

15th Dusty Plasma Workshop

May 29 – June 1, 2018 The Westin Baltimore Washington Airport – BWI Baltimore, Maryland, USA

Program Committee

Giovanni Lapenta, KU Leuven Carlos A. Romero-Talamás, UMBC Edward Thomas, Jr., Auburn University Zhehui (Jeph) Wang, LANL Jeremiah Williams, Wittenberg University

Hosting and Logistics

Carlos A. Romero-Talamás, UMBC Jackson Stefancik, UMBC Zhehui (Jeph) Wang, LANL William F. Rivera, UMBC Diane Zeenny Ghorayeb, UMBC

Sponsors

MECHANICAL ENGINEERING

Oral Presentations	7
Recent Results from Complex Plasma Laboratory PK-4 on the International Space Station	11
Experimental Studies of Phase Separation in Dusty Plasmas under Microgravity	
Structures of Coulomb crystals in cylindrical discharge plasmas under gravity and microgravity	
Complex Plasmas under Compression - Capabilities of the Next Generation Complex Plasma Space Experiment	nt
"Ekoplasma"	
2D Complex Plasma Crystal Experiments in the Large Chamber	
Field-Aligned Chains within the PK-4 Environment	
Experimental FCC-BCC Transitions in Plasma Crystals visualized using Machine Learning	
High precision operando size measurement of microparticles	
Variation of ion wake field inside a glass box	
Fluctuation Theorem Confirmed in a Dusty Plasma [*]	
Ion Wake Influence on Dust Chain Formation	
Anomalous diffusion in 1D dusty plasma structures: A fractional Laplacian model for strong correlations	
Experimental observation of cnoidal wave structures of dust acoustic waves [*]	
Thursday, May 31, 2018	
Dust charging and heating models: high magnetic fields and strong electron emission	
Emergent Bistability and Switching in a Nonequilibrium, Dusty Plasma Crystal	
Nanodusty plasma - the real dusty plasma	
Nonlinear responses of a strongly coupled dust particle pair under the influence of an ion wake	
Measurements of Thermal Effects in the Dispersion Relation of the Dust Acoustic Wave	
Non-linear effect of a vertical dust chain confined in a glass box	
Interaction between a dust particle pair and the ion flow modified potential in complex plasma	
Overlapped Plasma Sheath in Narrow Space	
Status and future of the Magnetized Dusty Plasma Experiment (MDPX)	
Quantitative analysis of laser forces in binary complex plasmas	
Methods for the characterization of imposed, ordered structures in MDPX	
Friday, June 1, 2018	
Non-invasive impedance measurements of electron density in a complex plasma	41
Particle Orbits in Combined E and B Fields	
Laser Induced Fluorescence (LIF) in the Caltech Water-Ice Dusty Plasma Experiment	
Blast waves experiments in a 2D dusty plasma	
Interaction of a supersonic particle with a three-dimensional complex plasma	
Inductively Coupled Discharges to Sustain and Rotate Dusty Plasmas at High Magnetic Fields	
Modeling the growth of chondrule dust rims under different plasma conditions in protoplanetary disks	
Poster Presentations	
oster Session 1	
Wednesday, May 30, 2018	50
······································	

Contents

A	An overview of modifying the spatial structure in a complex plasma	. 52		
E	Exploration and Comparison of ISS PK4 Data to Ground- and Numerical-based Models	. 53		
I	nterpretation of dust impact signals detected by RPWS and BMSW instruments	. 54		
E	Emergent Bistable Switching in Nonequilibrium Crystal	. 55		
In-situ nanoparticles characterization by Small Angles X ray Scattering (SAXS) during their growth in				
S	Study of particles de-agglomeration in non-equilibrium low-pressure radiofrequency plasma	. 57		
P	Plasma-dust structures in the DC discharge	. 58		
E	Experimental investigation of the properties of plasma-dust formations on pulsed plasma accelerator	. 59		
S	Simulation of Dust Dynamics for Various Materials of the Edge Fusion Plasma	. 60		
Г	The Effect of External Magnetic Field on Dust Particles Charging Processes	61		
C	Obtaining hydrophobic and hydrophilic surfaces in low-temperature atmospheric pressure plasma	. 62		
C	Coulomb Crystal of Micro-organisms in an RF Plasma	. 63		
S	Shear deformations in dusty plasma	. 64		
Ι	Diffusive motion in a three-dimensional cluster in PK-4	. 65		
N r	Modeling-challenge paradigm using design of experiments method for spacecraft immersed in nonstationary, between egimes, flowing plasma	66		
Ν	Microfluidic flow in single-layer dusty plasmas	. 67		
F	Filamentation and imposed ordered dust structure in magnetized discharge	. 68		
I	onization waves in the PK-4 neon DC discharge	. 69		
1	15 th Dusty Plasma Workshop	. 70		
Г	Frilayer dusty plasma lattice structure and dynamics 15 th Dusty Plasma Workshop	. 71		
I	nvestigation of Dusty Plasma Effects in Hypervelocity Impacts	. 72		
Poste	r Session 2	. 73		
Th	ursday, May 31, 2018	. 73		
Ν	Molecular dynamic simulation of weakly magnetized dusty plasmas	. 78		
Ν	Novel configuration for creation and study of probe-induced dust voids	. 79		
Ι	DC response of dust equilibria to AC signals	. 80		
A	Anomalous diffusion in 1D dusty plasma structures: A fractional Laplacian model for strong correlations	. 81		
Ν	Nematic transition in microgravity complex plasma liquid crystals	. 82		
Ι	Dust-Plasma Interactions in Extended Field Aligned Dust Chains	. 83		
F	PLASMIANTE: A plasma filter for the detection of airborne asbestos	. 84		
E	Effects of discrete stochastic charging on the non-spherical growth of water-ice grains in a dusty plasma	. 85		
Ι	Dust Lattice Waves and dust influenced Ionization Waves in PK-4 complex plasmas	. 86		
E	Ekoplasma – The Future of Complex Plasma Research in Space	. 87		
F	Radial confinement of dense dust structure at cryogenic temperature	. 88		
I c	nvestigation of carbon nanowalls synthesis by chemical vapor deposition method in the plasma of a radio-frequency capacitive discharge	. 89		
ŀ	High-speed imaging and analysis of a high-temperature microparticle interactions with a magnetron plasma	. 90		
S	Synthesis of dust particles by combined discharge at atmospheric pressure.	. 91		
S	Surface Temperature of the Dust Particle in Cryogenic Conditions	. 92		

Thursday, May 31			Location:
7:00 AM	8:25 AM	Breakfast	All meals and events
7:30 AM	8:25 AM	Registration	will take place in the
8:30 AM		Welcoming Remarks	White Oak Room
8:35 AM	8:55 AM	8:35 am. L. Vignitchouk. Dust Charging and Heating Models: High Magnetic Fields and Strong Electron Emission	unless otherwise noted.
9:05 AM	9:25 AM	9:05 am J. Burton. Emergent Bistability and Switching in a Nonequilibrium, Dusty Plasma Crystal	
	9:30 AM		
9:30 AM	9:50 AM	9:30 am. F. Greiner. Nanodusty plasma - the real dusty plasma	
	9:55 AM		
9:55 AM	10:10 AM	9:55 am. O. H. Anaz. Two dimensional dust density wave diagnostics (DDW-D) for the full characterization of a nanodusty plasma	
10:15 AM	10:30 AM	Coffee Break	
10:35 AM	10:50 AM	10:35 am. Z. Ding. Nonlinear responses of a strongly coupled dust particle pair under the influence of an ion wake	
	11:00 AM		
11:00 AM	11:15 AM	11:00 am. J. Williams. Measurements of Thermal Effects in the Dispersion Relation of the Dust Acoustic Wave	
	11:20 AM		
11:25 AM	11:40 AM	11:25 am. J. Kong Non-linear effect of a vertical dust chain confined in a glass box	
	11:45 AM		
11:50 AM	12:05M	11:50 am. K. Qiao. Interaction between a dust particle pair and the ion flow modified potential in complex plasma	
	12:10 AM		
12:15 PM	12:30 PM	12:15 pm. M. Chen. Overlapped Plasma Sheath in Narrow Space	
12:35 PM	1:35 PM	Lunch	
1:40 PM	2:50 PM	Poster Session 2: D. Batryshev, M. Menati, B. Doyle, D. Funk, S. LeBlanc, M. McKinlay, E. Kostadinova, D. Sanford, C. Duée, S. Ashrafi, K. Qiao, C. Knapek, D. Polyakov, V. Shumova, Y. Yerlanuly, T. Schaub, M. Muratov	Salon 3A
2:55 PM	3:20 PM	2:55 pm. E. Thomas, Jr. Status and future of the Magnetized Dusty Plasma Experiment (MDPX)	
3:25 PM	3:40 PM	3:25 pm. F. Wieben. Quantitative analysis of laser forces in binary complex plasmas	
3:45 PM	4:05 PM	Coffee Break	
4:10 PM	4:25 PM	4:10 pm. T. Hall. Methods for the characterization of imposed, ordered structures in MDPX	
	4:30 PM		
4:35 PM	4:50 PM	4:35 pm. Vyacheslav Lukin. National Science Foundation	
	4:55 PM		
5:00 PM	5:15 PM	5:00 pm. Nirmol Podder. Department of Energy	
5:35 PM	5:50 PM	Board Bus/ Ride to UMBC	Please board one the 2 UMBC buses at the Hotel entry.
5:55 PM	7:15 PM	Tour of UMBC Labs	
7:20 PM	7:35 PM	Board Bus/ Return to Westin by BWI	Please board one the 2 UMBC buses at the Circle facing the Fine Arts Bldg.

Poster Session 2 Thursday, May 31, 2018

Surface Temperature of the Dust Particle in Cryogenic Conditions

M. M. Muratov^{1,2}, T. S. Ramazanov¹, and Zh. A. Moldabekov^{1,3}

 ¹ Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi ave., 050040 Almaty, Kazakhstan
² National Nanotechnological Laboratory of Open Type, Al-Farabi Kazakh National University, 71 Al-Farabi ave., 050040 Almaty, Kazakhstan
³ Institute of Applied Sciences and IT, 40-48 Shashkin str., 050038 Almaty, Kazakhstan

Mukhit.muratov@gmail.com

In present work the surface temperature of the dust particle in cryogenic complex plasmas at low gas pressure is considered. It is shown that comparing with background gas, the dust particle surface temperature at low pressure is significantly higher. The gas temperature near the grain surface is a slowly decreasing function of distance with asymptotic $\sim 1/r$ behavior. Effects related to the dust particle surface temperature are important for space around dust particle with double radius of average interparticle distance. At the distances comparable with average interparticle distance, these effects are not influencing on the gas temperature [1]. But as a whole can affect ion temperature and energy distribution function, dust particle charge screening, and the neutral shadowing force. The temperature ratio of the dust particle surface and the surrounding gas in the low-pressure weakly ionized complex plasmas is calculated using the formula derived in [2]. Orbit motion limited theory was used to calculate the electron and ions fluxes to the dust particle surface in a weakly collisional regime [3].

References:

1. T. Ramazanov, Zh. Moldabekov, and M. Muratov, Grain Surface Heating in Cryogenic Environment, Phys. Plasmas **24**, 050701 (2017)

2. S.A. Khrapak, G.E. Morfill, Grain surface temperature in noble gas discharges: Refined analytical model, Phys.Plasmas **13**, 104506 (2006)

3. S.A. Khrapak, S.V. Ratynskaia, A.V. Zobnin, A.D. Usachev, V.V. Yaroshenko, M.H. Thoma, M. Kretschmer, H. H ofner, G.E. Mor_ll, O.F. Petrov, and V.E. Fortov, Particle charge in the bulk of gas discharges, Phys.Rev. E **72**, 016406 (2005).