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Introduction 

1.1 The concept of combustion  

  

Usually any rapidly reacting chemical reaction accompanied 

by a release of heat and light is called combustion. From this 

point of view, substances can "burn" not only in oxygen. For 

example, many metals "burn" in chlorine, sodium and barium 

oxide "burn" in carbon dioxide, gunpowder burns without a 

gaseous medium, etc. 

In the narrow sense of the word combustion is the reaction 

of combination of a substance with oxygen. To a greater or 

lesser extent, all substances are subject to combustion. Slow 

oxidation is also sometimes called slow combustion. 

In this course we will consider only the processes associated 

with the presence of flame. More precisely, chemical reactions 

accompanied by luminescence and heat release will be called 

intensive combustion. 

The process of combustion is one of a few natural phenom-

ena whose discovery dates back to the earliest period of human 

history. The use of fire triggered harnessing of the forces of 

nature and played a special role in technical process in all fur-

ther development of civilizations. 

Fire became especially important when along with its use 

mainly for purely technological production purposes, it (com-

bustion) became a means of production of mechanical energy 

(work). All this led to the high power-to-weight ratio, which 

characterizes the current state of technology. 

In the Middle Ages, combustion processes especially at-

tracted attention of chemists. At the beginning of the 18th cen-

tury an attempt was made to combine all chemical facts on the 

basis of one hypothesis, to bring them into a system with the 

help of phlogiston theory. According to this theory, all sub-

stances able to burn or change under the action of fire contain a 
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special "fire substance" –phlogiston. This theory, supported by 

all chemists of that time, dominated for a whole century. 

In 1773, A. Lavoisier repeated experiments on calcination of 

metals and came to an explanation of combustion, as interac-

tion of matter with oxygen, i.e.  close to the modern views on 

the phenomenon of combustion. 

Since that moment, our knowledge of combustion has pro-

gressed very much, and has served as the basis for creation of 

various combustion processes for a variety of purposes and 

mainly for energy generation. 

It is well known that solid, liquid and gaseous fuels are 

burned in furnaces of power plants, and modern combustion 

devices have reached high capacities and a sufficiently high 

degree of perfection providing maximum combustion efficien-

cy. 

Internal combustion engines, which have developed rapidly 

in the last 100 years, use combustion of gases or vapor and liq-

uid fuels and are used as the main engines in aviation and road 

transport. The efficiency of the reactive devices that emerged 

in the most recent years is even more dependent on the meth-

ods of burning fuel used in these engines. In fact, all the "mili-

tary power" - artillery, rockets, missiles and other means of de-

struction, is based on the use of the phenomenon of combus-

tion. 

The combustion process is also widely used for various pro-

duction purposes - for the organization of some chemical, met-

allurgical and other processes that require appropriate tempera-

ture conditions. 

Knowledge of the properties and laws of combustion of var-

ious substances is very important, because in any field of tech-

nology the task of worldwide intensification of processes and 

ecological purity of production gets a high priority.  

Any process of combustion or decomposition of substances 

is, primarily, a chemical process, as it is accompanied by the 
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transformation of matter, a change in its quality. The study of 

the laws of compounds and transformations and conditions 

necessary for such transformations is the subject of chemistry. 

Chemical methods indicate in which direction and how deeply 

this or that reaction will pass. However, they do not provide 

information about the rates of transformation. This requires 

knowledge of some new properties of a combustible substance 

- its dynamic properties, manifested only in the process of 

transformation. 

On closer examination of this problem, it turns out that in 

many cases of high practical significance, the combustion pro-

cesses observed and used by us obey, first of all, purely physi-

cal laws. This situation is a consequence of the fact that the 

chemical transformation under certain conditions, for example, 

at a high temperature, can proceed at very high rates. The de-

velopment of chemical transformation does not occur separate-

ly and independently of the actual physical situation and is ac-

companied by various physical phenomena that develop ac-

cording to their own laws. As a result, the chemical process, 

with its development, often turns out to be regulated by such 

physical processes as heat transfer, diffusion and others. In 

other words, this means that a chemical transformation with a 

very high potential in terms of its rapidity, is actually charac-

terized by a rather limited speed and, in addition, obeys the 

laws of some limiting physical phenomena, and does not fol-

low purely kinetic laws. 
As an example we can take the case of burning of a coal 

particle at a sufficiently high temperature, when the reactivity 

of carbon is very high. In this case, the burning rate will be de-

termined not by the speed with which carbon could react, but 

by the speed with which oxygen from the surrounding space 

flows to the coal particle. The supply of oxygen, for example, 

in the quiet air can only occur by diffusion. This purely physi-

cal process has relatively low velocities, and it is these speeds 
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that will basically determine the combustion rate of the coal 

particle at high temperature. 

In the case of combustion of gas mixtures, similar examples 

can also be found. When a premixed and, consequently, maxi-

mally reactive cold gas mixture is ignited by means of, for ex-

ample, a spark near it, a small spot of the gas flame is created. 

In order for this flame to propagate farther along the entire vol-

ume of the gas mixture (cold), it is obviously necessary that 

from the region of the source a certain amount of heat be trans-

ferred to adjacent layers of the gas and heat them to the desired 

temperature. Under normal conditions, the transfer of heat is 

carried out by thermal conductivity, and in this case, naturally, 

the combustion rate of the mixture will be characterized by a 

value typical of the speed of the purely physical process of heat 

propagation. 

 

There are many similar examples, and they clearly indicate a 

potentially large role of physical processes accompanying the 

phenomenon of combustion. 

All the above information can be summarized as follows. 

The basis of the combustion process is the chemical transfor-

mation (reaction) associated with heat generation. In the course 

of its development chemical transformation often entails the 

appearance of various physical processes: heat transfer, trans-

fer of reacting substances and other processes. 

With the progressive development and acceleration of the 

reaction, these processes, at a certain stage, from independent 

and secondary processes become the leading processes and de-

termine the conditions of the reaction and intensity of chemical 

transformation that caused their occurrence. As a result, com-

bustion in accordance with its laws from a qualitatively purely 

chemical process turns into a qualitatively purely physical pro-

cess, and the most part of this transition from one qualitative 

state to another occurs sharply, stepwise. This circumstance 
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should always be kept in mind when analyzing the phenomena 

of combustion. Many examples of such processes will be given 

in further presentation. 

 All this means that the combustion process must in gen-

eral be regarded as a complex physical-chemical process 

whose speed is determined by the intensity of physical and 

chemical phenomena and the specific features of their interac-

tion. 

This determines the tasks of the present course "Combustion 

physics" as a theory of physical processes and their role in 

combustion. This basically physical interpretation of the com-

bustion process is sufficiently complete, concrete and practical-

ly justified. 

  

 

1.2 Historical overview  

Despite the fact that the phenomenon of burning was dis-

covered by a man a long time ago, and there is a great practical 

experience of using it in various branches of technology, it is 

still hardly possible to speak of the physics of combustion as a 

fully developed and integral doctrine that unites in one theory 

the whole set of various experimental facts from combustion of 

gaseous, liquid and solid substances. 

The main reason for this is the complexity of the nature of 

combustion processes, combining various physical and chemi-

cal phenomena in their interaction. 

Statistical physics, heat transfer, hydrodynamics, and some-

times gas dynamics, as we will see below, have the closest re-

lationship to the physics of combustion. All these circumstanc-

es greatly complicate investigation and description of the pro-

cess. 

The founders of the modern theory of normal combustion of 

gases are the French scientists Mallary and Le Chatelier and 

the Russian physicist, Professor V.A. Michelson. As early as in 
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1890 Mikhelson gave a deep analysis of this process in the 

pipes and the theory of flame on the Bunsen burner and theo-

retically substantiated the method of measuring the normal 

flame velocities with the help of a burner, which is well known 

now. 

Not less important views were expressed by Michelson 

about the proliferation of the detonation mechanism. A few 

years later, Chapman presented the hydrodynamic theory of 

detonation. In his work, the only question that remained unre-

solved was justification of the regime that corresponds to what 

is observed in the experiment. The foundations for the solution 

of this question were contained in the work of Michelson, and 

only much later they served as the starting point for the solu-

tion of this problem by Ya. B. Zel'dovich. 

In 1931, in Leningrad, Academician N.N. Semenov founded 

the Research Institute of Chemical Physics, which soon went to 

the system of the USSR Academy of Sciences and became the 

leading institute of the Soviet Union. Very important work was 

carried out by this institute during a relatively short period (10-

15 years) in the study of ignition and burning of gases, which 

laid the foundations of the theory of the main combustion phe-

nomena: the basis of the kinetics of chain reactions, the theory 

of thermal self-ignition, the theory of propagation of normal 

combustion, Semenov's theory of chain reactions received 

worldwide recognition and appreciation in the form of award-

ing the Nobel Prize to the author. 

A great progress was made in the Soviet Union in the devel-

opment of the physical-chemical basis for burning of solid 

fuels, mainly coal, as the basis of the general theory of hetero-

geneous combustion.  

Progressively and quickly, especially in the period after the 

Second World War, research has been developing in the field 

of burning abroad. It was most noticeable in the United States, 

where numerous research institutes, educational institutes and 
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universities with a large number of highly qualified physicists, 

chemists, mathematicians and technicians are working on the 

problem of combustion.  

An important event for the development of combustion in 

all countries was the organization of systematic symposiums on 

combustion in the USA. Since 1948 these symposia have ac-

quired an international character and attracted a large number 

of participants from different countries. Later similar symposi-

ums (conferences) were held in the USSR. In 1986, the All-

Union Symposium on Combustion and Explosion was held in 

Alma-Ata, which was a recognition of the scientific school on 

combustion  created in Kazakhstan. The founder of this school 

is a world-known scientist Lev Abramovich Vulis. His disci-

ples are famous Kazakhstani scientists: N.D. Kosov, V.P. 

Kashkarov, S.I. Isataev, K.E. Dzhaugashtin, S.A. Ershin, A.T. 

Lukyanov, L.Yu. Artyukh and many others who have numer-

ous works on the physics of combustion, which have made a 

significant contribution to the development of this science. 

L.A. Vulis developed the theory of the thermal combustion re-

gime, made a great contribution to the development of the the-

ory of the stability of combustion, developed a method of the 

equivalent theory of heat conduction for calculation of diffu-

sion flares. 

       

1.3 Types of combustion 

The vast area of combustion phenomena can be divided into 

two main groups: 

1. Combustion of gaseous fuels – homogeneous combustion 

(characterized by a gas + gas system); 

2. Combustion of solid and liquid fuels –  heterogeneous 

combustion (systems: solid + gas or liquid + gas). 

Recently, more and more attention is paid to burning of liq-

uid-fuel + liquid-oxidizer systems, which can also be attributed 

to homogeneous systems. 
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Thus, homogeneous combustion can be defined as burning 

of a system, all components of which are in the same aggregate 

state. 

First of all, let us consider the main characteristics of the 

process of gas burning, not only because of its great im-

portance and deeper study of this process, but also because 

burning of solid and liquid fuels can always lead to burning in 

the gas phase. 

In general, a gas system capable of burning consists of two 

kinds of substances – fuel and oxidizer, which chemically in-

teract with each other in the process of combustion or explo-

sion. 

For two-component systems, in the predominant number of 

cases, one oxidizing agent is oxygen (the case of burning in the 

narrow sense of the word), and the second part can be any mix-

ture of combustible gases. Both parts can, in addition, contain 

some non-combustible admixtures. For example, air contains 

79% of nitrogen and only 21% of oxygen. In order for ignition 

or combustion to occur, it is necessary that before that, the ac-

tive components of the gas mixture are mixed with each other. 

From the very beginning it is useful to present two typical 

examples of gas systems. Prior to ignition, the fuel and the ox-

idant can be carefully mixed with each other and thus create 

completely homogeneous initial conditions for the process. We 

call such systems chemically homogeneous gas systems. 

In contrast, ignition can be performed under the condition of 

a separated state of the combustible components at the begin-

ning of the process. In this case ignition and combustion occur 

in the process of simultaneous mixing and is based on more 

complex physical conditions. We call such systems chemically 

inhomogeneous. 

Both the first and second systems are equally encountered in 

practice of technical combustion of gases. 
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The chemical process, chemical transformation is the basis 

of combustion processes. Therefore, before studying the actual 

process of combustion of gases, it is necessary to get acquaint-

ed with the fundamentals of chemical kinetics. 

 

Test questions: 

1 What is the combustion process? 

2 Give examples of combustion. 

3 What processes accompany burning? 

4 What is called homogeneous combustion? 

5 Burning of which systems can be  called homogeneous? 

6 What systems are called homogeneous gas systems? 

7 What are heterogeneous gas systems? 
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2 CHEMICAL KINETICS OF COMBUSTION 

REACTIONS 

 

2.1 Stoichiometry coefficients  
The generalized equation of the chemical reaction of com-

bustion can be represented as follows: 

 

А + В = М + N+ Q.                                     (1) 

 

where: A is fuel, B is an oxidizer, M, N are reaction prod-

ucts; fuel and oxidizer are also called starting materials; 

, , ,  are molar stoichiometry coefficients, they show 

the amount of substance of the given component involved in 

the reaction; 

Q is the thermal effect of the reaction (or calorific value 

of the fuel), it is the amount of energy released when 1 mole of 

fuel is burned, or 1 kg of fuel, or 1 m3 of fuel. Accordingly, the 

units of measurement of the thermal effect can be the follow-

ing: 1 J/mol, 1 J/kg, 1 J/m3. 

If Q> 0, the reaction is exothermic (proceeds with heat re-

lease), at Q <0, the reaction is endothermic (proceeds with 

heat absorption). Obviously, all combustion reactions are exo-

thermic. 

For example, the combustion reactions of methane and hy-

drogen are written as follows: 

 

QOHCOOCH  2224 22 ,                                 (2) 

 

QOHOH  222 22                                                  (3) 

 

Let us calculate the mass of methane involved in the reac-

tion, and the mass of oxygen necessary for its complete com-

bustion (M is the molar mass): 
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кгMm HH 18)4114(1
22

 ,   

 

кгMm OO 642162
22

   

 

Thus, to fully burn 18 kg of methane, it is necessary to use 

64 kg of oxygen. 

The amount of oxidant needed for combustion of 1 kg of 

fuel is determined by the mass stoichiometry coefficient: 

 

A

B
A

m

m


.                                                                   (4) 

 

Expression (4) is the definition of the mass stoichiometry 

coefficient for the oxidant. The mass coefficient of stoichiome-

try for oxygen in the reaction of methane combustion is 4. 

We rewrite expression (4) as follows: 

 

mB= mA                                                                           (5) 

 

Formula (5) means the fulfillment of the stoichiometry 

condition: fuel and oxidizer are in a stoichiometric ratio, if 

they can react without residue. 

If more fuel is taken than is needed by the condition of stoi-

chiometry (5), then it is said that the fuel is in abundance, oth-

erwise it is in short supply. 

 

Let us define the molar concentration as follows: 

 

VMV

m
n


 ,                                                            (6) 
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The molar concentration is the amount of substance per 

unit volume. 

The amount of fuel per unit volume: 

VVM

m
n

A

A
A


                                                        (7) 

 

The amount of fuel per unit volume:  

VVM

m
n

B

B
B


                                                       (8) 

 

Expressions (7) and (8) can be rewritten as follows: 

 

V

nA 1



,    

V

nB 1



 

 

It follows: 

 


BA nn

                                                                      (9) 

 

This expression is a stoichiometry condition for molar 

concentrations. 

 

2.2 Chemical equilibrium 

To judge about this or that transformation, it is necessary to 

know the proportions in which the initial materials enter the 

compounds and the composition of the obtained products. The 

answer to this question is given by the fundamental classical 

laws of chemical statics: the law of conservation of mass (Lo-
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monosov-Lavoisier) and the law of simple multiple relations 

(Dalton), as well as the theory of chemical equilibrium. 

The theory of equilibrium is based on the law of acting 

masses – the fundamental law of chemical statics, first formu-

lated in qualitative form by Guldberg and Vaage (1867) and 

later derived by Van't-Hoff (1885) on the basis of purely dy-

namic positions. 

Practically all chemical reactions are reversible, i.e. it is 

more correct to write equation (1) as follows:  

 

А + В  М + N+ Q. 
 

Since the rate of reaction depends on the concentration of 

the starting materials in the mixture, at the initial instant of 

time the rate of the direct reaction is maximal. Then the con-

centrations of the starting materials decrease, hence the rate of 

direct reaction decreases, and the rate of reverse reaction, on 

the contrary, increases, as the concentration of reaction prod-

ucts increases, which for the reverse reaction are the starting 

materials. Thus, at some point in time there should be a situa-

tion when the rates of direct and reverse reaction equalize –  

this is the state of equilibrium. 

 

The law of mass action states that if a direct reaction be-

tween starting materials, for example A and B, and a direct re-

action between direct reaction products, for example between 

M and N, is possible in a gas or other reaction system, then, if 

there is a sufficient time, there will always be an equilibrium 

between all reacting substances, characterized by the following 

relationship between the molar concentrations of these sub-

stances: 
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K
nn

nn

NM

BA 




,                                                           (10) 

 

where K is called the equilibrium constant and, according 

to Van't Hoff, depends on the temperature as follows: 

 

 
2

ln
RT

Q
 K

dT

d
                                                 (11) 

 

where R is the gas constant, and T is the absolute tempera-

ture. 

The law of acting masses is not based on the assumption 

that physical parameters (temperature, pressure, etc.) do not 

change. In practice, the chemical equilibrium is never ob-

served; in the real reacting systems, the temperature and pres-

sure vary widely. 

 

 

2.3 Reaction rate 

If in a given volume the change in the concentration of sub-

stances occurs only as a result of a reaction and the diffusion 

process does not take place, then the rate of change in the con-

centration can be assumed  to be the reaction rate. 

The rate of the chemical combustion reaction is equal to 

the amount of matter reacting per unit volume per unit time: 

 

dt

dn
w                                                                     (12) 
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The rate of decrease in the amount of fuel is not equal to the 

rate of decrease in the amount of oxidizer, and therefore the 

reaction rates determined by the fuel and oxidizer are different: 

 

dt

dn
w A

A  ,    
dt

dn
w B

B   

 

In the right-hand side of these equations there is a minus 

sign, as the concentrations nA and  nB decrease. The rates of 

formation of reaction products are determined in a similar way: 

 

dt

dn
w M

M  ,    
dt

dn
w N

N   

 

The right-hand side of these equalities have the plus sign, as 

the concentrations nM and  nN increase. 

In fact, there is only one rate of reaction, and it corresponds 

to a definite rate of heat release (or absorption); this quantity, 

in the final analysis, is essential for most questions of the theo-

ry of combustion. 

In the existing classification of reactions, a class of so-called 

one-sided or "irreversible" reactions forms a special group. Un-

like the reversible reactions mentioned above, in this case the 

reaction goes only one way and to the end, as there is no re-

verse reaction. 

It must be noted that, strictly speaking, there are no irre-

versible reactions among gas reactions. At a sufficiently high 

temperature, the reverse reaction always becomes noticeable, 

therefore one can conclude that the gas reaction is irreversible 

only approximately, it means that we state that this reaction is 

an irreversible, one-sided reaction under the given conditions. 

This is the case with, for example, the widespread combustion 

reactions – combustion of carbon monoxide, hydrogen, and 
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others, which, under normal combustion conditions in the air, 

can be considered as practically going to the end. 

 

2.4 Reaction order 

Irreversible reactions differ in their order, i.e. the total num-

ber of molecules joining the compound. In the notation of 

equation (6), the reaction order is equal to the sum: 

 

...
321
   

 

 According to Van't-Hoff's terminology, all "irreversible" 

reactions are divided into three groups: monomolecular, bimo-

lecular and trimolecular reactions. The chemical equations cor-

responding to these three groups of reactions are recorded as 

follows: 

 

 monomolecular reactions, or first-order reactions: 

 

 A = M + N + ... 

 

 bimolecular reactions, or second-order reactions: 

 

 A + B = M + N + ... 

 

 trimolecular reactions, or third-order reactions: 

 

   A + B + C = M + N + ... 

  

Higher-order reactions are assumed to be unrealistic in the 

molecular-kinetic theory, as the probability of a simultaneous 

collision of four molecules is negligible. In this case, the reac-

tion proceeds, obviously, through simpler reactions and the 

usual presentation of the reaction by the chemical equation ap-
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pears to be nothing more than a connection between the initial 

and final states of the system (stoichiometric ratio). 

For the three types of reactions given above, the law of ef-

fective masses makes it possible to write the following kinetic 

equations. If molar concentrations of the substances formed at 

any time are designated as m, n, etc., then for the monomolecu-

lar reaction: 

 

 

(13) 

                                           

 

where K and K', etc. are called reaction rate constants, m, n 

are the molar concentrations of substances A and B, respective-

ly. 

For the bimolecular reaction: 

 











см

моль
kab

dt

dm
3

 (8) 

 

For the trimolecular reaction: 

 











см

моль
kabс

dt

dm
3

 (9) 

 

It has already been noted above that the concentration corre-

sponds to the number of molecules per unit volume. In practice 

mole concentrations - the number of moles per unit volume 



 

 22 

(unit of measurement - mol/m3) or mass concentrations (with 

unit of measurement - kg/m3) are used. It is also convenient to 

use the so-called relative (dimensionless) concentrations, 

which are the ratio of the number of molecules of a given sub-

stance to the total number of all molecules of the system per 

unit volume; in the case of gases they will also be equal to per-

centage concentrations. Obviously, depending on the choice of  

the method for determining the concentrations, the dimension 

of the constants will be different. 

It must be remembered, that the absolute value of the veloci-

ty is ultimately determined by the molar concentrations that are 

functions of the pressure and temperature of the reacting sys-

tem. 

 

 

2.5 Dependence of the reaction rate on pressure 
The value of the pressure has a significant effect on the rate 

of reaction, and the effect is different for reactions of different 

orders. Let us consider this question in more detail. 

 

If the temperature remains unchanged, and we have a given 

composition of the initial gas mixture (given ratios of the com-

ponents, that is, a given percentage composition), then accord-

ing to the equation of state for each of the concentrations, we 

can write: 

 

ра = aRT, 

 

pb = bRT. 

 

Here a, b, … are molar concentrations, ра, pb,... are partial 

pressures of the respective gases. If the total number of moles 

per unit volume is z, then in the same way for the total pressure 

in the mixture p, we get: 
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p = zRT. 

 

It follows that 

p
z

а
  аp  ,      p

z

b
  bp  . 

 
z

b

z

а
, , … are relative volumetric concentrations. Denoting 

them by A, B, ..., we get  

 

B
RT

p

RT

bp
bBp,bp

A,
RT

p

RT

ap
aAp,ap





. 

 

Let us consider a monomolecular process: 

 

A
RT

p
k

RT

ap
kka

dt

dm
 , (10) 

 

which means that the conversion rate in this case is directly 

proportional to the pressure:  

 

dt

dm
~ p. 

 

For a bimolecular reaction 
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AB
RT

p
kkab

dt

dm
2









 , (11) 

 

i.e.  
dt

dm
 ~ p2  – the reaction rate is proportional to the 

square of the pressure. 

 

Accordingly, for a trimolecular reaction, we obtain:   

ABС
RT

p
k

dt

dm
3









  (12) 

 

and   
dt

dm
 ~ p3. 

 

Hence it follows that for a reaction of the ν-th order 

 

dt

dm
 ~ pν. 

 

It can be seen that the nature of the dependence of the rate 

of conversion on pressure can be used to judge about the order 

of the reaction. In view of this, by the value of the exponent of 

the pressure, we can also say whether the reaction is of the 

first, second or third order. 

The experience shows that not always the order of reaction 

following from the chemical equation coincides with the ob-

served order of reaction, in particular, with the order resulting 

from the dependence of the reaction rate on pressure; in partic-

ular, this is valid for multimolecular reactions. 
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2.6 Experimental determination of the reaction order 

If two substances participate in the reaction, for example, 

carbon monoxide and oxygen, the form of the kinetic equation 

is: 

 

21


bka
dt

dm
w  , 

where ν1 and ν2  are the unknown quantities that determine 

the order of the reaction for each of the components. 

To find the values of ν1 and ν2 , two series of experiments 

should be carried out, each time keeping one of the concentra-

tions unchanged and changing the other. As a result, the equa-

tion of the reaction in one case will have the form: 

 

1ak
à

w   

and in the other case  

 

wb  2bk   

 

where  2bkk  , 1akk   

 

Taking the logarithm of these equations, we obtain:  

 

lg wa= 1 lga + lg k’ 

 

lg wb= 2 lgb + lg k” 

  

It is seen that in the system of lg w and lg a (or lg b) both 

dependences are represented as two straight lines, the slope of 

which determines the values of ν1 and ν2. 
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It is much easier to determine the total order in pressure 

from the value of w. According to the above, w~ pν, i.e. the re-

action rate is proportional to the pressure in the power of ν if 

molecular concentrations are taken. Therefore, the graph of the 

dependence of lg w on lg p allows us, as before, to determine 

the values of ν by measuring the slope of the straight line with 

the lgp axis. 

 

 

2.7 Reversible reactions 

Reversible reactions refer to complex reactions. Complex 

reactions are reactions in which several reactions independent 

of each other occur simultaneously, each of which obeys the 

law of acting masses. For example, the rate of reversible reac-

tion: 

 

A + B  M + N  

 

Depends on two rates, so that 

 

mnkabk
dt

dm
21  . (13) 

In the equilibrium conditions 
dt

dm
=0 and 

1

2

k

k

mn

ab
 . (14) 

According to (3) K
mn

ab
  , thus 

1

2

k

k
K  ,                                                                         (15) 
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i.e. the equilibrium constant K is equal to the ratio of the 

rate constants of the reverse and direct reactions. 

Typical gas reversible bimolecular reactions include the re-

action of formation and decomposition of hydrogen iodide: 

 

Н2 + J2 ↔ HJ + HJ                                                         (16) 

Figure 1 shows this reaction as a function of time, obtained 

experimentally. The graph shows two curves: the upper one 

refers to the decay of hydrogen iodide, the lower one – to its 

formation. Both curves in the limit tend to the total limiting 

content HJ corresponding to the equilibrium content HJ for a 

given temperature 

 

 
 

Figure 1 – Reaction Н2 + J2↔HJ + HJ  

as a function of time; the upper curve is the decay of HJ, 

lower curve - HJ formation 
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In the process of burning, typical reversible reactions are the 

reactions of dissociation of combustion products. For conven-

tional fuels, these are vapors of water and carbon dioxide, the 

formation of which follows from the equations: 

 

2Н2 + O2 ↔ 2Н2O 

 

2CO + O2 ↔ 2CO2  

 

The equilibrium constants for these reactions are well-

measured. 

These reactions acquire practical value at very high tem-

perature - about 20000С. 

One of the characteristic features of the considered reactions 

(that is, reactions of the usual type, which follow the laws of 

classical kinetics) is the specific law of variation of the reaction 

rate with time in the case of isothermal flow of the process. 

In reactions of any order, both reversible and irreversible, 

the reaction rate always gradually decreases in the course of 

reaction because of the decrease in the concentration of the 

starting materials. The highest reaction rate corresponds to the 

initial instant of time (Figure 2). 
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Figure 2 - Dependence of the reaction rate on time 

This figure corresponds, as already mentioned, to the case of 

an isothermal flow of the reaction. In the case of non-

isothermal conditions, the form of these curves will be differ-

ent. The dependence of the reaction rate on temperature plays a 

very important role in this process. 

It should be kept in mind that only a very small number of 

chemical reactions refer to reactions of the simplest type, i.e. 

mono- and bimolecular reactions. Chemical transformations, 

especially in the case of combustion reactions, occur through 

more complex transformations and in more diverse ways than 

indicated by the conventional chemical equation. The complex-

ity and uniqueness of the observed combustion reactions is one 

of the reasons that triggered the development of a new type of 

kinetics – kinetics of chain and autocatalytic reactions, in 

which a very important role is played by kinetics of intermedi-

ate transformations. 

Owing to the complex nature of the transformations, the 

overall behavior of the reaction in terms of dependence of the 

reaction rate on the concentrations of initial substances acting 

at a given moment never corresponds to the total chemical 

equation and, as a rule, does not give an integer order of the 

reaction. The latter can be fractional, just as there can be a frac-

tional order for each of the components. 

Moreover, the order defined as the sum of the values ν1 + ν2 

+  ν3 +…. may not coincide with the order determined by the 

value of the exponent of pressure. 

In view of all these circumstances, it is expedient to extend 

the concept of the order of the reaction (more precisely, the 

concept of the chemical process as a whole) by introducing a 

fractional-order reaction for each of the initial active compo-

nents participating in the transformation. 

This has a great practical meaning, as in any combustion 

process, in the end, the rate of combustion is determined by the 
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total macroscopic or, otherwise, integral dynamic (kinetic) 

laws.  

By analogy with the usual representation of the rate of reac-

tion in the form of a product of a constant K at a given tem-

perature and a function of the acting concentrations of the ini-

tial substances, we can generally write: 

 

...
ν

c
ν

b
ν

kaw
dt

dm
321                                         (17) 

 

where ν1, ν2, ν3, … in contrast to the previously mentioned, 

can be fractional numbers. 

 

2.8 Dependence of the reaction rate on temperature 

The most important achievement of chemical kinetics at the 

dawn of its appearance was the establishment of the laws of 

temperature variation of the rate constant of the reaction, the 

Arrhenius law. It follows from the experiment that the reaction 

rates increased very strongly with temperature. 

 

On the basis of the experimental data Arrhenius found 

(1989) that for the constants of reaction rates in the general 

case, the equation is valid: 

 

2
ln

RT

E
k

dT

d
 ,                                                       (18) 

 

where the quantity E is called the activation energy, the 

physical meaning of which will be explained below. 

Integrating the previous expression by the method of divid-

ing the variables, we get: 
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const
RT

E
k ln  

 

or 

RT
E

econstk


 .                                                   (19) 

  

The law in this form is known as the Arrhenius law for the 

temperature dependence of the reaction rate constant. 

The equation (18) experimentally obtained by Arrhenius 

practically coincides in its form with the equation (4) obtained 

by Van't Hoff on the basis of theoretical calculations. The only 

difference is that the thermal effect of the reaction Q enters Eq. 

(4), and the activation energy E – Eq. (18). Using both these 

equations, and the relationship between the equilibrium con-

stant and the rates of direct and reverse reactions (15 ), we can 

find how Q and E are related. From (4) with regard to (15) it 

follows that: 

 

212

1

2

lnln

lnln

RT

Q

dT

d

dT

d

k

k

dT

d
K

dT

d

kk 



                                     (20) 

 

 

From (18) it also follows: 

 

,ln,ln
2

1
12

2
2

RT

E
k

dT

d

RT

E
k

dT

d
  
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where Е1 is the activation energy of the direct reaction, and 

Е2 is the activation energy of the reverse reaction. 

Hence, 

 

,lnln
2

12

2

1

2

2
12

RT

EE

RTRT
k

dT

d
k

dT

d EE 

 (21) 

 

 

As the left-hand sides of equations (20) and (21) are equal, 

their right-hand sides are also equal:  

 

,
2

12
2 RT

EE

RT

Q 
  

 

This implies the following equality: 

 

Q = Е2 – Е1, 

 

which gives the relationship between the thermal effect of 

the reaction and the activation energy, namely: the thermal ef-

fect of the reaction is equal to the difference in the activation 

energies of the reverse and direct reactions. 

If Е2 > Е1, then Q> 0, therefore, the reaction is exothermic, 

i.e. goes with the release of heat; if, however, Е2 < Е1, then Q 

<0, therefore, the reaction is endothermic, i.e. goes with the 

absorption of heat. 

Theoretical considerations put forward by Arrhenius in sup-

port of this law are also based on the notion of equilibrium. Ar-

rhenius suggests that a certain fraction of special reactive mol-

ecules  is always in equilibrium in the gas system, and only 

these molecules, called "active" molecules, are able to react. 

The thermal effect of formation of active molecules is E, so 

this kind of "reaction" can be written as follows: 
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A  I + E, 

 

where A denotes active molecules, I are inert molecules. By 

the law of acting masses, denoting the concentration of active 

molecules by a* and inert via i, we obtain for the equilibrium 

constant K the following expression: 

 

i

*a
K  . 

 

Taking into account that for K the law is valid: 

 

we get: 

 

 

RT

E

consteK


  

 

The concentration always practically coincides with the total 

concentration of the molecules of the corresponding substance 

participating in the reaction (because of smallness of a*, recall 

the Maxwell distribution). As for T Т  ∞  all molecules must 

be active, hence, const = 1. Then, denoting the total concentra-

tion of the molecules of matter by a, we obtain: 

RT

E

eaKaKia*


                                         (22) 

From here follows the sense of RT

E

e


 – it is a fraction of 

the molecules, their total number, able to react. The value of E, 

,ln
2RT

E
K

dt

d

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associated with the energy conditions of activation, is, there-

fore, called the activation energy. 

 

 

2.9 Relationship between the activation energy and the 

thermal effect of the reaction 

These results concern a possible theoretical interpretation of 

the activation processes. Let us illustrate the relationship be-

tween the activation energy and the heat of reaction by the ex-

ample of a certain system, the stoichiometric equation for the 

reversible reaction of which has a simple form: 

 

A+BC AB+CQ                                                      (23) 

 

This means that when the atom A collides with a molecule 

BC, it detaches one atom B from it and attaches it to itself. The 

value of Q is the thermal effect of this reaction. As a result of 

this reaction, we again get a diatomic molecule AB and a free 

atom C. We will consider this reaction in terms of energy. 

The energy of a molecule is composed of its kinetic energy 

E and the binding energy of atoms in molecule D, which is 

negative. Thus, the total energy of any molecule is equal to E - 

D. We use the law of conservation of energy for our reaction: 

before the reaction, the energy of the system is:  

 

 EA + EBC – ДBC 

 

after reaction: EAB – ДAB + EC 

 

By the law of energy conservation: 

 

EA + EBC – ДBC  = EAB – ДAB + EC  

 

or 
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(EC + EAB) – (EA + EBC) = ДAB – ДBC 

 

The left side of the equation is the difference between the 

kinetic energies of the reaction products and the initial mole-

cules. It is positive if ДAB > ДBC, that is, with the formation of a 

more stable, more strongly-bound molecule, additional kinetic 

energy appears. As a result of this reaction, the mixture will be 

heated, as the growth of the kinetic energy of the moving parti-

cles is equivalent to an increase in temperature. 

In the opposite case - with the formation of more "loose" 

molecules than the initial ones (ДAB < ДBC), the kinetic energy 

of the particles decreases, that is, the absorption of heat. 

The difference between the kinetic energies of the final and 

initial products is called the thermal effect of the reaction Q 

(Q <0 - endothermic reactions, Q> 0 - exothermic reactions). 

This is why Q is added to the right-hand side of the reaction 

equation (23). 

Let's pay attention to the following circumstance. Equation 

(23) indicates that a reaction of this type can occur. But will it 

really proceed? Let us consider the reaction. For the BC mole-

cule to collapse in a collision with an atom A, the initial system 

A + BC must have a certain reserve of kinetic energy in order 

to break the bond between the B and C atoms. 

However, one should not think that this kinetic energy 

should be greater than the binding energy DВС, so that in the 

first stage of the reaction three free atoms A, B, and C can be 

formed. The reaction can proceed as follows: both stages of the 

reaction – collapse of the BC molecule and formation of AB 

molecule – occur simultaneously. The atom B, moving away 

from C (energy is absorbed), at the same time, approaches A 

(energy is released). With such a transfer of atom B from C to 

A ("from hand to hand"), the kinetic energy of the initial sys-

tem required for the initiation of the reaction may be less than 
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DВС. If the reaction is sequential (first, the BC molecule is split 

and then the AB molecule is formed), then the kinetic energy of 

the initial system BC + A should be not less than DВС. 

The smallest excess energy that a colliding particle (a bimo-

lecular reaction) or a decaying particle (a monomolecular re-

action) should have, in order for a chemical transformation to 

occur, is called activation energy. 

In accordance with modern views, the relationship between 

the energy of activation and the thermal effect of the reaction 

can also be illustrated with the help of the concept of an "ener-

gy barrier". 

Let us imagine two energy levels I and II of a certain sys-

tem, corresponding to the stoichiometric equation of the re-

versible reaction: 

 

I  II + Q 

 

The transition from state I to state II from left to right is 

possible with the initial expenditure of energy Е1; reverse tran-

sition II  I is possible respectively at the initial energy ex-

penditure Е2 (Figure 3). In this reaction, the energy is either 

released  (I  II) or absorbed (II  I).   

 

Q = Е2 – Е1. 

 

The height of the potential barrier E is the minimum value 

of the kinetic energy that the system must possess in order for 

the chemical reaction to occur. The quantity E is called the ac-

tivation energy, as only those particles will be chemically ac-

tive, the energy of which is not less than the activation energy. 
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Figure 3 - Transition of the system from one state to another 

  in exothermic (a) and endothermic (b) reactions. 

 

 

Thus, a chemical reaction occurs only between those atoms 

or molecules whose total kinetic energy is greater than or 

equal to the activation energy. Therefore, it is very important 

to know the distributions of moving particles in the gas in 

terms of energies (velocities).  

 

 

2.10 Molecular-kinetic basis for the Arrhenius law 

It is known that in a gas heated to a certain temperature, not 

all molecules move with the same velocities. At each tempera-

ture, an equilibrium state is established in the gas, in which, 

despite continuous collisions and energy exchange between 

molecules, the fraction of molecules having energies in each 

energy interval remains unchanged. This fraction is determined 

by Maxwell's distribution law: 
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







dkTe

kT
N

dN 2

2

2
3

2

24 










 ,                           (24) 

 

which gives the ratio of the number of molecules dN, having 

velocities (by module) from v to v + dv, to the total number of 

N molecules. Here k is the Boltzmann constant (

AN

R
k  ,  NA 

is the Avogadro number). 

This distribution is qualitatively shown in figure 4. 

  

 
Figure 4 - Maxwell's distribution curve 

 

The most probable speed is determined as follows: 

 




kT
в

2
  
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If we introduce a dimensionless velocity 

в
u




 , then (24) 

will have the following form: 

 

dиuuedиue
u

N

dN
в

в

в 222

3

22
44 






 

 

We are only interested in "fast", reactive molecules whose 

velocity exceeds a certain critical value u'. What is the number 

of such molecules? Obviously, their number will be equal to 

the shaded area on the graph: 

 









'

4

'

2
2

u

dиuue

u N

dN

N

а
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
 

 

It is difficult to compute this integral, but bearing in mind 

that u’ 1, we can write its approximate value: 

 

2
128,1

1'

uue

u
N

a
N 



 

 

If we take the derivative of Nа/N  with respect to u, we ob-

tain: 

 

  2
2

22
21128,1

4
ииеиue 


. 

 

For large u (u  u’) the unit in the right-hand side can be ne-

glected, and then this equality becomes an identity. 
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Hence, the number (fraction) of reactive molecules is de-

termined by the expression: 

 

kTe
kT

uue
N

aN 2
2

128,1128,1

2

2





 
 . 

The quantity 
2

2
 is the kinetic energy of one molecule, 

кEaN


2

2
is the kinetic energy of one mole of gas, then 

 

kT

E

e
RT

E

N

aN
к

к 2128,1


 .                                       (25) 

 

The right-hand side of the expression is the fraction of mol-

ecules that has the kinetic energy higher than Ек. If we assume 

that it is the kinetic energy of the translational motion of the 

molecules that activates the reaction energy, the resulting ex-

pression, which in its form is very similar to the empirical Ar-

rhenius law, gives the physical content in a somewhat vague 

notion of active molecules and explains this law from pure 

physical positions. 

Molecular-kinetic interpretation of the course of reactions is 

most directly applicable to bimolecular reactions. For each of 

the reacting gases A and B, one can write expressions for the 

number of molecules having an energy greater than some given 

values in the form: 



 

 41 

RT

E

e
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E
aa

a

a


 128,1' , RT

E

e
RT

E
bb

b

b


 128,1' , 

 

 

RT

E

RT

E ba ,   can be regarded as constants. 

 

If the reaction rate is equal to the number of collisions of ac-

tive molecules, i.e.
см

zw
3

1
'  and as 

 

'''
222 barz ba    

 

where r is the sum of the radii of action of the colliding het-

erogeneous molecules, a  and  b are the average thermal ve-

locities of these molecules, we obtain: 

RT

EE
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EE
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



22

22
2 128,1 . 

 

Let us denote: 

 

022

222128,1 k
TR

EE
r ba

ba  , 

Then we get: 

RT

E

abekw


 0                                                         (26) 
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Here k0ab is the total number of collisions per unit time per 

unit volume, and E is the sum of kinetic energies of the two 

colliding molecules. In view of the latter circumstance, the ac-

tivation energy of the bimolecular reaction is the sum of the 

kinetic energies of the two colliding molecules. For the reac-

tion to occur, it is necessary that this amount be equal to a cer-

tain value characteristic of the given reaction. молекул.  

Expression (26) shows that of the total number of colliding 

molecules of substances A and B, only a small fraction enters 

the reaction, and it is precisely those molecules whose total ki-

netic energy, in the collision, exceeds a certain critical quantity 

E. In such an interpretation, the quantity E has a purely thermal 

nature. The source of activation is an unordered thermal mo-

tion, which obeys the Maxwell law of distribution. The number 

of molecules that have kinetic energy above the value of E is 

the smaller, the greater this energy exceeds the average energy 

of the molecules of the system and the greater, the higher is the 

temperature of the system. 

These results are not fully rigorous. The point is that Max-

well's law of distribution presupposes the presence of elastic 

collisions of molecules in the gas system. The presence of 

chemical processes in the system means, however, that the col-

lisions are not elastic. Molecules, colliding, form pairs, and 

then either part again or enter into a close connection. Rota-

tional and vibrational motions of molecules and atoms are also 

possible, as well as more complex energy changes within the 

molecules themselves, as a result of which the energy of the 

translational motion of molecules can become intramolecular 

or, conversely, intramolecular energy is released in the reac-

tion. In all these cases, it also cannot be said that elastic colli-

sions take place in the system. Nevertheless, the experience 

shows that the overwhelming number of reactions follow the 

Arrhenius law, even if these reactions are not simple, have a 

fractional order, etc. Why the reaction can have a fractional 
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order, will be discussed later, but now we will pay attention to 

the experimental verification of the validity of the Arrhenius 

law. 

The simplest way to verify the Arrhenius law for the tem-

perature dependence of the rate constants of reaction, repre-

sented in the form: 

 

RT

E

ekk


 0                                                               (27) 

 

and determine the values of k0 and E is to represent the ex-

perimental data in the system lnk and 1/Т. Indeed, taking the 

logarithm of (27), we obtain: 

 

TR

E
kk

1
lnln 0   

 

This is the equation of a straight line in coordinates lnk and 

1/T with the angular coefficient tg = E/R (Figure 5). Hence: 

 

E = R tg  J/mol 

 

The value of k0 is determined from the value of the line 

segment cut off on the axis lnk. 
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Figure 5 - Dependence of the reaction rate constant k on 

temperature 

 

 

Test questions: 

1 What are the mole coefficients of the reaction? What is 

the thermal effect of the reaction? What is the condition of 

stoichiometry? 

2  What is the law of the acting masses? 

3  How is the rate of the chemical reaction determined? 

4  What is the order of the reaction? 

5  How does the reaction rate depend on the pressure? 

6  Record the Arrhenius law for the rate constant of the re-

action. 

7  How are the thermal effects of the reaction and the acti-

vation energy of the reaction related to each other? 
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2.11 Chain Reactions 

2.11.1 Unbranched chain reactions 

Experience shows that there are chemical reactions that do 

not need a noticeable pre-heating-up for their development. 

These reactions occur suddenly, are isothermal at low tempera-

tures, and are characterized by rather high velocities. Such 

chemical reactions include, for example, cold flame phenome-

na during low-temperature oxidation of vapors of ether, phos-

phorus and various hydrocarbons. 

Some chemical processes have the following special proper-

ties: 

 The phenomenon of strong inhibitory or accelerating ac-

tion of small amounts of impurities; 

 the phenomenon of accelerating action on the reaction of 

its final products; 

 the phenomenon of photochemical reactions, especially 

photochemical reactions of explosive type, such as, for exam-

ple, the reaction of H2 + Cl2. 

 

All these phenomena showed that in this case, activation 

cannot occur through the usual mechanism of thermal activa-

tion, which assumes that active molecules are represented by 

thermal motion, and their number is determined by Maxwell's 

law. There was obviously another reason and another effective 

source of activation that arose in the course of reaction itself 

and which did not require an obligatory preliminary significant 

heating of the reacting system. 

The development of reaction kinetics from this point of 

view led to the creation of a new type of kinetics –  kinetics of 

chain reactions and autocatalysis. 

Molecules can be activated not only by the high energy par-

ticles in the "tail" of the Maxwellian distribution. The same can 

be done by supplying light energy to them. Each quantum of 

light absorbed by a molecule gives it its energy h. If the quan-
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tum energy is sufficient (and this is determined by its frequen-

cy), the molecule is activated and reacts. In this case, we do not 

speak about a thermal reaction, but about a photochemical re-

action. Thus, each quantum gives one transformation act, or, as 

it is said, in this case the quantum efficiency is unity. 

However, this is not always the case. Due to different ener-

gy losses, the quantum efficiency can be less than unity. 

In 1913, Bodenstein, studying the quantum efficiency of the 

reaction of formation of hydrogen chloride from gaseous chlo-

rine and hydrogen, unexpectedly discovered a paradoxical fact. 

In this case, the quantum efficiency reached 105 and even 

more. In other words, the absorption of one quantum leads to 

hundreds of thousands of reactions, giving hundreds of thou-

sands of molecules of the product – hydrogen chloride. From 

this discovery it follows that after the light-excited molecule of 

Cl2 reacted with Н2, a long chain of transformations, already 

going without the participation of light, arose. Here, the first 

time the term "chain reaction" was used. But how can this hap-

pen? 

The ordinary reaction H2 + Cl2, by analogy with the reaction 

H2 + J2, has to follow the bimolecular mechanism and the rates 

of these reactions should be close. Actually, the rate of the first 

reaction is many thousand times greater than the rate of the 

second. The required atomic chlorine is formed quite easily as 

a result of the dissociation of chlorine molecules upon absorp-

tion of a quantum of light, or with an increase in temperature 

and the collision of chlorine molecules with any sufficiently 

fast molecule M: 

 

Cl2 + h  Cl + Cl                                                          (28) 

or 

Cl2 + M  Cl + Cl +M.                                                  (29) 
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Atomic chlorine then readily reacts with a water molecule 

by reaction 

 

Cl + H2 = HCl + H.                                                       (30) 

 

The activation energy of this process turns out to be small, 

of the order of 24000 J/mole, and therefore it proceeds much 

faster than the usual reaction  

 

Cl2 + H2  2HCl, 

 

for which Е  16000 J/mole. 

As the concentration of chlorine atoms is usually low, and 

the activation energy of reaction (30) is 24000 J/mole, atomic 

chlorine would have to be consumed quickly. This is ham-

pered, however, by the next link of the reaction, proceeding at 

an even faster rate, as a result of which the chlorine atom again 

appears: 

 

Н + Cl2 = НСl + Cl                                                         (31) 

 

and the reaction proceeds with a practically unchanged and, 

at the same time, a low Cl content. Such a mechanism makes it 

possible to proceed at a high rate. It should be noted that as a 

result of each elementary reaction a HCl molecule is formed 

and a free H or Cl atom is reconstructed. The process continues 

until the chain breaks off as a result of reaction Cl + Cl = Cl2  

or Н+Cl = НCl, or the interaction with the wall. 

Intermediate reaction products - chlorine and hydrogen at-

oms, which accelerate the formation of the final HCl product 

and play the role of catalysts, are called active centers. 

From the consideration of this chain process it is clear that, 

when it proceeds, the number of active centers remains un-

changed. Chemical reactions proceeding along the chain 



 

 48 

mechanism, during which the concentration of active sites re-

mains constant, are called unbranched chain reactions. 

As active centers are formed during the reaction and play a 

role of catalytic agents, such chemical reactions are called au-

tocatalytic. 

 

2.11.2 Branched Chain Reactions 

The other type of chain reaction, in which each cycle or 

each elementary reaction will supply more than one active par-

ticle, is also possible. In this case, the number of active centers 

will continuously increase over time and spontaneously grow, 

and with it the reaction rate will also increase. The process be-

comes self-accelerating, like an avalanche process. In this case, 

the process is nonstationary and can spontaneously move from 

almost imperceptible changes to a violent and powerful re-

sponse. 

 

It is this kind of phenomena that is characteristic of explo-

sive processes. Chain reactions associated with a progressive 

increase in the number of active reaction centers are called 

branched chain reactions. 

An example of this kind of reaction can be a widely known 

reaction of a hydrogen connection with oxygen: 

 

2Н2+О2=2Н2О. 

 

The actual course of the process does not obey this equation, 

which corresponds to a tri-molecular reaction. The most likely 

scheme of the reaction is the following. 

The initial process 

 

Н2+М=Н+Н+М                                                               (32) 
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is a process of ordinary thermal dissociation. The follows a 

series of individual elementary acts: 

 

Н+О2=ОН + О,                                                               (33) 

О+Н2=Н + ОН,                               1-st cycle                 (34) 

ОН+Н2=Н + Н2О                                                            (35) 

 

 

Н+О2=ОН+О, 

О+Н2=Н+ОН, 2-nd cycle 

ОН+Н2=Н+Н2О,  

 

and so on. 

Reaction (35) is a consequence of (33) and (34) and actually 

occurs twice, corresponding to two formed OH radicals. After 

the reaction (35), the sequence of the same reactions (33), (34) 

and the doubled reaction (35) again begin, etc. In this process, 

the number of hydrogen atoms progressively increases, and the 

entire reaction cycle is accelerated. 

To determine the content of atmospheric hydrogen, at which 

the reaction becomes noticeable, some time is needed. This 

time was called the induction period of the reaction.   

Thus, unlike all the reactions considered so far both ordinary 

and chain (unbranched) reactions with ordinary chains, in this 

case the development of the reaction is such that first the reac-

tion is invisible, then it spontaneously increases to very large 

but finite values of speeds and only then begins to decline as a 

result of expenditure of reacting substances. 

In Figure 6, which gives the dependence of the reaction rate 

on time,   is the induction time. An unlimited increase in the 

concentration of hydrogen atoms is hampered by the process of 

their death, which is caused by a number of reasons, but mainly 

by the reaction: 
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Н+О2+М=НО2+М 

 

and the reverse reaction (32), the recombination of hydrogen 

atoms into molecules. 

 

 
Figure 6 - Change in reaction rate with time; 

  is the induction period. 

  

When the amount of atomic hydrogen becomes significant, 

its further increase ceases, and the reaction must become a sta-

tionary reaction. At the same time, the number of other active 

intermediate products, O and OH, does not increase any more. 

In fact, the reaction rate does not remain constant after a 

rapid increase, as the quantity of reacting substances continu-

ously decreases and accordingly the content of active centers 

decreases in the system. This decrease occurs, however, more 

slowly than accumulation of centers at the beginning of the 

process, and their number is in accordance with the amount of 

combustible substances in the reacting system; in this case, 

such are hydrogen and oxygen.  

All the arguments, that have been given so far on the course 

of the reaction in time, refer to the so-called isothermal reac-

tions. In the case when the temperature rises in the course of 

the reaction, the picture of the process is highly complicated 
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and, as it will be shown below, self-acceleration of the reaction 

and appearance of an explosive effect will also occur in the 

case of a usual Van't Hoff kinetics. 

Let us note in conclusion that the merit in the creation and 

wide development of the theory of chain reactions belongs to 

N.N. Semenov and a group of his disciples. As early as 1927 

Semenov first directly applied the idea of chain transformations 

to the phenomena of inflammation, most important phenomena 

in practice and theory of combustion. 

 

 

2.11.3 Total kinetics of complex reactions 

In the practice of combustion and calculation of the process, 

it is necessary to know the overall or final kinetic equation of 

the chemical process, that is, it is necessary to know the effec-

tive rate constant of the reaction (its temperature dependence) 

and the order of the process for each of the initial substances 

involved in the reaction. 

Examples of calculation of chain reactions show that the to-

tal reaction rate, at least for the unbranched chain, is always 

presented by an ordinary kinetic equation. 

Finally, only these effective total kinetic laws should be tak-

en into account in the complex interaction processes of physi-

cal and chemical factors forming the basis of combustion phys-

ics, as only the total rate determines the yield of reaction prod-

ucts and accompanying heat release. 

Thus, in the future we will often use the approximate empir-

ical equation determining the rate of the chemical reaction in 

the form: 

 

W= WT (T)WC (C)= – dc/dt,                                              (36) 

 

where 
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WT = k(T)=k0 е
-E/RT.                                                                                        (37) 

 

k0 in the first approximation is considered independent of 

temperature. 

We have already discussed the meaning of the quantities k0 

and E (k0 corresponds to the number of collisions, E is the min-

imum value of the energy of the molecule, which provides the 

collision efficiency – the reaction). However, in what follows 

we will consider them as reduced empirical constants, which 

approximately reflect the total dependence of the reaction rate 

on temperature. 

Let us consider in more detail the quantitative aspect of this 

dependence, which is extremely important for further presenta-

tion. For ordinary values of activation energy (approximately 

about 8 × 8·104 16·104 kJ/mol) for simple chemical reactions, 

a dramatic impact of temperature on the reaction rate can be 

seen from Table 1. 

 

 

Table 1 

 

 Values of the activation energy for different tempera-

tures 

Tempera-

ture 

   Т, К 

Value k/k0=е-Е/RT 

Е=8·104  

kJ/mol 

Е=16·104 

 kJ/mol 

500 2·10-9 1 4·10-18 1 

1000 4·10-5 2·104 2·10-9 5·108 

2000 6·10-3 3·106 4·10-5 1·1013 

  

 

As can be seen from this table, a double increase in tempera-

ture at E = Е=8·104 kJ/mol and transition from 500 K to 1000 
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K, leads to a 20,000 increase in the function RT

Е

е


  and a 500 

million increase at E = 16 · 104 kJ/mol and the same tempera-

ture values. 

A similar increase in temperature (from 1000 K to 2000 K) 

causes an increase in the reaction rate constant k(T) by 150 

times at the first and by 20 thousand times at the second value 

of the activation energy. The above example shows how strong 

is the influence of temperature on the rate of chemical reaction. 

It also shows the possibility of neglecting in quantitative calcu-

lations weaker (power-law) temperature dependences com-

pared with exponential (if they enter as a multiplier at RT

Е

е


). 

 

It can also be seen from the table that with an increase in the 

absolute temperature, the influence of the factor RT

Е

е


 on the 

reaction rate weakens. 

Let us also briefly consider the dependence of the rate of re-

action on concentration. For the simplest reactions, the function 

WC (c) in equation (36), according to formal kinetics, can be 

represented as a power-law dependence on the concentration of 

initial substances. 

We have previously noted that for the ν-th-order reaction, 

(ν=ν1+ν2+ν3+… are stoichiometric coefficients). 

...321 ν
C

ν
B

ν
A ccc(c)

c
W   . But if the substances in the mixture 

are in the stoichiometric ratio, then cA~cB~cC… and, conse-

quently, WC (c) c, where ν is the reduced order of the reac-

tion. 

It should be noted that the equation  

 

WC (c) c,                                                                        (38) 
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which we will use later in its simplest form (ν = 1), does not 

describe the actual mechanism of the chemical reaction. It re-

flects, however, as can be seen from the formula: 

 

RT

Е

cеkW


 0
                                                             (39) 

 

general and very important (in further presentation) property 

of simple chemical reactions, namely: the decrease in the reac-

tion rate at a constant temperature as the initial product burns 

out and, consequently, the collision probability decreases be-

tween the reacting molecules. It also follows from Eq. (38) that 

when the combustion of the initial mixture is taken into ac-

count, the rate of the reaction in the final stage inevitably de-

creases, and in the limit, with complete disappearance of the 

initial products. This property is essential for studying the 

thermal combustion regime. 

Thus, the expression for the reaction rate, reflecting the 

properties of the combustion process, which are the main prop-

erties for studying the thermal regime, we write, taking into 

account expressions (36) - (38) in the form: 

 

RT

Е

еckW


 
0

                                                       (40) 

 

and for the simplest and, therefore, the most convenient case 

for qualitative calculations, ν = 1, in the form (39). 

Under normal ignition conditions, when the initial tempera-

ture is low and the concentrations of the reacting substances 

have the maximum values, the adiabatic reaction is always ex-

plosive. From this point of view, the adiabatic reaction, no mat-

ter how slow it is at first, will become noticeable from a certain 

point in time. 
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The interesting properties of adiabatic reactions considered 

here are of direct relevance to the case of burning, since for this 

process the main condition is the large exothermicity of the 

transformations and powerful self-heating of the reacting sys-

tem. In reality, however, it is always necessary to take into ac-

count heat dissipation. 

 

Test questions: 

1  What reactions are called chain reactions? 

2  What are branched chain reactions? What are their dif-

ferences from unbranched chain reactions? 

3  What are autocatalytic chain reactions? 

4  What is called the induction period of the reaction? 

5 How does the reaction rate change with time? 
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3 THE THEORY OF THERMAL EXPLOSION 

 

3.1 Two types of ignition. 

In order to start burning of the gas mixture, it is necessary to 

create certain initial conditions in the system – to ignite the 

mixture. Experience indicates the possibility of two methods 

that can be used to ignite gas mixtures. In practice, both 

methods are widely used. 

In the first method  all the ignitable mixture is brought to a 

temperature above which it independently ignites without ex-

ternal influence. 

In the second method the cold mixture is ignited at only one 

point in space by means of a temperature source (usually a 

spark, a heated body, an extraneous flame, etc.) and further ig-

nition of the entire volume of gas occurs without external in-

tervention spontaneously, but with a certain spatial velocity of 

propagation of the burning rate. 

According to these two methods of ignition they are called 

self-ignition and forced ignition, forced inflaming or simply 

ignition. 

Characteristics of both processes turn out to be very differ-

ent, but they are based on the action of one common factor – 

the thermal factor. 

As in practice there is a warm-up of the system and the as-

sociated thermal excitation of reactions, it is natural to consider 

the phenomenon of ignition from the positions of the thermal 

mechanism of the process. This is especially useful because it 

will make it possible to form a clear physical picture of the 

phenomenon and to understand the essence of the basic charac-

teristics of ignition, which are convenient and important for 

combustion practice. 
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3.2 N.N. Semenov’s theory of thermal explosion  

3.2.1 Heat emission and heat removal curves 

We know that the rate of chemical transformations depends 

on the composition of the mixture (the amount of initial sub-

stances) and the temperature. In real conditions and, especially 

in the case of combustion phenomena, the thermal conditions 

in the reacting medium are, firstly, determined by the process 

itself and, secondly, can never be homogeneous. In reality, ig-

nition or combustion always occurs in a limited volume. The 

released heat is somehow lost in the environment, which leads 

to the occurrence of larger or smaller temperature differences 

within the reacting system. This difference in temperature en-

tails a difference in the reaction rates at different points in 

space and appearance of an inhomogeneity in the composition 

of the mixture along with temperature inhomogeneity. 

The area, more distant from the walls of the vessel, is char-

acterized by a larger number of reaction products and a higher 

temperature. The layers adjacent to the walls will be colder, but 

there, accordingly, more initial products of the reaction will be 

present. As a consequence, in this system the transport phe-

nomena of both heat and matter inevitably arise, and in order to 

analyze the process in this case it is necessary to solve a system 

of two differential equations: the heat transfer equations and 

the diffusion equations, which even in the simplest case of the 

reaction in a stationary medium have the following form: 

 

  RT
E

eνckDgradTdiv
t

с 





 0                       (41) 

 

  RT
E

eνcqkgradTdiv
t

T
p

c






0              (42) 

 



 

 58 

The solution of this non-linear system of equations in the 

general case encounters a great number of mathematical diffi-

culties, which makes it necessary to solve the problems of igni-

tion by significant simplifications. Some simplifications are 

reduced to studying of only stationary regimes and finding 

conditions when such solutions are impossible. In other simpli-

fications,  temperatures and concentrations inside the vessel are 

not considered and only the flow of the process in time is ana-

lyzed. 

 

Physically, the process of self-ignition can be most clearly 

illustrated by the example of the simplest case. Let a certain 

volume of gas V be enclosed in a vessel whose walls are main-

tained at a given temperature ТW. Let us assume that during the 

reaction the temperature throughout the vessel is equal to T. In 

view of this, the entire temperature difference between the gas 

and the wall is concentrated on the boundary between the wall 

and the gas. Accordingly, within the vessel, in the gas, there is 

no difference in the concentrations of the reacting substances. 

The entire volume of gas V reacts, therefore the concentra-

tions of all components of the mixture and temperature are the 

same at all points, and there is no need to use the system of 

equations (41), (42). Instead, we can write two expressions – 

an expression for the rate of heat release in the entire volume V 

and an expression for the release of heat through the walls of 

the vessel. 

If the thermal effect of the reaction is equal to Q J/mol, the 

rate of heat release in the vessel is: 

 

q1 = QWV. 
 

As the speed W is the reaction rate (mol/m3s), then 
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RT

E

eckW


 
0  

 

And hence 

RT

E

VecQkq


 
01 .                                                    (43) 

 

This heat goes partly to the heating of the gas, partly 

through the walls of the vessel. The amount of heat lost can be 

represented as: 

 

q2 = S(T-TW),                                                              (44) 

  

where S is the total surface of the walls of the vessel, and  

is the coefficient of heat transfer from the gas to the wall. 

Equation (41) is the amount of heat released as a result of 

the combustion reaction and is called the heat release curve, 

and equation (42) allows us to calculate the amount of heat lost 

to the environment through the walls of the vessel and is called 

the heat removal curve. 

If q1>q2, the system will warm up, the temperature will in-

crease with time, which can lead to an explosion. 

If q1<q2, then, on the contrary, the system will cool down, 

the temperature will decrease until burning stops.  

If q1=q2, then stationary combustion will be observed at a 

certain constant temperature. 

Thus, the condition of stationary process means that the 

amount of heat released during combustion is equal to the 

amount of heat removed to the environment: 

 

q1=q2,  
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that is: 

QV k n n eА В

E

RT
0

  
=S(T-T0)                                         (45) 

 

 

This transcendental equation (is not solved analytically) will 

be solved graphically. 

 

 

3.2.2 Graphical solution 

In order to find out under what conditions an explosion oc-

curs, let us use a graphical construction. For the sake of further 

simplification, suppose that before the inflammation in the ves-

sel, the reacting substances do not change, i.e. the concentra-

tion c is constant and equal to с0. This assumption turns out to 

be quite precise in the region of weak heating of the mixture 

near the ignition temperature. 

The system of curves q1 in Figure 11 corresponds to the rate 

of heat generation for three different reaction rates (for exam-

ple, for three different pressures) depending on the temperature 

inside the vessel (equation (43)). The straight line q2 corre-

sponds to the rate of heat release depending on the temperature 

inside the vessel, i.e. corresponds to equation  (44). 
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Figure 11 - Graphical solution of the system of equations 

(43) - (44) 

 

     When the reaction proceeds along the lower curve, first, 

starting with Tw, the mixture will be heated to the temperature 

T1, as up to this point the heat input exceeds the heat removal. 

At point T1, the heating will stop and the system will come into 

equilibrium. The reaction will go further at a constant rate (if in 

this case the number of reacting molecules does not change – 

we accepted it, although, in fact, the rate will start to fall pro-

gressively). 

 

      
Figure 12 - Equilibrium conditions at point 1 
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In the case where the reaction proceeds along the upper 

curve, the heat release always exceeds the heat removal and, 

consequently, the system will continuously increase the tem-

perature from the very beginning; the reaction rate will quickly 

move to very high values and lead to an explosion. 

 

 
Figure 13 - Equilibrium conditions at point 2 

 

There is, obviously, a condition characterizing the transition 

from the case of a limited growth of temperature to unlimited 

growth. This condition is realized by the mean curve for q1. In 

this case, as in the first, the temperature of the gas will increase 

to the value ТВ. From this moment, the system will be in equi-

librium. What kind of balance will this be? Steady or not? To 

answer this question, we will examine the states corresponding 

to two common points of the curves q1(T) and q2(T),, which are 

equilibrium points. To solve our problem, we will use the usual 

method of studying the stability of equilibrium states of any 

system. 

Suppose that in a system in equilibrium,  some minor (more 

precisely, arbitrarily small) deviations from the state of equilib-

rium occurred, and let us study the further change in its state. 

At the intersection of the curves with temperature Т1 the system 

is in equilibrium (Figure 12). 
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Deviation from this point towards a lower temperature (to 

the left) will lead to a nonequilibrium state, in which the 

amount of heat q1 released exceeds the amount of heat q2. In 

this case, the system reheats and returns to the equilibrium state 

with temperature Т1. If the temperature is raised relative to the 

same equilibrium state, a nonequilibrium state occurs in which 

the amount of heat removed is greater than the amount of heat 

released, hence the system will cool and return to equilibrium 

again. 

Thus, in both cases, randomly occurring temperature devia-

tions create conditions for the system to return to equilibrium. 

Consequently, the steady-state regime 1 is stable. 

Let us now consider point 2. A similar analysis of Figure 13 

shows that if Т<Т1, then q1<q2  and consequently the system 

cools down and goes to point 1. If Т>Т1, then q1>q2  and the 

system warms up and an explosion occurs. Consequently, the 

stationary mode 2 is unstable and therefore in practice this 

equilibrium state is not realized. 

 

3.2.3. Critical ignition conditions 
The state with the temperature ТВ is also an equilibrium 

state, but it is one-sidedly stable (Figure 14): when the temper-

ature of the system is accidentally lowered, it returns to the 

equilibrium state, and when the temperature increases, its un-

limited increase will occur for  Т > ТВ q1 > q2 and there will be 

a progressive warm-up of the system. Thus, the equilibrium at 

the ТВ temperature is one-sidedly stable. 
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Figure 14 - Equilibrium conditions at the point of ignition B 

 

This phenomenon is the transition from a slow quasistation-

ary reaction accompanied by a slight heating to a rapid, nonsta-

tionary, progressively accelerating temperature increase and 

burning out of the mixture (as a result of the increase in tem-

perature, the reaction rate, i.e., the intensity of heat release in-

creases, which again leads to a temperature rise, etc. until the 

mixture is completely burnt out) and it was termed a "thermal 

explosion". 

 

The boundary steady-state mode of touching the curves for 

releasing and removing heat (point B) is commonly referred to 

as the ignition mode, and the corresponding temperature TВ is 

the self-ignition temperature or simply the ignition tempera-

ture. The condition to which the state at point B corresponds is 

usually called the "critical ignition condition," since the re-

gime at point B is characterized by a sharp, critical change in 

the state with an infinitesimal change in temperature. 

In point B equalities q1= q2 and  
dT

dq

dT

dq 21   unambiguously 

determine the value of TВ, which characterizes the limiting ig-

nition condition for the given mixture. 
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In the example considered, the value of ТW was kept un-

changed but the combustible properties of the system changed, 

which depend on the content of the fuel in the mixture, i.e. on 

the pressure and relative concentration of substances. It turned 

out that at a given temperature of the vessel walls, only after 

reaching a certain reaction intensity (a certain fuel content, a 

certain pressure), a spontaneous increase in temperature and a 

rapid acceleration of the reaction, i.e. ignition may occur.  

Usually in the experiments, the composition of the mixture 

and the pressure are predetermined, and the variable tempera-

ture is the temperature of the walls of the vessel ТW. If we 

change ТW, then on the graph this will correspond to the paral-

lel translation of the straight line q2(T). The heat dissipation 

curve q1 is given. With a gradual increase in the wall tempera-

ture from the value ТW1, the corresponding straight line of heat 

transfer moves parallel to itself to the right (the value of x is 

considered constant). 

As long as the straight line of heat removal crosses the heat 

input curve, the system's heating is stationary. The last temper-

ature of the vessel wall, at which only the stationary heating 

takes place, is the temperature ТW.  The corresponding heating 

temperature of the system is ТВ. With a slight further increase 

in the temperature of the vessel wall above ТW. stationary heat-

ing is no longer possible; as the heat input always exceeds the 

heat removal: the system, as in the previously considered case, 

progressively warms up, reacts and comes to ignition. 

bviously, all other wall temperatures above ТW will also lead 

to ignition. The value ТW thus separates the temperature region 

of the wall , in which no ignition occurs, from the heating re-

gion in which ignition occurs. 

Unlike the self-ignition temperature, the temperature of the 

stationary heating of the system above which the system is ca-

pable of self-accelerating of the reaction is the ignition tem-

perature, i.e. it is the lowest temperature of the vessel walls at 
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which an explosion occurs under the given conditions and for 

the given .  In the examples considered, this temperature is the 

temperature of the vessel ТW. It is obvious that ТW. and ТВ dif-

fer to a greater or lesser extent from each other, but always ТВ 

> ТW. 

It should be noted that in the strict (in the original sense) de-

termination of the self-ignition temperature, it is not a constant 

characterizing the gas system, but it more or less depends on 

the experimental situation, especially, on the size of the vessel.. 

This follows from equation (44), where q2depends on the val-

ues of S and x, characterizing the parameters of the experi-

mental setup. 

 

3.2.4 Induction ignition period 

 

In practice, one way or another, it is necessary to connect 

the combustible properties of the substance with some charac-

teristics of inflammation. The measurement of ТВ is, mostly, an 

experimentally difficult task, because of the high rate of change 

in the temperature T inside the vessel and general difficulties of 

accurate measuring of gas temperatures. 

Therefore, we use not the value of ТВ, but the value of ТW, 

i.e. possibly minimum temperature of the vessel wall (in the 

case of forced ignition, the minimum temperature of the ignit-

er). This quantity  is connected with the other experimentally 

observed quantity: the induction period or the ignition delay, 

since the transition from a given temperature ТW to a ТВ tem-

perature is always associated with a certain time needed for the 

development of reactions and heat accumulation. 

The rate of increase in temperature and, correspondingly, 

the increase in the reaction rate should be proportional to the 

difference q1 – q2. According to equations (43) and (44): 
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)(021 wTTSecQVkqq RT

E





. 

 

If the heat capacity of the system cV, then: 

 

)(0 wTT
Vc

S
eck

c

Q

dt

dT
RT

E











, 

 

where c is a function of time. It is a difficult and unneces-

sary task to solve this equation. In order to qualitatively repre-

sent the behavior of the temperature inside the vessel in time, 

we can use the above graphs q1(T) and q2(T), making the dif-

ference q1 and q1 for each point and identifying it with the tem-

perature rise rate. This is given in Figure 15. The lower curve 

corresponds to the case of stationary heating up to temperature 

T1, ignition is absent; the dotted curve corresponds to a more 

real case when the fuel is spent (decrease in c). 

 

 

 
Figure 15 – An increase in temperature T of the reacting 

mixture with time τ; τi  is the induction period 
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The curve with the designation ТВ is the limiting state at the 

boundary of ignition. As ТW increases, this curve becomes an 

upper-type curve. The latter is characterized by the presence of 

an inflection point, after which a very rapid temperature jump 

(ignition) occurs. The time corresponding to the inflection 

point, in this case, is analogous to the induction period in the 

chain development of the reaction, and can be called the delay 

time or the induction period of thermal ignition. 

The higher the temperature of the walls of the vessel is 

raised over the TW (connected with ТВ), the less will, obviously, 

be the delay time. From this point of view, for the value of TW, 

characterizing the flammability of the system, it would be nec-

essary to take a value for which the delay time equals infinity. 

Such a strict definition of ТW is usually not made, but there are 

ТW values corresponding to this or that time delay. In the prac-

tice of measurements, they reach some tens of seconds for 

some substances and decrease very rapidly with increasing 

temperature; they also depend on a number of other factors 

(pressure, etc.). 

Thus, we see that if we use the temperature of the vessel 

walls as the value of the ignition temperature, it is also neces-

sary to give the value of the induction period. 
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3.2.5 Self-ignition boundaries 

The above graphs q1(T) and q2(T) show that for a given ex-

perimental condition for each combustible mixture character-

ized by a certain initial composition and pressure, there is a 

definite value of ТВ. This means that there exists an entire sys-

tem of limiting states that determine the regions where the ex-

plosion can occur and where the explosion does not occur. The 

boundaries of such regions are called explosive boundaries, 

explosive limits or, more precisely, self-ignition boundaries. 

Let us consider the simplest quantitative relationships that 

enable us to establish the boundaries of self-ignition. If the sys-

tem of curves q1(T) corresponds to the reaction rates at differ-

ent pressures, then from the touching condition it is easy to ob-

tain a connection between p and T corresponding to the inter-

face between the explosion region and the region of non-

explosiveness. 

Taking into account that at the tangent point  
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and using (43) for q1 and (44) for q2, we get: 
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                             (46) 
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                                            (47) 

 

Dividing the first equation to the second we get the follow-

ing relation: 
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B TT

E

RT


2

,                                                        (48) 

 

whence, rewriting this quadratic equation in the form: 

 

02  wBB T
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E
T

R

E
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It is not difficult to get ТВ: 
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.                                (49) 

 

In this expression, one should take a minus before the radi-

cal, which gives the smallest value of ТВ,  since the plus sign 

gives a meaninglessly high value (it corresponds to the tangent 

point of the curves q1 and q2 beyond the inflection point). 

Thus, 
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From this N.N. Semenov’s formula it follows, in particular, 

that the phenomenon of ignition in the considered problem of 

thermal explosion can exist only in a limited range of values of 

the wall temperature: 
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The maximum value of the ignition temperature from (45) 

for  
R

E
w

T
4

  is  

 

 
R

E
TB

2
max  ,           wTTB 2max    

 

and corresponds to the inflection point in Fig. 7 and is equal 

to (5·103104) К. 

 In all theoretically unlimited range of values of the wall 

temperature above 
R

E
TW

4
max   under any heat transfer con-

ditions, there is a "thermal explosion" region, i.e. the area in 

which the steady-state reaction is impossible. This follows 

from the fact that equation (50) has no solution, and hence 

there are no tangent points for the curves q1 and q2. 

 Usually Е 16·104 J/mol, Т  5001000 К, therefore 

2,0
1016

100032
4

4







E

RTw  – this is a small quantity; hence, 

formula (50) can be given in a simpler, more approximate 

form, expanding the radicand in a series: 

 

















 ...
22

1
22 2

2

0

2

0

E

TR

E

RT

R

E

R

E
T BB

B  

 

The first approximation gives: 
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Or 

 

E

RT
T B

BBT
2

0
0   

 

The expression obtained shows that the numerical value of 

TB differs little from T0B, if E is sufficiently large. For exam-

ple, at E = 50000 J/mol and T = 1000 K, the difference 

 

 BB TT 0  40 К 

 

This interesting and important circumstance shows that the 

use of an approximate T0B instead of ТВ in some cases does not 

entail a too high error. 

  

N.N. Semenov established a relationship between the tem-

perature and the pressure of the mixture in the state of ignition. 

To obtain it, let us substitute expression (48) into equation 

(41): 
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As 10 
E

RT B , approximately  
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Taking a logarithm we get: 
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In particular, for a bimolecular reaction   2c ~ р,  and 

 

const
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p

BB
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0

2

0 2
ln  

 

Where рк denotes the pressure corresponding to the critical 

ignition condition. This Semenov’s relation establishes a con-

nection between T0B and рк at the boundary. According to this  

relation, there must be a linear relation between 
2

0

ln
B

k

T

p
 and 

BT0

1
 (a straight line in the coordinate system  

BT0

1
 and рк). In 

the usual coordinate system of рк and T0B, this dependence 
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gives a curve that limits the explosion area (Figure 16). This 

curve gives a connection between T0B and рк for a given con-

stant initial state of the mixture (c0 = const). 

 

 

 
 

Figure 16 - Relationship between the ignition temperature 

and pressure for a given initial mixture composition 

  

In the case of constant pressure (p = const), the nature of the 

dependence of TB on the composition of the mixture for the 

bimolecular reaction according to (49) will have the form 

shown in Fig. 17 as a temperature dependence of the percent-

age of fuel. It can be seen that for p = const, not every mixture 

is capable of ignition, but only mixtures located in certain 

boundaries, for example, between the values of c1 and c2, 

which are called the concentration limits of self-ignition. 
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Figure 17 - Dependence of the ignition temperature on the 

percentage composition of the mixture at constant pressure 

 

In addition to these two dependences of TB on pk and TB on 

the composition of the mixture, the third type of dependence is 

of practical interest, it is the dependence of pk on the composi-

tion of the mixture at a given constant value TB (practically - 

T0B, as ТВТ0В). This dependence can be constructed on the 

basis of the last two figures. In this case, the contour of the ig-

nition region will have the form shown in Fig. 18. 
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Figure 18 - Dependence of pressure, corresponding 

to ignition conditions on the percentage composition of the 

mixture at a constant ТВ value  

 

From Figure 18 it can be seen that for a given pressure, not 

every mixture is also capable of ignition. In particular, it can be 

seen that under these heat removal conditions, there is such a 

minimum pressure (or wall temperature ТВ Т0В) at which a 

mixture of any composition cannot self-ignite. 
 

Thus, for any method of representing critical (limiting) con-

ditions, there are definite and clearly outlined regions in which 

thermal self-ignition of gas mixtures is possible. 

Thus, we have discussed in detail the problem of the heat 

explosion according to Semenov. A number of simplifying as-

sumptions were adopted. One of them was reduced to the fact 

that the combustible mixture at all points in the volume of the 

vessel was heated equally, that is, the temperature of the mix-

ture in all places of the vessel was the same at any given mo-

ment in time. However, this is not a realistic assumption, since 

it is clear that the layers of the mixture adjacent to the walls of 

the vessel will warm faster than others and the temperature in 

the vessel will be different in different places. Therefore, we 
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should consider the problem of thermal explosion taking into 

account spatial distribution of temperature. 

 

Test questions: 

1 What are the two types of ignition? 

2 What is self-ignition? 

3  Write down the expression for the heat release curve 

and the heat removal curve. 

4  What is a thermal explosion? 

5  Draw diagrammatically on the chart the mutual loca-

tion of the heat release and heat removal curves: 

a) for stationary combustion, 

b) for nonstationary combustion, 

c) for critical conditions 

6 What is called the delay time or the induction pe-

riod of thermal ignition? 

 

 

3.3 Stationary theory of thermal explosion 

In the preceding chapter, the general form of the thermal ig-

nition condition was obtained by approximate methods. Now 

we will consider this problem analytically in order to obtain 

concrete numerical results. To do this, it is necessary to solve 

the problem of the stationary distribution of temperatures in the 

system where the chemical reaction proceeds. 

 The theory of thermal explosion, proposed by Semenov 

and used as the basis for all further work in this field, is con-

structed in the assumption that the temperature can be assumed 

to be the same at all points of the explosive vessel. This con-

cept of "homogeneous ignition" does not agree with the exper-

imental facts; it is well known that ignition always begins at a 

point, and then the flame spreads through the vessel. As Todes 

correctly pointed out, the idea of the temperature equality in 

the pre-explosion period at all points of the vessel is correct 
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only at  such intensity of convection, at which the entire tem-

perature gradient falls on the walls of the vessel.  In this case 

the limit of thermal ignition must substantially depend on the 

thickness and material of the wall, which can be observed only 

for liquid explosives with strong artificial mixing. 

On the contrary, if we assume that the heat transfer inside 

the gas is purely conductive, then we get a temperature distri-

bution in the gas mixture inside the vessel with the highest 

temperature in the center of the vessel, where the ignition 

should begin. The heat transfer coefficient and the critical igni-

tion condition will be determined by this temperature distribu-

tion: ignition should occur under conditions when the station-

ary temperature distribution becomes impossible, which similar 

to the case of thermal breakdown of dielectrics considered by 

Fock. In this form the problem was first posed by Todes and 

Kontorova, but as they wanted to get an extremely generalized 

form of the solution, the formulas derived by them cannot be 

applied to numerical calculations as well as they do not enable 

scientists to make qualitative conclusions. 

The only concrete conclusion that has been drawn in that 

work is the correct relationship between the critical ignition 

pressure and the diameter of the vessel, which, however, can 

easily be obtained without an analytical solution from dimen-

sional considerations. We will solve the problem by using the 

following three assumptions: 

1) We assume that the pre-explosion heating is small in 

comparison with the absolute wall temperature: 1



. 

2) The reaction rate will be considered to depend only on 

the temperature RTEe / , that is, we ignore the burnout of the 

initial substances, the dependence of the pre-exponential factor 

on temperature, the change in density in different parts of the 

vessel, etc. 
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3) The thermal conductivity of the wall will be assumed to 

be infinitely large. 

The first assumption, as will be shown below, is equivalent 

to the condition ERT   and, thus, states a completely de-

fined boundary of applicability of the theory. 

We will see below that there is a close connection between 

the first assumption and the second: both of them are justified 

for sufficiently large values of the parameter B introduced 

above. With the decrease in this parameter, the correction for 

burning out during the induction period first becomes im-

portant, and then (for the first-order reaction  for 4B )) the 

critical condition disappears. 

The conditions for correctness of the third assumption will 

also be considered below in connection with the effect of ex-

ternal heat insulation. Here we neglect external thermal insula-

tion, that is, assume that the initial explosion temperature T0 is 

given on the inner surface of the wall. 

Let us first consider the case when convection is completely 

absent. The heat conductivity equation for the stationary case 

and for a field with continuously distributed heat sources of 

density QW, where Q is the heat effect, and W is the rate of re-

action, has the form: 
 

)(TW

p
c

Q
a


 ,     (51) 

 

where  а  is thermal conductivity of the gas mixture; cp is its 

heat capacity,  is the density;  is Laplace operator. Accord-

ing to assumption 3, we assume that the reaction rate 

RTEzeW / , where E is the activation energy; and taking 

that  ac p , the thermal conductivity of the gas mixture, 

equation (51) can be rewritten in the form  
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RT
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

.          (52) 

 

We must solve this equation in the boundary conditions giv-

en on the walls of the vessel: on the basis of Assumption 3, we 

can specify a constant temperature T0 on the inner surface of 

the walls. 

The solution of equation (52) satisfying the boundary condi-

tions will give a stationary temperature distribution in the reac-

tion vessel at wall temperature. At a certain temperature such a 

distribution becomes impossible; we will consider this temper-

ature as the ignition temperature. Its connection to the thermal 

effect and the reaction rate, the thermal conductivity of the 

mixture, the shape and dimensions of the vessel can be found 

from an analysis of the properties of equation (52) and its solu-

tions. Derivation of this connection will be our task. 

As we showed in the previous chapter with the help of the 

similarity theory, the desired stationary temperature distribu-

tion must contain one dimensionless parameter  . Now our 

task is to find a specific analytic form of this distribution. For 

an infinite vessel with plane-parallel walls, equation (51) can 

be integrated in a general form for any law of the dependence 

of the reaction rate W on temperature. In this case, it takes the 

form: 

 

)(
2

2

TW
Q

dx

Td


 .       (53) 

The general integral of this equation for any form of the 

function W (T) is taken by two quadratures and has the form: 
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
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dTTW
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with two arbitrary constants. The critical condition of igni-

tion will be a set of values of parameters at which this expres-

sion cannot satisfy the boundary conditions for any values of 

arbitrary constants. If we put the origin of coordinates in the 

middle of the vessel and denote its width through r2 , the 

boundary conditions are formulated as follows: for ;rx   

0TT  . Because of symmetry, it is possible to solve the equa-

tion for half of the vessel, in the combined boundary condi-

tions: 

for ;rx   Т = Т0; for ,0x  0
dx

dT
. In order to find the 

criterion for fulfillment of the boundary conditions, we set the 

temperature in the middle of the vessel Tm as a parameter and 

solve the equation in the Cauchy conditions: for ,0x  mTT   

and 0
dx

dT
 then the equation takes the form: 

 






m

m
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T
T
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.                (54) 

 

It contains one variable parameter Tm determined from the 

boundary condition: 
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

                     (55)

  

The second arbitrary constant in (54) is absent because the 

form of the solution (54) automatically satisfies the second 

boundary condition for ,0x  0
dx

dT
. 

Let us denote the integral on the right-hand side of (55) by 

 (Tm, T0).T0). If this integral is a monotonic function of Tm, 

then a stationary regime is always possible. 

If the form of the function W (T) is such that, with variation 

of Tm,   passes through an extremum, then this extremum 

must give a critical ignition condition. It gives directly the crit-

ical size of the vessel; with dimensions lying on the other side 

of the extremum, condition (55) cannot be satisfied for any 

value of Tm. It is physically obvious that the critical size of the 

vessel must be maximum, and the considered extremum is a 

maximum. 

The most general form of the critical ignition condition for a 

plane-parallel vessel is, therefore: 

 

0

0
















TmT


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At values of r greater than critical, it is impossible to get a 

stationary temperature distribution in the vessel. At r values 

less than the critical value, it is geometrically obvious that each 

r value must correspond to at least two values of Tm, that is, 

two different stationary temperature distributions in the vessel. 

In the elementary Semenov’s theory, this corresponds to two 
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intersections of the direct heat removal curve with a reaction 

velocity curve, which degenerate at the limit to the tangent 

point. From the analogy with Semenov's theory, we conclude 

that only one of the two possible stationary temperature distri-

butions can be stable, which corresponds to a smaller value of 

Tm. 

The stationary distribution is formally obtained for any val-

ue of the temperature in the middle of the vessel. But not all 

these distributions are stable. 

Let us consider the real form of the dependence of the rate 

of reaction on temperature. The substitution of the Arrhenius 

law into Eqs. (53) - (56) leads to an expression that is not inte-

grated in elementary functions and is very inconvenient for 

computations. After this equation (53) takes the form (for 

0TT  ): 


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00
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E
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d


 ,        (57) 

or in dimensionless variables 
2
0

RT

E
 ;   

r

x
 , where r  

is the half-width of the vessel: 
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2

2
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and   has the value 
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The general integral of equation (58) has the form: 
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with two arbitrary constants a and b. By the symmetry con-

dition 
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d

d
 or      , the constant b must be zero 

(this is the condition of equality of the temperatures of both 

walls of the vessel), and the integral takes the form: 
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An arbitrary constant а is determined from the boundary 

condition for 1 0 , from which we obtain the transcen-

dental equation for the determination of a  

 

2

2 a
cha  .                  (62) 

 

For the values of  , for which (62) has a solution, it is pos-

sible to get a stationary temperature distribution, the form of 

which can be found by substituting this solution in (61). For the 

values of  , for which (62) does not have a solution, an explo-
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sion will occur. The critical ignition condition is determined by 

the value of  , for which (62) does not have a solution. For the 

following presentation it is convenient to introduce, instead of 

the integration constant a, a new quantity  connected  with it 

by the relation 

 

2cha  . 

 

Then the transcendental equation (62) takes the form: 
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Now it is easy to see that the critical ignition condition is de-

termined by the minimum value of the quantity  /ch ; this 

minimum is obtained for 2,1
кр

  and gives 

 

088
кр

                          (64) 

 

as a critical condition of ignition. 

We can find the maximum pre-explosive heating from (61) 

for  

 

0 : 
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Thus, the problem of self-ignition for a plane-parallel vessel 

is completely solved. 

The analytic expression (61) enables us to consider also the 

stationary temperature distribution when the reaction occurs in 

a vessel under the explosive limit. If we denote the value of the 

dimensionless temperature   at the center of the vessel by 0 , 

equation (61) is rewritten as 

 

 chln2 ,                      (67) 

 

where 

 

 chln20  .                       (68) 

 

The quantity  is a function of the parameter   expressing 

the combination of all the properties of the system (the velocity 

and the thermal effect of the reaction, the thermal conductivity, 

the dimensions of the vessel) determined from the transcenden-

tal equation (63). The solution of this equation is shown in Fig. 

19, and only a part of the curve up to the maximum corre-

sponds to stable temperature distributions. At the value of 

 =1.2, corresponding to the maximum, an explosion occurs. 

Smaller   values correspond to smaller Tm values and, conse-

quently, as it was said above, to stable steady-state temperature 

distributions, large  - values correspond to unstable tempera-

ture distributions. 

If all the properties of the mixture, the experimental condi-

tions and the dimensions of the vessel are known, we can cal-

culate the value of parameter  . If this value is greater than 

0.88, then a stationary temperature distribution is impossible –  

an explosion should occur. If the value is less than 0.88, then 

according to the curve (Figure 19) we find the corresponding 

value of a (the smaller of two possible values), and from it and 
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equation (68) we can determine heating in the middle of the 

vessel and from equation (67) – distribution of temperatures 

throughout the vessel. 

 

 
 

Figure 19 - Solution of the transcendental equation (63) 

 

Now we have to find the critical value and magnitude of 

pre-explosive heating for vessels of spherical and cylindrical 

shape. For these cases, the equation for temperature takes the 

form: for an infinitely long cylindrical vessel: 
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For a spherical vessel: 
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Here 
r

x
  where r  is the radius of the vessel. The bound-

ary conditions have the form: for 1 , 0 ; for 0 , 

0




d

d
 

  

 

 Test questions: 

1  What assumptions were made in the stationary Frank-

Kamenetsky’s theory? 

2  Write down the general form of the critical ignition 

condition for a plane-parallel vessel. 

3 How to find the critical value of  ?  

4 What is the form of the temperature equation for an infi-

nitely long cylindrical vessel? 

5 What is the form of the temperature equation for a spheri-

cal vessel? 
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4 NORMAL COMBUSTION OF LAMINAR FLAMES   

 

4.1 Waves of chemical reaction 

Any well-mixed mixture of fuel and oxidizer from a chemi-

cal point of view contains everything necessary for combus-

tion. However, under normal conditions (atmospheric pressure 

and room temperature) the rate of chemical reaction in most 

combustible mixtures is very low, it takes centuries to see any 

chemical transformations in them. When considering the phe-

nomena of chain and thermal ignition, we saw that the combus-

tible mixture ignites only under certain conditions, it is neces-

sary either to warm up the walls of the vessel, or to introduce 

an igniter from the active centers. 

Let us imagine that these conditions are realized not 

throughout the reaction vessel, but somewhere in one place, for 

example, a heated wire or spark created a local warming up of 

the combustible mixture, or a rather large number of active 

centers is obtained by photoinitiation. After a local initiation, a 

reaction wave will occur, which will gradually cover the entire 

reactive mixture. 

Two different modes of propagation of the reaction wave in 

space are known: with supersonic and subsonic velocities. The 

first –  detonation – is caused by a rapid compression of matter 

in the shock wave, which provides the required heating of the 

substance in order for the reaction to proceed at a considerable 

speed; in turn, the release of heat in a chemical reaction main-

tains a constant intensity of the shock wave and thus provides 

its spread over long distances. The second mode of propagation 

of the chemical reaction wave occurs with velocities much 

lower than the sound velocity, and is associated with the mo-

lecular processes of thermal conductivity and diffusion – this is 

the mode of flame propagation. 

In the thermal mechanism of flame propagation, the heat re-

leased during the chemical reaction is transferred to the neigh-
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boring sections of the unreacted gas, heats them and initiates an 

active chemical reaction. In the chain mechanism, the propaga-

tion of the reaction site occurs through the diffusion of active 

sites. A combined action of diffusion and thermal conductivity 

is also possible and most likely in real cases of combustion. 

  

Experimental data and theoretical considerations indicate 

that when the flame propagates, the reaction occurs at each in-

stant of time in a comparatively thin layer (in comparison with 

the dimensions of the combustion chambers), the reaction zone. 

In the immediate vicinity of the reaction zone, also in a thin 

layer, the unburned mixture is heated. Therefore, in the first 

approximation, the flame propagation can be imagined as fol-

lows: there are two regions –  the unburned gas and reaction 

products separated by a combustion surface, whose thickness 

can be neglected and treated as a geometric surface moving 

with respect to the gas with a known velocity – the  normal ve-

locity of flame propagation. 

The normal flame velocity determines the volume of the 

combustible mixture, which burns per unit time per unit flame 

surface; it has the dimension of linear velocity (cm/sec). In the 

curved flame front, the normal (or fundamental) burning rate 

characterizes the velocity of the flame front relative to the ini-

tial mixture in the direction normal to the surface of the front. 

The value of the normal velocity of flame propagation is de-

termined by the kinetics of the chemical reaction and by the 

molecular processes of heat and material transport inside the 

flame front characterized by large gradients of temperature, 

concentrations of substances participating in the combustion 

reaction, velocity and density. 

 In practice, the calculation of the normal flame velocity 

is often complicated by the fact that the kinetics of the chemi-

cal transformation is poorly known or completely unknown. 

Therefore, when solving gasodynamic combustion problems, 



 

 91 

the value of the normal flame velocity is taken not from a theo-

retical calculation, but from the experimental data. The meas-

urement of the normal flame velocity in the experiment is not 

particularly complicated, several methods have been developed 

for such measurements in a wide range of pressure, composi-

tion, and temperature changes. 

When analyzing the phenomena occurring at the surface of 

the flame, it is often convenient to choose a local coordinate 

system associated with the flame front (in which the flame sur-

face is swept); in this coordinate system, the initial combustible 

mixture with a velocity of un flows onto the fixed front of the 

flame, and the combustion products flow away from the flame 

surface with a velocity ub, larger than ип, as during combustion, 

the gas is heated and expanded. It is obvious that the rate of 

inleakage ип, at which the front of the flame is at rest, is equal 

to the speed at which the flame moves relative to the stationary 

gas. The quantity иь is the velocity of the flame moving in 

space in the situation when the combustion products are at rest. 

The relationship between the values of ип and иь of a plane 

flame front can be found as follows; the total mass of matter 

entering the flame per unit surface of the front must be equal to 

the mass of the combustion products removed from this sur-

face, i.e. 

 

b
u

bn
u  

0
         (70) 

 

where 0  and b   are densities of the initial mixture and 

combustion products. 

Hence  
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where Т0 and Ть, 0 and b  are temperature and average 

molecular weight of the initial mixture and combustion prod-

ucts (the pressure in the propagating flame is almost constant in 

the volume of the gas, and we will see that its change is propor-

tional to the square of the Mach number). As for ordinary com-

bustion reactions b 0 , and the temperature during combus-

tion varies by a factor of 5-10, 105/ nb uu . 

According to the law of conservation of the mass flow 

through the flame front (70), it is also convenient to use the 

concept of the mass combustion rate р0ип, which is the product 

of the gas density per velocity. This value has the dimension of 

g/cm3-s and represents the mass of matter burning in one sec-

ond per 1 cm2 of flame. Similarly, the rate of heat release dur-

ing combustion can be considered per unit of the flame surface; 

the corresponding value has the dimension of cal/cm2- s. 

This chapter presents physical foundations of the theory of 

thermal flame propagation, which is the foundation of modern 

ideas about the laws governing propagation of waves of chemi-

cal transformation. 

 

 

4.2 Chemical transformation in flame 

Let us consider the transition from the initial state of the 

cold combustible mixture to the final combustion product in 

the flame, the width of the transition zone and the time spent 

by the reacting substance in it. 

From the general considerations it can be foreseen that the 

chemical reaction inside the flame front will proceed in nonu-

niformly, because of the sharp dependence of the reaction rate 

on temperature, it will be mainly concentrated in the part of the 

flame front adjacent to the hot combustion products. In the 

places where the temperature is lower, the reaction proceeds at 

a much lower rate, and therefore it can be neglected, and con-

sider only the molecular transfer of heat and matter. These pro-
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cesses in the flame dominate because of the large temperature 

gradient and large concentrations of reacting substances, and 

they mainly determine the structure of the flame. 

Let us first, determine the order of the size of the zone, 

which is called the heating zone. 

Hertz solved the problem of a thermal wave ahead of a heat-

ed surface moving at a constant velocity. This solution, which 

was first applied to the flame by V.A. Mikhelson, who consid-

ered the reaction zone as a surface x = 0 with a fixed tempera-

ture Ть,  

 
/

00 )(
xu

b
neTTTT  ,       (72) 

 

where Т0  is  the temperature of the unperturbed substance, 

ип is the speed of the flame (the velocity of its surface relative to 

the fresh gas), and pc /  is the coefficient of thermal dif-

fusivity, the ratio of thermal conductivity to density and heat 

capacity at constant pressure. The thermal wave is considered 

here in the coordinate system associated with the flame front 

a fresh combustible mixture moves into the flame from the 

side of negative x with a velocity of ип (see Fig. 20). For sim-

plicity, in (72) and in (73) all material constants  ,  ,   are 

considered constant, independent of temperature. In combus-

tion, this assumption is violated strongly, for example,   

changes 10-30 times. Further in this section, this assumption is 

not used. 

The distribution (72) is a solution of the heat conductivity 

equation 
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dx
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dx

dT
uc              ( , constc  ),    (73) 
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satisfying the boundary conditions Т ( ) = Т0, T (0)=Ть. 

The solution (72) is applicable only to the region x <0, in 

which there is no heat release, for x> 0 there are combustion 

products of a constant temperature Тъ (see Fig. 20). It can be 

seen from (72) that as the scale of the width of the heating zone 

we can take the distance at which the heating grows e times: 

 

n
cu

n
u

l



 .         (74) 

 

Let us calculate this value for a slowly burning mixture (6% 

of methane with air), for which ип = 5 cm/s, and a rapidly 

burning explosive mixture of stoichiometric composition with 

un = 103 cm/s. Substituting 3,0 cm2/s, we obtain l = 0.06 

cm (CH4), l 0.0003 cm (2H2 + O2). 

 

   
Figure 20 – Michelsol’s temperature distribution in the 

flame front: l is the  width of the heating zone, the dashed line 

shows the reaction zone, x <0 - unburned gas, x> 0 are the 

products of combustion  
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In both cases, the width of the heating zone is many times 

greater than the mean free path of the gas molecules, which is 

natural, since the velocity ип is much smaller than the speed of 

sound; indeed, from the kinetic theory it follows that 

 

 ~ sc                        (75) 

 

(   is the mean free path, sc  is the thermal velocity of the 

molecules, which is of the order of the speed of sound) and, 

consequently,  

 

l~ 



n

s

u

c
.          (76) 

 
This inequality is a justification of the applicability of the 

differential equations of molecular transport (thermal conduc-

tivity and diffusion), which are used in the theory of flame 

propagation. 

The order of the residence time of the substance in the flame 

can be obtained by dividing the width of the heating zone by 

the flame velocity: 3104 nt  s (СН4), 
710nt s (2Н2+O2). 

The time of the chemical reaction is of the same order as the 

residence time of the reacting mixture in the heating zone. This 

time is many times greater than the mean free path of the mole-

cules in the gas: any reaction in the flame, because of a large 

heat of activation or a complex mechanism, requires a large 

average number of molecular collisions per one effective colli-

sion leading to transformation. 

Let us emphasize once again that the temperature and com-

position of the mixture in the flame change not only as a result 

of a chemical reaction. They also change in the zone where 

there is no chemical reaction –  in the heating zone. The tem-

perature varies due to the thermal conductivity of the gas, and 
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the composition changes due to diffusion. The chemical reac-

tion in the flame proceeds in the mixture that has already un-

dergone heating and whose composition has already changed. 

Take, for example, a mixture of carbon monoxide with oxy-

gen, reacting as 2CO + O2 = 2CO2. Not taking into account the 

complex mechanism of this reaction, we will depict qualitative-

ly the temperature distributions, concentrations of carbon mon-

oxide, oxygen and carbon dioxide in the flame front (Fig. 21). 

The initial mixture is heated by the heat flow from the reac-

tion zone. The composition of the mixture in the heating zone 

varies as compared to the initial mixture due to the diffusion of 

reagents into the reaction zone and its dilution by the combus-

tion products (CO2). In combustible mixtures with reagents 

sharply different in molecular weights, the relative content of 

the oxidant and fuel also changes, as the more mobile mole-

cules of the light reagent diffuse at a higher rate 

 

 
Figure 21 - Structure of the flame front, in which  the  

reaction 2CO+O2=2CO2 proceeds. 

 

Concentrations of CO and O2 in the reaction zone are much 

lower than their initial values; however, the increase in temper-

ature compensates the corresponding decrease in the reaction 

rate, so that the basic chemical transformation occurs in a nar-

row zone near the maximum temperature, the temperature of 
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the flame. Diffusion continuously delivers the reacting sub-

stances to the reaction zone and redistributes them in the reac-

tion zone. The completion of the reaction in the combustion 

wave occurs, as a rule, asymptotically (in combustion products, 

in the region where diffusion flows are practically zero, a 

thermodynamic equilibrium corresponding to the initial com-

position of the mixture and the combustion temperature is es-

tablished). 

A specific feature of the reaction kinetics in the flame is the 

absence of all delaying stages in the reaction. During self-

ignition the stage of accumulation of heat and (or) active cen-

ters hampers the development of the process, whereas there are 

no such slow processes in the flame. In the temperature range, 

in which heating of the mixture due to heat release in the chem-

ical reaction would be slow, the flow from the neighboring gas 

layers causes a rapid rise in temperature; similarly, active cen-

ters diffuse from а into the layer. 

However, we should note that it is not easy to understand 

this basic process for the theory of combustion. Let, for exam-

ple, some combustible mixture give a burning temperature of 

2000 K, and a noticeable reaction occurs in the range of 1700-

2000 K. By increasing the initial temperature, we increase the 

burning temperature to 3000 K; we will say that the reaction 

now occurs in the temperature range, say, 2300-3000 K, and at 

a temperature below 2300 K it can be neglected. The question 

arises: why did we in the mixture with a combustion tempera-

ture of 3000 K neglect the chemical reaction at 1700-2000 K, 

which we previously considered (for a mixture with a combus-

tion temperature of 2000 K) fast? 

The answer to this question is as follows. A higher combus-

tion temperature, without decreasing the reaction rate at 1700-

2000 K, provides a much higher reaction rate near the combus-

tion temperature. Due to this, the speed of flame propagation 

and time, during which the temperature varies from 1700 to 
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2000 K, sharply decreases. In a slowly burning mixture (with a 

combustion temperature of 2000 K), this is enough time for the 

entire combustible mixture to react; in the fast-burning mix-

ture, the residence time of the mixture in the temperature range 

1700-2000 K is reduced to such a degree that only a small part 

of the mixture reacts at such temperatures; the flame velocity 

corresponds to a reaction proceeding at a higher rate at temper-

atures of 2300-3000 K. 

This significant factor was not taken into account in the first 

theories of thermal flame propagation, in which a fixed ignition 

temperature Тi was introduced as a certain physical constant of 

the combustible mixture and it was assumed that the rate of 

chemical reaction at Т>Ti was constant. Therefore, these theo-

ries lead to erroneous statements regarding the effect of the re-

action kinetics on the velocity of flame propagation. 

 

4.3 Similarity in the distribution of temperature and 

concentration in the flame 

  The structure of a laminar flame is described by a system 

of heat conduction and diffusion equations. Let us consider the 

simplest case when the front of the flame is flat, and the chem-

ical reaction is described by a single stoichiometric equation. In 

the coordinate system moving along with the flame front, the 

equations have the form 
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(the change in the heat flux Jт and the fluxes of reactants Ji 

is due to heat release and changes in the quantities of reactants 

in the chemical reaction). Here Q is the heat of the reaction, 
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and ai denote the relative weight concentrations of reagents; the 

rate of the chemical reaction is calculated per mole of the sub-

stance to which index 1 is assigned. We will assume that there 

is insufficient amount of this substance in the initial mixture. 

The flows of heat and matter consist of convective and mo-

lecular transfer 

 

ucT
dx

dT
JT   ,        (79) 
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where Di  are the diffusion coefficients, c is the specific heat 

at constant pressure. 

Taking into account the equation of continuity of the mass 

flow in constuuu bbn   0 , the system of equations 

(77) - (80) can be rewritten in the form 
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Let us now consider a mixture of gases of similar molecular 

weight. In this case, the diffusion coefficients can be consid-

ered equal. In addition, if the potentials of intermolecular forc-

es between different molecules are not very different, it follows 

from the kinetic theory that the diffusion coefficients are ap-
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proximately equal to the coefficient of temperature conductivi-

ty of the gas mixture in the entire temperature range 

iD  )( icD  .        (83) 

 

In such mixtures, the cross-effects of molecular heat and 

mass transfer (thermal diffusion, diffusion thermal conductivi-

ty, etc.), which we did not take into account when writing the 

fluxes in (79) and (80), are also insignificant. 

For illustration, let us give the values of the coefficients of 

thermal conductivity and the product cD for oxygen and hy-

drogen at room temperature: thermal conductivity of O2 is 5.9 

10-5, of H2 –      407.10-5; the product cD for the diffusion of 

O2 in N2 is 5.8 10-5, diffusion of Н2 in О2is 23 10-5, for Н2 in N2 

– 21 10-5, for Н2 in Н2-38 10-5 cal/cm s grad. 

With equal diffusion coefficients of the reacting substances 

and in the presence of a single-stage chemical reaction, their 

concentrations are related to each other by simple linear rela-

tions 
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which are fulfilled at any point in space. Here, the concen-

tration of chemical components in the initial fuel mixture is 

denoted with an index 0. 

Indeed, if the diffusion equation from system (82), including 

the concentration ia , is multiplied by i/1 , and the diffusion 

equation for ja  is multiplied by j/1  , and  we subtract one 

from the other, then we obtain a linear diffusion equation 

(without the chemical reaction rate function) for a linear com-

bination of concentrations    jjii aa  //  , whose solution, 
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bounded on the entire segment of the x-axis, 

is     constaa jjii   // . If the constant is determined from 

the conditions for the initial fuel mixture, we obtain (84). 

Relations (84) allow us to calculate the distribution of con-

centrations of reagents if the distribution of the concentration 

of one of them, for example а1, is known. Therefore, the basic 

system of equations (81), (82) can be represented as two equa-

tions (we omit the subscript 1)  
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in which the reaction rate by means of (84) is presented as a 

function of only one reactant and temperature. 

We note here that a linear relationship between any two 

concentrations of reacting substances with equal diffusion co-

efficients was obtained using the notion that the entire chemi-

cal transformation takes place in a single chemical reaction. If 

the process occurs in such a way that there are several zones of 

chemical transformation separated from each other, as often 

happens in the propagation of a flame with chain combustion 

reactions, then the relations (84) are not satisfied everywhere. 

However, using a complex kinetic combustion mechanism, 

for the same diffusion coefficients and thermal diffusivity, one 

can obtain a linear relationship between all concentrations and 

temperature, expressing the law of conservation of the total en-

ergy of the system in space. More details about this relation-

ship will be given considering flames in the systems with chain 

reactions. 
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 The simplest ariant such a relationship is obtained if we 

have only one active substance, on the concentration of which 

the rate of the chemical reaction depends, as in the case of sys-

tem (85), (86). 

Multiplying the diffusion equation (86) by a constant value 

of Q , adding it to the heat conductivity equation, and taking 

into account the equality  D  , we obtain the equation for 

the total enthalpy of the gas H 
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which does not include the rate of chemical reaction. The to-

tal enthalpy of the system is the sum of the thermal and chemi-

cal energy at constant pressure per unit mass of the gas (the 

kinetic energy of the gases is small compared with the heat 

content, and it is not taken into account). The only bounded 

solution of equation (87) for all x is 

 

constH  ,               (88) 

 

where the constant can be determined from the conditions in 

the initial combustible mixture: 
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 Thus, although thermal energy and chemical energy indi-

vidually vary in space, their sum remains constant. The in-

crease in the thermal component of energy when the mixture 

is heated is compensated by the decrease in chemical energy, 
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which is caused by diffusion from this zone of reacting sub-

stances-carriers of chemical energy. 

 The assertion that the sum of the chemical and thermal 

energy inside the flame is constant was expressed as a hypothe-

sis in 1934 by Lyss and Elbe for the case of the chain reaction 

initiated by the diffusion of active centers. Let the flame ve-

locity be determined by very light active centers, the concentra-

tion of which is very small; then neither diffusion nor thermal 

conductivity noticeably changes the concentration and tem-

perature fields. In this case, the reaction proceeds as in a vessel 

with a movable piston (pressure is constant), and the enthalpy 

conservation is obvious. However, as shown above, the con-

stancy of the total enthalpy in a stationary flow does not de-

pend on the mechanism of the reaction, but on the relationship 

between the diffusion coefficients and the thermal conductivity 

of the mixture. 

We recall that the total enthalpies of the initial mixture and 

products are equal to each other for any relations between   

and D , which is the law of energy conservation. But if, in addi-

tion,  the condition D  is satisfied, and the conversion rates 

of the reacting substances are related by stoichiometric rela-

tionships (a simple reaction), then the total enthalpy is constant 

inside the flame. 

For a constant heat capacity, the constancy of the total en-

thalpy inside the flame can be written in the form 

 

bcTcTQacTQa  00 ,      (90) 

 

that is, the temperature and concentration distributions turn 

out to be similar 
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Similarly, the distribution of temperature and the distribu-

tion of concentrations of the other reacting substances (а1 is 

linearly related to аi , see (84)), and also concentrations of the 

combustion products are similar, if, of course, their diffusion 

coefficients are also equal  . Similarity also occurs in those 

cases when the rate of a simple reaction depends on the con-

centrations of the final products of the reaction (reversible reac-

tion or autocatalysis by the final product). If the reaction is 

complex, concentrations of the intermediate products are not 

related by stoichiometric relationships, and there is no similari-

ty of the fields. But even in this case, when all the transfer co-

efficients are equal  iD , the total enthalpy of the system 

also remains constant const , but from this one cannot ob-

tain an unambiguous dependence  Tfai   for each of the 

substances participating in the reaction. 

The simplest case, when the propagation of a flame is de-

scribed by the system of equations (85), (86) and all the con-

clusions derived from it are valid, is the case when the react-

ing substance. This situation often arises when the flame prop-

agates in combustible mixtures, the composition of which dif-

fers sharply from stoichiometric. The reaction rate in such 

mixtures is limited by the concentration of one substance, 

which is not sufficient, and then, when the diffusion coeffi-

cient of this substance is equal to the thermal diffusivity coef-

ficient, there is a similarity of fields of its concentration and 

temperature. This missing component can be called the carrier 

of chemical energy; the final temperature of the mixture, 

which is reached during combustion, depends on its concentra-

tion. 

From the law of energy conservation  
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it follows that the final temperature of the combustion prod-

ucts is determined only by the initial heat content of the com-

bustible mixture (the thermal effect, the initial concentration of 

the missing reagent and the initial temperature), and the aver-

age heat capacity of the mixture at constant pressure. For a 

constant heat capacity 

 

c
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TTb

0
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(We note once again that relations (92) and (93) hold for 

any   and D.) 

 

 
Figure 22 - Distribution of the reacting substance, tempera-

ture and total enthalpy in the flame front for various ratios be-

tween the diffusion and thermal conductivity coefficients 
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For D  inside the flame, the amount of chemical and 

thermal energy is not conserved, but from general considera-

tions, one can predict in which direction the deviations will oc-

cur. Thus, in a poor mixture of hydrogen and air, the coeffi-

cient of diffusion of hydrogen – the carrier of chemical energy 

–  is an order of magnitude greater than the thermal diffusivity 

of the mixture; therefore, diffusion removes hydrogen more 

intensively from the gas layer in the heating zone than when 

the gas is heated by molecular thermal conductivity. As a re-

sult, in the case of a hydrogen-air mixture (i.e., at D ), the 

total enthalpy in the heating zone has a minimum. 

On the contrary, in a lean mixture of a high molecular 

weight hydrocarbon, for example benzene with air, the thermal 

conductivity is greater than the diffusion coefficient of benzene 

vapor ( D ), and heating of the mixture in the heating zone 

is more intensive than the removal of benzene by diffusion to 

the reaction zone; therefore the total enthalpy has its maximum 

in the heating zone. For illustration, Figures 1.28, a, b, c show 

the distributions of the concentration of the reacting substance, 

temperature and total enthalpy in the flame for various ratios 

between the diffusion coefficients and thermal conductivity. 

Further we will encounter a situation in which there is a 

similarity, or in a more general case, connection of concentra-

tion and temperature fields. When certain conditions are ful-

filled, this situation also arises in nonstationary combustion, in 

combustion in complex hydrodynamic fields, and in nonplanar 

flame fronts. 

Similarity can also be maintained if the rate of the chemical 

reaction clearly depends on the coordinate and time. Let us 

give an example. Let a catalyst, causing a rapid reaction at the 

initial temperature, be introduced into a region х1<х<х2 of the 

space occupied by the combustible mixture for a time t , 

21 ttt  , which leads to heating and subsequent ignition and 

propagation of the flame. 



 

 107 

 A more complicated is the case when the energy is intro-

duced into a combustible mixture at a certain time and place 

from outside (using an electric spark or focused laser radia-

tion). Then the equation for the total enthalpy becomes nonsta-

tionary and a new function Ф (x, t) appears in its right-hand 

side, depending on the coordinate and time, which describes 

the action of the external energy source. 

 Knowing the solution of this equation H (x, t), we can ex-

press the concentration a as a function of temperature, coordi-

nate and time, a = a (T, x, t) and, consequently, get W (a, T) = 

W [a (T, x, t), T] = W (T, x, t). Now the problem again reduces 

to solving one heat equation instead of two, but the reaction 

rate function W obviously depends on T, x and t (and not only 

on temperature, as in the problem without the external source.) 

Nevertheless, the solution of the problem of ignition by an ex-

ternal source for D  is substantially simplified. 

 

 

4.4 Formula for the normal flame propagation velocity 

The linear relationship between concentration and tempera-

ture, obtained in the previous section for the case of equality of 

diffusion coefficients and thermal conductivity, enables us to 

pass from the system of two differential equations for balance 

of combustible substance and energy to one equation. To do 

this, it is sufficient to express the concentration in terms of 

temperature for the rate of the chemical reaction and to repre-

sent the reaction rate W (a, T) as a function of only temperature 

W [a (T), T] = W (T). Therefore, we can consider one energy 

equation 

 

 TW
dx

dT

dx

d

dx

dT
uc          (94) 
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It is very important that that in this second-order equation, 

the parameter includes the mass burning velocity u , which 

will also be determined as a result of solving the problem.  

A special chapter is devoted to a detailed mathematical 

study of the problem of thermal propagation of flame and de-

termination of the normal flame velocity as an eigenvalue of 

the problem. In this section, we will only discuss the basic 

physical concepts of the structure of the flame, which will al-

low us to obtain an approximate formula for the flame veloci-

ty. 

In the flame, a rapid chemical reaction occurs in a narrow 

temperature range adjacent to the burning temperature. The 

heat released in the chemical reaction is used primarily to heat 

the nonreacting mixture from the initial temperature to the 

temperature of the reaction zone (see Fig. 20). 

In the narrow zone of the chemical reaction, the tempera-

ture derivative changes from the final value on the side of the 

reacting mixture - from the zone of the chemical reaction, the 

heat is transferred to the heating zone by heat conduction - to 

zero from the combustion products, where thermal and chemi-

cal equilibrium is achieved. A rapid change in the derivative 

of temperature over a short space gap means a large contribu-

tion of thermal conductivity. Due to this, in the reaction zone, 

the contribution of convective heat flux variation (in the reac-

tion zone the temperature difference is small) in comparison 

with the contribution of thermal conductivity can be neglected 

in the heat equation. Thus, in the reaction zone, we can con-

sider the "truncated" equation 

  

 

  0 TQW
dx

dT

dx

d
         (95) 
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Equation (95) is easily integrated. Using the independent 

variable T and making a substitution, we have 

 

dT

dzz

dx

dT

dx

d


                                     (96) 

 

and, consequently, the order of equation (95) decreases; it 

becomes 

 

  0 TQW
dT

dz
z  .         (97) 

 

In the products of the reaction a = 0, the temperature is con-

stant and equal to the burning temperature Ть, so we can set the 

boundary condition 

 

bTT  , 0 z
dx

dT
 .        (98) 

 

Integrating (97) from the current temperature T to Tb (heat 

conductivity can be considered constant over the reaction 

zone constb   ), we obtain a heat flux from the reaction 

zone to the heating zone 

 


b

b

T

T

bTb WdTQ
dx

dT
.2        (99) 

 

Integration in (99) can be extended to the initial tempera-

ture: at low temperatures the rate of the chemical reaction is 

negligibly small, so that over the low-temperature region the 

integral in (99) can be considered equal to zero. The heat re-

lease function will contribute to the integral only at high tem-
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peratures, by order of magnitude, the actual region of integra-

tion is equal to the characteristic temperature interval (in the 

case of the Arrhenius heat-release function). We recall that the 

function W (T) includes the dependence on the concentration а 

(Т) м, therefore 0)( bTW . 

The amount of heat released in a chemical reaction per unit 

time and diverted by thermal conductivity is equal to the re-

serve of chemical energy that carries the flow of the hot mix-

ture (in our coordinate system the flame is at rest and the 

combustible mixture moves at a rate equal to the normal prop-

agation velocity of flame). Therefore, we can write 

 

00

0

)(2 QaudTTWQ n

T

T

b

b

  .      (100) 

From this equation we get the formula for the normal ve-

locity of propagation of a laminar flame  
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bT

T

b
n dTTW
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u
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00




.       (101) 

 

Formula (101) shows that the flame velocity depends on the 

integral of the heat release function and, thus, is related to the 

order of the chemical reaction, its activation energy, and other 

kinetic and physical-chemical characteristics of the combus-

tible mixture. 
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4.5 Relationship between the combustion rate and the 

kinetic properties of gases 

Let us return to the discussion of the formula for the flame 

velocity (101). As the function W depends strongly on tempera-

ture, as a rule, according to the Arrhenius law, the order of 

magnitude of the integral in (101) can be estimated as the 

product of the maximum value of W, which we denote by 

Wmax, the effective width of the temperature interval, which 

for the Arrhenius dependence is ERTb /2 . Thus, we get   

 

 00

max2

TTc

QW
u

b

b
n







.         (102) 

 

Let us determine the average reaction time tr as the time 

over which at the maximum rate of heat release all the heat 

contained in the initial mixture will be released –  the reaction 

heat goes on heating of the fuel mixture from Т0 to Ть, From the 

equation of the thermal balance 

 

 00max TTctQW br           (103) 

 

We find Wтах and substitute it into (102). Then 
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We should note that the relation nu ~ rb t/  also follows 

from the analysis of dimensions. As the flame velocity is de-

termined by the characteristic time of the chemical reaction tr  

and the molecular heat transfer (thermal conductivity of the 

mixture  ), it must be connected with them by the equation 

(104). 

Let us analyze how the rate of flame propagation is related 

to the kinetic properties of the gas. 

Substituting in (104) the expression for thermal conductivity 

(75) into the ratio of the velocity of flame to the speed of 

sound, we find 
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where tс~ sc/  is the mean free time of molecules. As only 

a small fraction of the colliding molecules enter the chemical 

reaction, then  rc tt   and hence sn cu  , the speed of the 

flame is much less than the speed of sound. The reaction time tr 

is the product of the average number of collisions Z experi-

enced during this time by a molecule capable of reacting (i.e., 

an oxidizer or a fuel molecule), and the average time between 

two collisions 

 

s

r
c

Zt


 .                 (106) 

 

Substituting this dependence in (105), we find for the flame 

velocity is 
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nu ~ Zcs /                (107) 

 

and the characteristic width of the flame is 

 

l ~ Z .               (108) 

 

The relation (107) is the Einstein expression for the average 

diffusion velocity in a certain direction, in which Z is the total 

number of collisions experienced by the particle during the dif-

fusion time, and (108) is the Einstein expression of the mean 

path traveled by the molecule for Z free paths. The reason for 

this becomes clear, if we turn to the molecular pattern of flame 

propagation: the fuel molecule experiences Z collisions in the 

combustion zone; during this time it passes the path l with the 

average speed ип. 

A significant difference between the diffusion process and 

the process of flame propagation is that the average velocity of 

the diffusing particles decreases with time (as t/1 ), whereas 

the flame velocity is constant in time. During combustion, the 

movement of the flame is connected with the displacement of 

molecules not along the entire path traveled by the flame front: 

each molecule passes within the combustion zone only a very 

short section of its path, experiencing an average of Z colli-

sions, after which, reacting, creates conditions necessary to 

provide the next molecule to pass a similar path, etc.   

This process can be compared to a relay race. The athlete, 

running at a maximum speed a small distance, passes the relay 

to the next, etc., as a result of the relay passes any arbitrarily 

large distance with a large constant speed. The ordinary diffu-

sion in this description can be compared to long distance run-

ners, who, starting running at maximum speed,  have to slow 

down their run when they are tired. 
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4.6 Some conclusions from the formula for the velocity of 

flame propagation 

The basic formula (101) enables us to determine the influ-

ence of various physical-chemical parameters of the mixture 

(pressure, temperature, composition of the mixture, order of the 

reaction, etc.) on the propagation velocity of the flame. 

At first glance, it may seem surprising that the calorific val-

ue of the mixture Q in the expression for the flame velocity 

contains a denominator. Indeed, it is known from practice that 

with increasing calorific value the flame speed increases. The 

paradox is explained by the fact that an increase in Q also 

causes an increase in the combustion temperature (in fact, Q 

enters not only in the denominator (101)); and the increase in 

the integral of the reaction rate overlaps the increase in Q in the 

denominator. 

In the unpublished experiments of P.Ya. Sadravnikov, made 

at the Institute of Chemical Physics of the USSR Academy of 

Sciences, the burning rates of explosive mixtures of carbon 

monoxide with air diluted by combustion products were com-

pared; the diluted mixtures were preheated, so that their com-

bustion temperature did not differ from the combustion tem-

perature of the undiluted mixture. These experiments with sat-

isfactory precision confirmed the relation following from the 

theory constuQ n 0  for constTb  . 

The initial concentration of fuel enters (101) not only in the 

denominator before the root; with increasing а0, Ть increases 

and W(T) increases in the region of integration. 

Let us now consider how the rate of propagation of the 

flame changes with pressure. As the density is proportional to 

the pressure, and the reaction rate depends on the pressure ac-

cording to the power law Рп (n is the order of the reaction), 

then from formula (101) we obtain 
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nu ~
1

2




n

.               (109) 

 

Thus, for bimolecular reactions, the flame velocity does not 

depend on pressure, for trimolecular reactions it increases, and 

for monomolecular reactions it decreases with pressure. 

In bimolecular reactions, the rate of chemical transfor-

mation is determined by the number of double collisions be-

tween reacting molecules that does not depend on pressure: 

the free path and the mean free time are inversely proportional 

to pressure, while the velocity of the molecules does not de-

pend on pressure. 

 According to (107), for a constant average number of colli-

sions necessary for the reaction the velocity ип is proportional 

to cs, and therefore it is also not a function of P. Moreover, it 

can be asserted that the process of flame propagation, in which 

the chemical transformation, including any arbitrary number of 

bimolecular reactions, proceeds, remains similar to itself when 

the pressure changes: as the pressure increases, all spatial 

scales (the size of the heating zones and the chemical reaction) 

and the time scale (the mean free time of molecules, the time of 

the chemical reaction) decrease proportionally to 1/P; whereas 

the number of collisions, the velocity of the thermal motion of 

the molecules, and the velocity of propagation of the flame do 

not change. It should be noted that the similarity of flames in 

which bimolecular reactions occur is not a consequence of any 

particular formula for ип, but is the most common property that 

follows from molecular kinetics. 

Similarity is violated in the case of monomolecular and tri-

molecular reactions, for which it is necessary to take into ac-

count the characteristic decay time of the molecule and the ex-

istence of metastable chemical complexes. In this case, the on-

ly characteristic velocity –  velocity of the molecules remains, 

and the flame velocity is equal to the velocity of the molecules 
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multiplied by the dimensionless function, which depends on 

the dimensionless ratio of the gas-dynamic cross section char-

acterizing the transport processes to the cross section of the 

chemical reactions, which now depends on P. 

It should be kept in mind that besides direct influence on 

the rate of chemical reaction in the flame, the pressure can af-

fect the flame propagation velocity through the combustion 

temperature of the mixture. It is caused by the dissociation of 

combustion products, which becomes significant in hot 

flames. Trimolecular reactions play an important role in disso-

ciation equilibrium; this is why the change in pressure affects 

the dissociation and, consequently, the combustion tempera-

ture, which strongly affects the flame propagation velocity. 

With increasing pressure, dissociation in combustion products 

is suppressed (the rate of trimolecular reactions of recombina-

tion processes increases) in comparison with bimolecular dis-

sociation, which leads to an increase in the combustion tem-

perature and the flame propagation velocity. 

We considered the linear velocity of flame propagation, 

while the mass burning velocity р0ип, as all available experi-

mental data show, always increases with pressure. As р0иа ~ 

Рп/2, this means that in accordance with the presented ideas, the 

reaction rate, as it is expected, increases with pressure. 

According to numerous experimental data, the dependence 

of ип on P varies from ип~Р-0,5 ( nu0 ~Р-0,5) for slowly burning 

mixtures (hydrocarbons) to ип~Р0,5 ( nu0 ~Р1,5) for fast burn-

ing systems (rich mixtures of carbon monoxide with oxygen, 

hydrogen-oxygen mixtures). 

In some early experimental works (see [79]), an anomalous 

dependence of ип (Р) in the mixture of CO + O2 was found: the 

mass velocity of the flame decreased with increasing pressure. 

These observations were made in the analysis of experiments 

carried out at different pressures, but at the same partial pres-

sure of water. As it was explained later, water vapor signifi-
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cantly accelerates the oxidation reaction of carbon monoxide. 

The increase in total pressure at a constant, partial pressure of 

water vapor was equivalent to a decrease in water content in 

the fuel mixture; caused by this circumstance, the decrease in 

velocity is stronger than the increase in velocity due to the in-

crease in pressure. 

For the overwhelming majority of combustion reactions, un-

fortunately, there are no reliable kinetic schemes, especially at 

high temperatures. Therefore it is interesting to use the experi-

ments with flames as kinetic experiments: using formula (101) 

for the burning rate, we can make a conclusion about kinetic 

characteristics of combustion reactions. 

Thus, from the dependence of the flame velocity on the 

pressure, one can obtain the data on the total order of the chem-

ical reaction in the flame. It is convenient to represent the ex-

perimental data on the graph in the coordinates lg ип, lg Р, the 

slope of the experimental curves in this graph, is linearly relat-

ed to the order of the chemical reaction –  the tangents to them 

determine the so-called baric coefficient of flame propagation 

velocity 

 

 
0

ln/ln
Tnp Pu  . 

 

Measurement of the flame propagation velocity at different 

combustion temperatures can be used to determine the total ac-

tivation energy of the chemical reaction in the flame. Indeed, 

from formula (102) it follows that for the Arrhenius depend-

ence of the reaction rate on the temperature, the flame propaga-

tion velocity ип and the burning temperature Ть are connected 

by the following relation: 
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ип~ exp (—E/2RTь)        (110) 

 

If the results of the experiments are plotted on the graph in 

the coordinates ln un, 1/Ть, then the slope of the curve can be 

used to calculate the temperature coefficient of the flame prop-

agation velocity  
pnp Tu 0ln/ln   and the effective acti-

vation energy in the flame. 

 

 

4.7 Limits of the combustion spread 

It is known from the experience that in flammable mixtures 

strongly diluted with inert gases, the flame does not spread. At 

first glance it seems that this fact contradicts the theory in 

which it is shown that ип~ exp (—E/2RTь), and therefore the 

dilution of the mixture should only lead to a decrease in the 

flame velocity, but not to the cessation of the whole combus-

tion process. However, this is not observed in the experiments 

– combustible mixtures burn only if the content of fuel and ox-

idizer is sufficient for combustion at a speed of not less than a 

few centimeters per second. 

As the dilution increases, ип falls to a certain minimum val-

ue, and with further dilution, combustion becomes impossible. 

This circumstance was used as one of the main prerequisites in 

the old theories of combustion, based on the idea of the exist-

ence of a fixed ignition temperature Ti. 

The concentration limits of flame propagation in these theo-

ries seemed obvious: if, as a result of the dilution of the mix-

ture, the burning temperature Тъ is lower than Ti, then burning 

of the gas is impossible. However, the calculation of the flame 

velocity from these theories leads to the conclusion that the ve-

locity of the flame should decrease smoothly with dilution, that 

is, with decreasing Ть, reaching zero at Тъ= Тi, which contra-

dicts the experimental data. In fact, the combustion limits are 

caused by thermal losses to the environment and to radiation. 
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Some heat is transferred by the thermal conductivity through 

the walls of the pipe. 

 

 
Figure 23 - Temperature distribution in the flame front with 

heat loss to the environment. The dotted line shows the tem-

perature distribution without heat loss 

 

Heat losses mainly occur in the heating zone and in the area 

of combustion products. Cooling leads to a decrease in the 

temperature at a distance from the reaction zone and appear-

ance of a corresponding longitudinal (in the direction opposite 

to the propagation of the flame) heat flux (Fig. 23). The re-

moval of heat from the reaction zone to the combustion prod-

ucts depends on the rate of their cooling. 

For these reasons, the flame temperature Т'ь under real com-

bustion conditions of the combustible mixture turns out to be 

less than the adiabatic combustion temperature Ть calculated 

from (93), and accordingly the flame propagation velocity in 

the presence of thermal losses и'п is less than the normal veloci-

ty ип corresponding to the thermodynamic temperature Ть. 

However, thermal losses through thermal conductivity to the 

walls and radiation, to a lesser extent, depend on the speed of 

flame propagation. 
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Let's estimate the heat fluxes from the heating zone to the 

walls of the pipe with which it is in contact and into the vol-

ume filled with the combustion products. The value of the first 

of them, related to the unit surface of the flame front, can be 

estimated as follows: 

 

 

   0

0

002
0

0
1 2

2
TT

ur
TT

ur

r
q b

nn


























   (111) 

 

where   is the heat transfer coefficient, 0r is the pipe radius. 

From the heat conductivity  equation  
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which describes the temperature distribution in the combus-

tion products, we find the heat flux into the combustion prod-

ucts 
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It is interesting that two physically different processes have 

practically the same effect on the maximum temperature in the 

combustion zone (q1=q2). 

The energy balance, which was in the absence of heat loss 

written as 

 

 00 TTcQa b  ,         (114) 

 

is now written as 
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From equations (114} and (115) we find 
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Thus, the account for heat loss  shows that the combustion 

temperature depends on the flame velocity: the smaller the ve-

locity, the higher the heat transfer to the pipe walls and, conse-

quently, the lower Т'ь. 

The burning rate и'n~ exp(-E/2RT'b] depends on the actual 

temperature  reached in the reaction zone, and the lower the 

temperature Т'ь , the higher the heat removal. We assume that 

Т'ь differs very little from Tb, therefore, the expression for и'п 

can be represented in the form 
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Thus, we have obtained two relations (115) and (116) be-

tween the quantities иn' and Тb
’. 
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Let us represent graphically the curve иn'(Тb ) from (116), 

which is always the same for the given mixture (curve 1 in 

Figure 24), and the dependence (115) under different heat 

transfer conditions, i.e. for different b (curves 2 , 3, 4). 

For small b (curve 2) there are two points of intersection, i.e. 

two solutions. The lower point corresponds to an unstable, 

physically unrealizable regime, as on the lower branch AB of 

curve 1 an increase in the heat dissipation leads to an increase 

in the velocity. For sufficiently large b (curve 4), there is no 

intersection, the propagation of the flame is impossible. 

For some b = b* the curves touch and the velocity и'n* corre-

sponding to the point of tangency is the limiting one. 

From the conditions of tangency of curves 1 and 3, we find 

the critical value of b at which combustion becomes impossi-

ble. 
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and from (115) and (116) the highest possible decrease in 

temperature 
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and the minimal velocity 
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at the limit of flame propagation. 

Thus, the propagation of a flame is possible only in mixtures 

whose burning temperature differs from the adiabatic combus-
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tion by an amount less than RT2
ь/E.  When the mixture is dilut-

ed, leading to Т'ь, lower than Т'ъ*  the propagation of flame is 

impossible. 

Let us pay attention to the fact that the parameter b in the 

critical condition is inversely proportional to the square of the 

radius of the tube (the heat transfer coefficient is а ~1/r0). The 

decrease in the diameter of the tube leads to an increase in the 

relative fraction of the heat loss, and according to the above 

ideas, there must exist a critical diameter at which propagation 

of the flame in the channel is impossible. 

The phenomenon of the critical diameter was discovered by 

Davie in 1816 and was used for construction of a safe miner 

lamp. In it, a copper mesh with small holes prevents the flame 

from spreading from the interior of the lamp to the atmosphere 

of the mine, in which methane can be contained in quantities 

sufficient for ignition. 

Expanding the dependence of the coefficient b on the di-

ameter of the tube, we obtain the dependence of the critical di-

ameter on the properties of the explosive mixture 
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Figure 24 - Graphical solution of the system of equations 

(115), (116) 

 

This dependence was confirmed by the results of experi-

ments on combustion in narrow tubes. It may seem that from 

formula (120) it follows that in broad tubes, arbitrarily small 

flame velocities are possible. However, this conclusion contra-

dicts the experiment, which shows that in large tubes the in-

crease in the diameter does not lead to a decrease in the critical 

value of и’n*   and thus indicates a different mechanism of heat 

loss in wide tubes, different from the molecular heat conductiv-

ity. 

 Such a mechanism is heat emission by radiation. Estimates 

show that the heat losses due to conductive heat transfer to the 

walls of the tube are comparable to the losses of heat through 

radiation if the tubes are not too narrow. Thus, the calculation 



 

 125 

showed that when a ten percent mixture of carbon monoxide is 

burned in the air, the losses due to each of heat transfer mecha-

nisms are comparable for a tube diameter of 5 cm; the velocity 

of flame propagation is 2-3 cm/s.  

We should note that the losses on thermal radiation do not 

depend on the dimensions of the vessel, but are determined by 

the concentration of substances, which are able to radiate, i.e. 

the amount of radiation enables us to estimate the concentra-

tion limits of flame propagation.  

 

4.8 Diffusion-thermal instability of the flame 

So far, considering a laminar flame, we assumed that there 

exists a plane flame front propagating with a constant velocity, 

with a stable thermal and diffusion structure. This fact was not 

questioned. However, often in the experiments, the flat flame 

front decomposes into separate spots of combustion – so-called 

"cellular flames" are formed. For example, a flame torch on a 

Bunsen burner transforms into a pyramidal flame, sometimes 

even rotating around its axis, when the flame propagates in 

tubes, an oscillating combustion front often occurs, and so on. 

These effects are often caused by the internal instability of a 

flat laminar flame, which does not allow it to persist for a long 

time. There are several reasons why the flame is unstable. Non-

stability of the flame can be caused by the processes of heat 

conduction and diffusion, responsible for the structure of its 

front, and gas-dynamic perturbations in the combustible mix-

ture and combustion products. The role of heat diffusion pro-

cesses is manifested in their effect on small perturbations that 

affect the structure of the flame front, but do not cause signifi-

cant gas-dynamic perturbations. 
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The region of the combustion products is shaded, solid ar-

rows indicate the direction of the heat flows, the dotted arrows 

show the diffusion flow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25 – Illustration of diffusion-thermal 

instability of the flame for D  with respect to 

the curvature of its front 

 

On the contrary, gasdynamic perturbations have a large 

scale, far exceeding the heat diffusion width. 

In 1934, B. Lewis and G. Elbe, considering the change in 

the total enthalpy inside the flame (see Figure 22), came to a 

conclusion that at a thermal diffusivity coefficient  greater 

than the diffusion coefficient D, the flame must be unstable. 
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They explained their conclusion by the fact that with such a 

relation between the transfer coefficients in the heating zone, 

there must be a maximum of full enthalpy – the flame "ab-

sorbed" the excess energy, i.e., it came to a state in which, as a 

rule, the system is unstable. 

However, further theoretical and experimental studies have 

shown that the derivation of Lewis and Elbe is not complete. 

For D  the flame can be unstable under certain conditions. 

But there is also an instability of another type, which arises 

with the opposite relation between the transfer coefficients. 

Why it appears, can be seen in Figure 25. 

 Consider the curved front of a laminar flame. If we study 

the effect of only thermal conductivity on the curvature of the 

flame, then it can be verified that the thermal conductivity must 

reduce the curvature of the flame and lead to its stabilization. 

Indeed, sections of the chemical reaction zone convex toward 

the cold fuel mixture should give off more heat than in a flat 

flame: heat from them is transferred not only forward in the 

direction of flame propagation, but also in lateral directions. 

Cooling of the reaction zone caused by this will lead to a lag in 

the forward sections of the flame. The situation will be differ-

ent for concave sections, where, for the same reasons, the tem-

perature will rise, the reaction rate will increase, and they will 

spread with greater speed along the flame propagation. Thus, 

the surface of the curved flame front will e level. In other 

words, the thermal conductivity has a stabilizing effect on the 

curved flame. 

The opposite conclusion can be made if we consider the dif-

fusion of the fuel component that limits the reaction. The con-

vex sections of the front are in the position more favorable for 

the supply of combustible material than other parts of the front 

of the flame – they collect the hot substance from the larger 

volume of the combustible mixture by diffusion (see the 

dashed arrows in Figure 25). Due to diffusion, the reaction rate 
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in convex sections will increase and the curvature of the front 

will increase even more. Diffusion, thus, has a destabilizing 

effect. Final 

 

The final answer to the question about the diffusion-thermal 

stability of the flame depends on the relationship between the 

diffusion and thermal conductivity processes. For D it is 

natural to expect the existence of a plane flame front, and with 

the reverse relation, the outward convex tongues of the flame 

so strongly deplete the mixture that remains in between them, 

that it becomes non-flammable, and the front of the flame 

breaks up into separate unconnected convex sections. The in-

stability of the flame for D with respect to the distortions 

of its front was established by Ya. B. Zel'dovich. 

 

Test questions: 

1 What are the two modes of propagation of the reaction 

wave in space? 

2 What is the normal flame propagation speed? 

3  What is called the reaction zone? 

4  When do the temperature and concentration distributions 

turn out to be similar? 

5  What is the total enthalpy of the reacting system? 

6  Write a formula for the normal propagation velocity of a 

laminar flame. 

7  How does the pressure of the mixture affect the flame 

propagation velocity? 

8  What is the relationship between the combustion tem-

perature and the speed of flame propagation? 

9  What effect does the composition of the mixture have on 

the speed of flame propagation? 
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 5 COMBUSTION OF A COAL PARTICLE  

5.1. Heterogeneous and diffusion combustion 

Let us assume that between carbon and oxygen only one 

combustion reaction takes place on the surface of the phase, 

moreover, in the first order with respect to the concentration of 

the reacting gas. We will also assume that the process is not 

accompanied by side reactions in the gaseous phase of carbon 

monoxide or on the surface of the coal (reduction of carbon 

dioxide). At the same time, it is obvious that many aspects in 

the combustion theory of carbon are not taken into account 

(penetration of the reaction into the depth of the solid phase 

and the region of relatively low temperatures, considered in 

general form for porous bodies by Zeldovich and in detail –  

for the combustion of coal by Khitrin, the influence of coal 

ashing, Frank- Kamenetsky’s assumption of the fractional or-

der of the coal reaction with oxygen). 

Let us first consider general elementary concepts of the dif-

fusion theory of heterogeneous combustion. 

In accordance with the foregoing, there are two main com-

ponents in the combustion process: the supply of the reacting 

gas to the surface of the solid phase and the flow of the chemi-

cal reaction. 

The observed rate of the total combustion process in the 

general case will depend on the with which each of these phe-

nomena can occur separately. 

In a steady-state process, the amount of oxygen diffusing to 

the surface of the coal is naturally equal to its quantity burning 

at the reaction surface, i.e., equal to the total (observed) burn-

ing rate calculated from gas. The possible ("potential") rates of 

diffusion and reaction can, however, sharply differ from each 

other. In the case when one of them is much smaller than the 

other, the actual speed of the process (as well as the actual ve-

locities of both constituent phenomena) practically coincides 

with the smaller possible speed of individual phenomena, 
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which in this case plays a decisive role in the entire combustion 

process. 

  Following the generally accepted terminology pro-

posed by D.A. Frank-Kamenetsky, we will call the combustion 

process "diffusion" if the diffusion rate of the reacting gas is 

substantially less than the possible  rate under these conditions 

and, consequently, the unrealizable rate of chemical reaction on 

the surface. 

The opposite limiting case of the process in which the 

slowest link, determining the total rate of the reaction, is the 

reaction rate, whereas the high rate of diffusion possible under 

these conditions is not realized, we call the "kinetic" combus-

tion. 

Finally, the general case of combustion –  with commensu-

rate values of the rates of diffusion and reaction (possible in the 

given conditions of the process) is called an "intermediate" 

type of the process. 

These concepts of the limiting (diffusion and kinetic) burn-

ing regions and the general case (intermediate combustion re-

gion) in application to real processes are not only methodologi-

cal but also practical. Actually, the conditions of combustion, 

the nature of the influence of individual parameters, the meth-

ods for increasing the completeness of combustion or the inten-

sification of the process, etc., differ sharply for the diffusion 

and kinetic regions of combustion; they are also different in the 

intermediate region, with a noticeable, although not dominant, 

predominance of the role of one of the factors – the rate of dif-

fusion or that of chemical reaction. Therefore, the effectiveness 

of any technical measures on improving the combustion pro-

cess is always associated with preliminary determination of the 

slowest, slowing down process of the phenomenon. 

The difference between diffusion and kinetic combustion is 

most easily traced in the example of the reaction of carbon 

with oxygen, although the main conclusions are applicable to 
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other cases of the heterogeneous process (reactions on solid 

catalysts). 

In the diffusion region of combustion, the steady-state pro-

cess is determined mainly by the hydrodynamic properties of 

the system. In particular, according to the laws of convective 

diffusion, which practically coincide with the laws of convec-

tive heat transfer, the main role is played by two factors: the 

relative air blast velocity and the size of the coal particles. An 

increase in the relative velocity of air movement, as well as a 

reduction in particle size, leads to an intensification of the dif-

fusion of oxygen to the surface of the coal. 

As the total process in the diffusion region is limited by the 

rate of oxygen supply to the surface, and the possible reaction 

rate on the surface is much higher than the real rate (due to the 

lack of oxygen), the concentration of oxygen near the surface 

under diffusion burning is practically zero. 

In the kinetic region of combustion, the hydrodynamic fac-

tors naturally do not affect the burning rate, since there is al-

ways an excess of oxygen near the coal surface: in this case 

there is no noticeable difference in the concentration of oxygen 

at the coal surface. The rate of kinetic combustion, in contrast 

to the rate of diffusion combustion, depends sharply exponen-

tially on temperature. In this case, the kinetic properties of coal 

(the so-called "reactivity") are very important.  

In general, in the intermediate combustion process, the total 

process is affected by all factors – hydrodynamic and kinetic; 

an increase in the blast velocity or grinding of particles in-

creases the diffusion rate, brings its actual value (realized in the 

given conditions) closer to the possible and thus leads to a dis-

placement of the total process toward the kinetic region. An 

increase in temperature in contrast to this leads to a sharp in-

crease in the rate of the chemical reaction and a shift of the to-

tal process to the side of diffusion combustion. Naturally, the 

most common is the general, intermediate case of burning. One 



 

 132 

can, however, assume in general terms that diffusion combus-

tion predominates at high temperatures, low blast velocities, 

and large particle sizes; on the contrary, the role of kinetic 

combustion is particularly great in the region of low tempera-

tures, high values of the relative air velocity, and very small 

particle sizes. However, none of these factors, taken separately, 

determines the nature of the total process; only from the joint 

consideration of all of them, taking into account the kinetic 

properties of the fuel (high "reactive capacity" - prevalence of 

diffusion, low, inert fuel, kinetic region of combustion), one 

can make a correct conclusion on the actual nature of combus-

tion. 

Imagine a section of the coal reaction surface. Let the con-

centration of the reacting gas away from the surface be со, and 

on the surface itself, c, and со с. 

 

The equation of stationary thermal balance is, for simplicity 

of calculation, considered for the unit of reaction surface. For 

this purpose, we first write separately the expression for the 

amount of heat released per unit time per unit surface: 

 

  qcekqссQ RTE

oоД   /

1           (121) 

 

where d is a quantity analogous to the coefficient of con-

vective heat transfer а, which we will call the diffusion ex-

change coefficient or, briefly, the gas-recovery coefficient; 

ko is the constant of the heterogeneous reaction, whose di-

mension for the first-order reaction (as well as the coefficient 

d ) coincides with the linear velocity dimension [m/s] ', 

q  is the thermal effect of the reaction per unit volume of the 

reacting gas; the other quantities have the same values as be-

fore. 
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Note that for the heterogeneous process, in particular for 

coal, the quantities ko and E in the equation of the Arrhenius 

law (ko = koе
-Е/RT),  have the meaning of the reduced, total ki-

netic characteristics of the reaction. We will regard them as 

some of the constants that are subject to experimental determi-

nation, which do not reflect the actual reaction mechanism, 

sometimes quite complex.  

For the reaction of carbon combustion, the results of a sig-

nificant number of experimental studies were obtained in 

which the values of ko and E were determined for different 

types of coal with different degrees of accuracy; there are also 

attempts to generalize these data. 

The experimental values of the ko and E constants, in par-

ticular, the detailed characteristics given in the monograph of 

A. Predvoditelev et al., can be used for approximate technical 

calculations of coal (coke) burning. Therefore, the foregoing 

relations for heterogeneous combustion have not only a qualita-

tive but also a quantitative value. 

The amount of heat removed from a unit surface of coal per 

unit time, is written as: 

 

 oII TTQ           (122) 

 

where   [kcal/m3 s deg] is the coefficient of heat transfer by 

convection; 

T and T0 are, respectively, the temperature of the gases di-

rectly at the surface of the coal and far from it. 

The first of these values (T), naturally, coincides with the 

temperature of the coal surface. 

Equating expressions (121) and (122), we obtain the equa-

tion of the steady-state heat balance: 

 

  (123) 
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We introduce, as before, the value of completeness of burn-

ing of the reacting gas: 

 

oc

c
c  11         (124) 

 

where 
oc

c
c    is the dimensionless concentration of the 

reacting gas. 

Note that the value of  in the heterogeneous process can be 

given the other physical interpretation. In the diffusion region 

of combustion, by definition, the concentration of the reagent 

gas at the surface of the coal is zero: 

 

0с    1          (125) 

 

In this case, the amount of gas diffusing to the surface of the 

coal (that is, the quantity proportional to the rate of coal burn-

out from a unit surface) will obviously be equal to the product 

дсо.  Accordingly, the value 

 

 
 

оД

оД

о с

сс

с

с







 1   (126) 

 

characterizes the degree of approximation of the process to 

the region of diffusion burning (the "diffusion measure"). 

Expression (126) can be written in the other form, conven-

ient for practical calculations. Noting that its numerator аД 

(с0—с) is the combustion rate per unit of the reaction surface, 

we introduce an additional equation for determining the 

amount of heat released per unit surface per unit time: 
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where 

  

     (127) 

 

is a reduced (effective) reaction rate constant of the first 

one. It follows from (126) that  

 

 
           

i.e. the coefficient of completeness of combustion is equal to 

the ratio of the reaction rate keff to the gas-transfer coefficient 

d. In terms of physical meaning, this method of calculation is 

analogous to the addition of "resistances" in a series connec-

tion; the value  corresponds to the diffusion resistance,  

 

k

1
 kinetic re- sistance, the total resistance is 

kk Дэфф

111



. From the first equality in the system of equa-

tions (123), which expresses in two forms the same amount of 

heat released during the reaction, we find:  

 

Дok

с






/
1

1
11



         (128) 
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The dimensionless ratio of the quantities characterizing the 

reaction rate and the diffusion rate  can be replaced by the 

inverse ratio of the time characteristic for these processes, that 

is, 

         (129) 

 

where Д  and  К are, respectively, the quantities characteriz-

ing the gas diffusion time to the reaction surface and the time 

of the last chemical reaction. Thus, formula (128)  rewritten as 

(129)  

          (130) 

 

coincides with the expression for 1() in the previous chap-

ter when the dimensionless time ПК is replaced by the dimen-

sionless time ДК  (that is, when the residence time is replaced 

by the diffusion time ). 

Let us consider the equality of the first and third expressions 

in the system of equations (123), that is, derivation of the ex-

pression 11()) for heat removal. From (123), taking (124) in-

to account, we get: 

 

  (131) 
 

  

Thus, here again the expression 11() corresponds to a 

straight line in the diagram -, which is quite natural in con-
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nection with the adopted law of convective heat transfer (i.e., 

the adiabatic regime for the reacting gas). 

Let us consider in more detail the ratio of the coefficients  

on the right-hand side of Eq. (131). 
 

For the heat transfer coefficient  we will write an or-

dinary empirical equation in heat transfer for the connection 

between the criteria of similarity for forced convection: 

 
mn

a

d
C

d



























        (132) 

 

where d  is a characteristic size; 

,  and а are respectively the coefficients of heat conduc-

tivity, kinematic viscosity and thermal diffusivity of the gas; 

 is the relative velocity of the gas flow. 

Similarly, for the gas recovery coefficient ад, we can take: 

 

                     (132а) 

where D is the diffusion coefficient. 

As both phenomena –  heat exchange and gas exchange dur-

ing combustion –  occur under the conditions of the same pro-

cess, and the phenomena of stimulated heat transfer and forced 

diffusion are analogous, the values of the empirical constants c, 

n and m in formulas (132) and (132a) can be taken practically 

the same. Then we get: 

 

                                 (133) 
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where cp is the average heat capacity of 1 m3 of gas. As is 

known from heat transfer, the value of the exponent m in for-

mula (132) for forced convection is small (m = 0.3 - 0.4); 

Therefore, taking into account the equality for gases аD, we 

can approximately write 1

1









m

D

а
.  

 Thus, approximately  

 

;                    (134) 

 

And it enables us to rewrite expression for 11() in (131) 

as:  о


 
1

11                 (135) 

where 
p

o

Ec

Rqc
  is the characteristic of the calorific value 

of the reaction (or, for example, the oxygen content in the re-

acting gas). 

As in the case of adiabatic combustion of a homogeneous 

mixture, expression (135) can be rewritten in the form 

оМ

о

о








 ;       оМ  (135а) 

 

It is important that here the similarity of the fields of tem-

perature and concentration [formula (135a)] is a consequence 

of not only the adiabatic character of the process, but also the 

equality of the transfer coefficients: a = D. 

Let us summarize our results. Both expressions for the 

curves in the diagram -, namely the heat release curve 1()-

formula (130) and the heat-removal curve 11() -formula 

(135), coincide with the analogous expressions used in the pre-

vious chapter. 
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The difference between formulas (130) for a heterogeneous 

process and for burning of a homogeneous mixture is that the 

first of them includes the quantity д, the characteristic time of 

diffusion, and the second П  - the residence time of the mixture 

in the chamber, in both cases in form of the relation to the 

characteristic time of the reaction К. 

It will be further shown that this difference leads to different 

physical interpretations of the critical phenomena of ignition 

and extinction, depending on the dimensionless time. 

To find stationary regimes, as in the previous problem, we 

must use the equality 

1()=11(),               (136) 

and to determine critical conditions for ignition damping, 

we use the system of equations: 

 

 1()=11(),  








d

d

d

d 111         (137) 

 

 

5.2 Thermal conditions of coal combustion 

Let us apply the main results of the study of the heat regime 

of adiabatic combustion of a homogeneous mixture to the prob-

lem of coal combustion. As was shown in the previous chap-

ters, the graphical solution of the heat balance equations in ac-

cordance with different conditions of intersection of the curves 

1() and the diagram 11() lead to the possibility of existence 

of two types of the process – hysteresis and crisis-free. For the 

first of these three stationary reaction states are typical, two of 

which - the lower and upper ones - are stable, and the third - 

the medium - is unstable and practically not realized. The low-

er stationary regime corresponds to a weak heating of the coal 

surface and a very slow reaction; this is a slow oxidation re-

gime. The upper stationary regime is characterized by high de-

gree of the burning out of the reagent gas, the concentration of 
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which at the coal surface is very small, and rapid burning out 

of coal; this is the combustion regime. 

The surface temperature of the coal during combustion (up-

per mode) is close to the maximum:  

 

;   

 

  oM  

 

The fact that at the lower level there is practically no differ-

ence in the concentration of the reacting gas (its value at the 

surface is close to the value at a distance) allows us to identify 

this regime with kinetic combustion. Intensive diffusion is ab-

sent, and the process as a whole is determined by the tempera-

ture and kinetic characteristics of the fuel. 

In contrast, the upper combustion regime is close to diffu-

sion combustion (gas concentration at the surface) or in the re-

gion of small values of the parameter ДК to the intermediate 

one. 

 

Test questions: 

1 What simplifications have been made in the theory of 

coal combustion? 

2 Describe the general elementary concepts of the diffusion 

theory of combustion of a coal particle. 

3 What is the amount of heat removed from a unit of coal 

surface per unit time? 

4 Write down the equation of the steady heat balance 

5 What is the temperature of the coal surface during burn-

ing? 
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