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We investigate the general approach to finding exact cosmological solutions in f(R)
Hořava-Lifshitz gravity, based on Noethers theorem. A feature of this approach is that

it uses the behavior of an effective Lagrangian under infinitesimal transformations of
the desired symmetry, explicitly determining the form f(R) for which such symmetries

exist. It is shown that the dynamics of the scale factor changes according to either a

exponential function of time.
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1. Introduction

At the end of the past millennium, it became clear from the observation of type Ia

supernovae and the cosmic microwave background that our universe expands with

acceleration [1, 2]. The explanation of this phenomenon within the framework of the

general theory of relativity led to the formulation of a large number of models, one

of which consists in introducing a mysterious substance, the so-called dark energy

(see for example Ref. [3] and references therein for some reviews). The nature of

dark energy is still not clear, but mathematically it fits well with the ΛCDM model

a wide range of data [4]. Nevertheless, this model has strong theoretical flaws [5],

which motivated the search for alternative models [6, 7]. One of the alternatives is

the modification of the Einstein-Hilbert term, replacing the Ricci scalar R in the

action with some common functions f(R) of the Ricci scalar (see for example Ref.

[8]).

In parallel, some models for quantum gravity were developed. In 2009, Hořava

[9], based on an idea proposed by Lifshitz [10], formulated a model for a theory of

quantum gravity, which takes into account ultraviolet mode renormalizability, due to

an anisotropic scaling between space and time, so that Lorentz invariance is violated

on ultraviolet scales. However, when choosing the parameter λ = 1, the infrared

limit of the theory reproduces the general theory of relativity. This modification

of the general theory of relativity consists in introducing high-order terms into the

Einstein-Hilbert action, which lead to different scalings and divide the coordinates

into space and time. In theory, there are no ghosts, since there are only second-order
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time derivatives in the action, but a clear violation of general covariance introduces

a new scalar degree of freedom, due to which pathologies appear [11]. This model

developed further and is known as the Hořava-Lifshitz theory (see for example Ref.

[12]). From the above considerations, it is clear that the quantum theory of Hořava-

Lifshitz, combined with the alternative theory f(R), is a promising candidate for

completing the general theory of relativity in the ultraviolet range [13, 14].

In this paper, we consider the Friedman-Lemâıtre-Robertson-Walker (FLRW)

flat spacetime in the framework of the metric formalism f(R) of gravity. We

consider a general approach to constructing modified gravity, which is invariant

with respect to diffeomorphisms and preserve foliation. The approach was pro-

posed in [14], where special attention was paid to the formulation of modified f(R)

HořavaLifshitz gravity and its Hamiltonian structure. Following [15], we calculated

an effective Lagrangian in which the scale factor a and the Ricci scalar R play the

role of independent dynamic variables. This Lagrangian is constructed in such a

way that its variation with respect to a and R gives the equations of motion of

the HořavaLifshitz theory. The form of the function f(R), appearing in the mod-

ified action, is then determined by the requirement that the Lagrangian admits

the required Noether symmetry [16]. Under Noether symmetry of this cosmologi-

cal model, we understand that there is a vector field X, which is an infinitesimal

generator of a symmetry in the tangent space of the configuration space, such that

the derivative of the Lagrangian along this vector field vanishes. We will see that,

by requiring the Noether symmetry as a feature of the Lagrangian of the model

under consideration, we can obtain the explicit form of the function f(R). Since

the existence of symmetry leads to constants of motion, we can integrate the field

equations, which then lead to a exponential expansion for the universe.

2. Modified f(R) Hořava-Lifshitz Gravity

In this work, we consider a more general model of the Hořava-Lifshitz gravity pro-

posed in [14]. The action of such a model has the form

Sf(RGHL) =

∫
d4x
√
g(3)Nf(RGHL). (1)

Here g(3) is determinant of the three-dimensional metric tensor g
(3)
ij for the ADM

metric given in the following form

ds2 = −N2dt2 + g
(3)
ij

(
dxi +N idt

) (
dxj +N jdt

)
, (2)

where i, j = 1, 2, 3, N is the so-called lapse variable and N i is the shift 3-vector. In

the action, we use the function f(RGHL), which denotes the generalized curvature

of the Hořava-Lifshitz gravity RGHL and is defined as

RGHL ≡ KijKij − λK2 + 2µ∇µ (nµ∇νnν − nν∇νnµ)− EijGijklEkl , (3)
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where Kij is the extrinsic curvature

Kij =
1

2N

(
ġ
(3)
ij −∇

(3)
i Nj −∇(3)

j Ni

)
, K = Ki

i , (4)

nµ is a unit vector perpendicular to the three-dimensional hypersurface Σt defined

by t = constant, and ∇(3)
i expresses the covariant derivative on the hypersurface Σt.

In the last term of Eq. (3), Gijkl is the inverse of the generalized De Witt metric

Gijkl =
1

2
(g(3)ikg(3)jl + g(3)ilg(3)jk)− λg(3)ijg(3)kl. (5)

Here it is important to note that Gijkl is singular for λ = 1/3 and Gijkl exist

if λ 6= 1/3. The expression for Eij is constructed to satisfy the “detailed balance

principle” [17] and is defined as√
g(3)Eij =

δW [g
(3)
kl ]

δg
(3)
ij

, (6)

where the form of W [g
(3)
kl ] is given in [18] for z = 2 and z = 3.

Consider a spatially flat FLRW universe

ds2 = −N2dt2 + a(t)2
∑

i=1,2,3

(
dxi
)2
, (7)

where N can be considered as time-independent and we will fix as N = 1. The

scalar curvature (3) can be written as

RGHL = 3(1− 3λ+ 4µ)
ȧ2

a2
+ 6µ

ä

a
. (8)

Following [16], in order to investigate Noether’s symmetry of the model, it is neces-

sary to determine the effective Lagrangian of the action (1) of the minisuperspace

under consideration, in which the scale factor a and the scalar curvature RGHL play

the role of independent dynamical variables

S =

∫
dtL(a, ȧ, RGHL, ṘGHL) =∫
dt
[
a3f(RGHL)− ν

{
RGHL −

(
3(1− 3λ+ 4µ)

ȧ2

a2
+ 6µ

ä

a

)}]
, (9)

where ν = a3df(RGHL)/dRGHL is a Lagrange multiplier. Then, the effective La-

grangian will have the form

L(a, ȧ, RGHL, ṘGHL) = (9λ− 3)ȧ2af ′ + 6µȧṘGHLa
2f ′′ + a3(f ′RGHL − f). (10)

The equations of motion will have then the following form

3H2 + 2Ḣ = − 2

3λ− 1

1

f ′

[
µf ′′′Ṙ2

GHL + µf ′′R̈GHL +

+(3λ− 1)f ′′HṘGHL +
1

2
(f −RGHLf ′)

]
. (11)
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Also, we have the zero energy condition associated with the above Lagrangian as

H2 =
1

3(3λ− 1)

1

f ′

[
f ′RGHL − f − 6µṘGHLHf

′′
]
. (12)

Knowing the Lagrangian of the generalized Hořava-Lifshitz gravity, it is possible to

determine the Noether symmetry.

3. The Noether symmetries in f(RGHL) theory of gravity

Here, our aim is to find the function f(RGHL) such that the corresponding La-

grangian exhibits the desired symmetry. Following [16], we define the Noether

symmetry induced on the model by a vector field X on the tangent space TQ =(
a, ȧ, R, ṘGHL

)
of the configuration space Q = (a,RGHL) of the Lagrangian (10)

through

X = α
∂

∂a
+ β

∂

∂RGHL
+
dα

dt

∂

∂ȧ
+
dβ

dt

∂

∂ṘGHL
, (13)

such that the Lie derivative of the Lagrangian with respect to this vector field

vanishes

LXL = 0. (14)

In Eq.(13), α and β are functions of a and RGHL and d
dt represents the Lie derivative

along the dynamical vector field, that is,

d

dt
= ȧ

∂

∂a
+ ṘGHL

∂

∂RGHL
. (15)

Here we substitute the expressions for the effective Lagrangian (10) and com-

bine the coefficients in front of ȧ2, Ṙ2
GHL, ȧṘGHL. Equating to zero the resulting

expression, we obtain the following equations

3(3λ− 1) (α+ 2aαa) f ′ +
[
3(3λ− 1)βa+ 6µa2βa

]
f ′′ = 0, (16)

6µa2αRGHLf
′′ = 0, (17)

6µ
(
2aα+ a2αa

)
f ′′ + 6(3λ− 1)aαRGHLf

′ + 6µa2 (βf ′′′ + βRGHLf
′′) = 0. (18)

Then, we collect the remaining free member

3αa2(f ′R− f) + βa3Rf ′′ = 0. (19)

Now, our task is to solve the system of equations (16) - (19) in order to find the

cosmological parameters that describe the dynamics of the universe in the frame-

work of the f(RGHL) Hořava-Lifshitz gravity. From Eq.(17), it is clear that two

cases must be considered: f ′′ = 0 and dα
dRGHL

= 0, but the solution for f ′′ = 0 has

no physical meaning; therefore, we consider only dα
dRGHL

= 0, then

α(a) = α0a
β0
α0

+1, β(a,R) = β0a
β0
α0R, (20)
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and

f = f0R
−3α0

β0 , (21)

where α0 = 2µ
3λ−6µ−1β0, f0, β0 are integral constants.

4. Cosmological solutions

In this section, to describe the dynamics of the universe, we solve analytically the

field equations (11) - (12). To this end, we need to find the explicit dependence of

the scale factor a in terms of the time t. We rewrite Eqs.(11) - (12) as follows

3H2 + 2Ḣ = −4µ(3λ− 3µ− 1)

(3λ− 6µ− 1)2
Ṙ2
GHL

R2
GHL

+
2µ

3λ− 6µ− 1

R̈GHL
RGHL

+
2(3λ− 1)

3λ− 6µ− 1

ṘGHL
RGHL

H +
1

6µ
RGHL, (22)

H2 =
RGHL
18µ

− 2µ

1− 3λ+ 6µ

ṘGHL
RGHL

H . (23)

To solve this system we obtain

H =

√
C1

C2
tanh(

√
C1C2t), (24)

where C1 = Z
3µ+3λ−1 , C2 = (3λ−1)(3µ−3λ+1)

2µ(3µ+3λ−1) , or, equivalently,

a = a0

(
e
√
C1C2t + e−

√
C1C2t

) 1
C2
. (25)

Thus, we have found a general solution to the modified f(R) Hořava-Lifshitz

gravity theory. In general, it represents an expanding cosmological model with a

scale factor with grows exponentially.

5. Conclusion

In this work, we analyzed the f(R) Hořava-Lifhitz gravity model, which is a modi-

fication of the original Hořava-Lifhitz model for quantum gravity. We consider the

spatially flat FLRW line element to find out what kind of cosmological scenarios

are allowed in this modified gravity. Since usually it is very difficult to find analytic

solutions to the field equations, we use here the alternative method, which is based

on the analysis of the Noether symmetries of a particular effective Lagrangian. In

this work, we derive the effective Lagrangian, from the corresponding field equations

for the f(R) Hořava-Lifhitz theory in the presence of spatially flat, isotropic and

homogeneous line element.

It turns out that the field equations can be represented as a set of two second-

order ordinary differential equations, which can be expressed as one differential

equation for different variables so that it can be solved by using the standard method
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of separation of variables. This simple representation allows us to integrate explicitly

the scale factor as well as the Ricci scalar. Both quantities are then explicit functions

of time.

The results presented in this work show that the method of Noether symmetries

can be applied also in the case of the modified f(R) Hořava-Lifhitz gravity model to

derive cosmological solutions. The resulting functions for the scale factor show that

the corresponding universe expands either exponentially. This scenario is possible

in relativistic cosmology so that, in principle, we could compare our results with

observational data from different epochs of the universe evolution. This could be

used to set limits on the values of the parameters that enter the Hořava-Lifhitz

action.
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