = 0, N.
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For convenience, we introduce the new denotations ai,j = 1 +
ρi+1,j − ρi−1,j

4ρi,j
,

bi,j = 1 +
ρi,j+1 − ρi,j−1

4ρi,j
, c = −4 +

(ω · h

c

)2

, di,j = 1 − ρi+1,j − ρi−1,j

4ρi,j
,

ei,j = 1 − ρi,j+1 − ρi,j−1

4ρi,j
.

ai,jui−1,j + bi,jui,j−1 + cui,j + di,jui,j+1 + ei,jui+1,j = 0, i, j = 1, N − 1,
(33)

u0,j = hj
1, j = 0, N,

(34)

ui,0 = hi
2, i = 0, N,

(35)

u1,j = hj
1 + h · f j

1 , (36)

ui,1 = hi
2 + h · f i

2, i = 0, N.
(37)

Let us construct a system of difference equations [15, p. 379]

A · X = B. (38)

Here A—of matrix (N + 1)2 size, X—unknown vector of the form

X = (u0,0, u0,1, u0,2 . . . u0,N , u1,0, u1,1, u1,2 . . . u1,N , . . . uN,0, uN,1, uN,2, . . . uN,N ) ,

B—data vector (boundary and additional conditions).

Analysis of the Stability of the Matrix of the Initial Problem
Description of the numerical experiment c = 1, ω = 0.5

h1(y) =
1 − cos(8πy)

4
, h2(x) =

1 − cos(8πx)
4

,

q1(y) =
1 − cos(8πy)

4
, q2(x) =

1 − cos(8πx)
4

,

ρ(x, y) = e− (x−0.5)2+(y−0.5)2

2b2 , b = 0.1.

Table 1 presents the results of a singular decomposition of the matrix of the
initial problem A and a direct problem AT for the values N = 50

Table 1. Singular decomposition of matrices with size (N + 1)2

Matrices σmax(A) σmin(A) μ(A)

AT 743.404 0.015 47056.2

A 743.404 9.07 · 10−19 8.19 · 1020

The matrix of the original problem has a poor conditionality [16] (Table 2).
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Numerical Results of the Inverse Problem by the Landweber Method
In this section, to solve the two-dimensional direct problem for the Helmholtz
equation, the finite element method is used. Triangulation with the number of
triangles—Nt; vertices—Nv; and the number of points at the border—N . The
problem is solved using the computational package FreeFEM++ (Figs. 1, 2, 3, 4
and 5).

Description of the numerical experiment c = 1, ω = 0.5

h1(y) =
1 − cos(8πy)

4
, h2(x) =

1 − cos(8πx)
4

,

q1(y) =
1 − cos(8πy)

4
, q2(x) =

1 − cos(8πx)
4

,

ρ(x, y) = e− (x−0.5)2+(y−0.5)2

2b2 , b = 0.1.

n

J(
qn

)

0 100 200 300
0.3

0.4

0.5

0.6

0.7

0.8

a) J(qn) b) N = 50, Nt = 5862 and Nv = 3032

Fig. 1. (a) The value of the functional by iteration, (b) Ω area grid with N number of
points on the border

Table 2. Solution results by the Landweber iteration method without noise

Number of
iterations, n

J(q) ‖uT − ũ‖

10 0.8158 0.1491

100 0.6254 0.1013

300 0.3788 0.0553

365 0.3323 0.0538
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Denotation: (symbol �) — Landweber solution, (symbol •) —
exact solution

Fig. 2. The figure (a) comparison of boundaries u(x, y) at x = 0.25, the figure (b)
comparison of boundaries u(x, y) at y = 0.25
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Denotation: (symbol �) — Landweber solution, (symbol •) —
exact solution

Fig. 3. The figure (a) comparison of boundaries u(x, y) at x = 0.5, the figure (b)
comparison of boundaries u(x, y) at y = 0.5
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Denotation: (symbol �) — Landweber solution, (symbol •) —
exact solution

Fig. 4. The figure (a) comparison of boundaries u(x, y) at x = 0.75, the figure (b)
comparison of boundaries u(x, y) at y = 0.75
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Denotation: (symbol �) — Landweber solution, (symbol •) —
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Fig. 5. The figure (a) comparison of boundaries u(x, y) at x = 1, the figure (b) com-
parison of boundaries u(x, y) at y = 1

6 Conclusion

The paper is devoted to the investigation of an ill-posed problem by initial-
boundary value problems for the Helmholtz equation, the construction of numeri-
cal optimization methods for solving problems, the construction of corresponding
algorithms and the computational experiments of this problem.
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The numerical results of the solution of the initial-boundary value problem
for the Helmholtz equation, in which, together with the data on the surface, the
data in depth are used, show that if we want to calculate the squaring problem,
it is better to measure the data larger and deeper and start solving the problem
in a large square. This gives a more stable solution.
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