New result for the $p^7\text{Be} \rightarrow ^8\text{B} \gamma$ astrophysical S-factor from 10 keV to 5 MeV and reaction rate from 0.01 to 10 T_9

Dubovichchenko S.B. a,b,*, Burkova N.A. b, Dzhazairov-Kakhramanov A.V. c,*, Tkachenko A.S. a,b

a) Fesenkov Astrophysical Institute “NCSRT” ASA MDASI RK, 050020, Almaty, RK, Kazakhstan
b) al-Farabi Kazakh National University, RK, 050040, Almaty, RK, Kazakhstan

Received 15 August 2018; received in revised form 25 November 2018; accepted 26 November 2018
Available online 7 December 2018

Abstract

The astrophysical S-factor for the process $p^7\text{Be} \rightarrow ^8\text{B} \gamma$ of radiative capture by the ^8B ground state is described up to 5 MeV, within the modified potential cluster model. The signatures of the S-factor resonances at 0.632, 2.18 and 3.36 MeV due to $M1$ and $E2$ transitions from the scattering of resonance 3P_1, 3F_3 and 3D_2 waves to the ground 3P_2 state are illuminated using total cross sections, astrophysical S-factors and reaction rates at temperatures from 0.01 to 10.0 T_9. Experimental data on the S-factor are reproduced well in the range 100 keV to 3 MeV. The importance of the input of the 0.632 MeV resonance to the reaction rate is proved. Our calculations (performed in advance) confirm the latest data for the S-factor at 19 keV.

© 2018 Elsevier B.V. All rights reserved.

Keywords: Nuclear astrophysics, Light nuclei, Low and astrophysical energies, $p^7\text{Be}$ system, Potential cluster model, Radiative capture, Total cross section, Forbidden states

* Corresponding authors at: Fesenkov Astrophysical Institute “NCSRT” ASA MDASI RK, 050020, Almaty, RK, Kazakhstan.
E-mail addresses: dubovichenko@mail.ru (S.B. Dubovichchenko), albert-j@yandex.ru (A.V. Dzhazairov-Kakhramanov)

https://doi.org/10.1016/j.nuclphysa.2018.11.033
0375-9474/© 2018 Elsevier B.V. All rights reserved.