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Chapter 

RADIATION OF ELECTROMAGNETIC WAVES 

INDUCED BY ELECTRON BEAM PASSAGE 

OVER ARTIFICIAL MATERIAL PERIODIC 

INTERFACES 

Yuriy Sirenko1,2*, Petro Melezhik1, Anatoliy Poyedinchuk1, 

Seil Sautbekov3, Alexandr Shmat’ko4, Kostyantyn Sirenko1, 

Alexey Vertiy1, and Nataliya Yashina1 
1Department of Diffraction Theory and Diffraction Electronics, O.Ya. Usikov 

Institute for Radiophysics and Electronics, Kharkiv, Ukraine 
2Department of Applied Mathematics, V.N. Karazin Kharkiv National 

University, Kharkiv, Ukraine 
3Department of Physics and Technology, Al-Farabi Kazakh National 

University, Almaty, Republic of Kazakhstan 
4Department of Radiophysics, Biomedical Electronics and Computer Systems, 

V.N. Karazin Kharkiv National University, Kharkiv, Ukraine 

ABSTRACT 

The chapter is focused at accurate and profound investigation, interpretation 
and explanation of resonant and anomalous phenomena in radiated 
electromagnetic field that arises due to the passage of charged particles beams 

*Corresponding Author Email: yks2002sky@gmail.com
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over arbitrary shaped periodic interface of natural or artificial material 
including smart and metamaterials. Reliability of the results is assured by the 
fact that the study is based on rigorous accurate solutions to electromagnetic 
boundary and initial boundary value problems and corresponding robust 
numerical algorithms. 

Two types of structures are considered in theory: (i) infinite arbitrary 
profiled periodic interfaces of conventional or artificial materials with a priori 
given dispersion law, their consideration is based on frequency domain (FD) 
methods of analytical regularization; and (ii) infinite structures constructed of 
periodic arrays of various materials, their consideration is based on solutions 
to the corresponding electrodynamic problems, which are developed with a 
help of the method of exact absorbing conditions (EAC) enabling the 
consideration of the problems both in time domain (TD) and FD.  
 

Keywords: analytical regularization method, method of exact absorbing 

conditions, density-modulated electron flow, periodic interface, artificial 

materials, Smith-Purcell and Vavilov-Cherenkov radiation phenomena 

 

INTRODUCTION 
 

A plane, density-modulated electron beam, moving at a constant speed over 
an infinite one-dimensional periodic grating, generates homogeneous plane 

electromagnetic waves in the environment space. The number of waves, their 
wavelength and direction of propagation are determined by the speed of the electron 

beam, its period of modulation, and by the length of the period of grating. The same 

beam moving at a constant speed in a medium, where the speed of light is less than 

the speed of charged particles, generates in it two homogeneous plane 

electromagnetic waves, diverging from the direction of flow. The length of these 

waves and the direction of their propagation are determined by the period of beam 
modulation, the ratio of its velocity to the speed of light in the medium, and by the 

sign of refractive index of the medium. The field of plane waves propagating above 

or below the grating or in a sufficiently optically dense medium is generated by the 
field of the charged particles flow. 

That may serve as a concise representation of the well-known effects of Smith-

Purcell and Vavilov-Cherenkov radiation [1–5]. Discovered in the first half of the 
20th century, they are still of a great interest, and quite often are considered in 

various kinds of basic and applied research. Adequate modeling of these effects, 

the analysis of physical features observed in their implementation at periodic 

interfaces between media (conventional and artificial with non-standard properties) 
is the main topic of this work. 



Radiation of Electromagnetic Waves Induced by Electron Beam… 3

In electromagnetic modeling, the field of a plane, density-modulated electron 

flow is identified with the field of an inhomogeneous plane wave arriving at an 
infinite periodic grating, or with the field of a surface (slow) wave of a dielectric 

waveguide located near a finite periodic structure. Within the frames of these 

models, only the wave analogs of the Smith-Purcell and Vavilov-Cherenkov effects 
are simulated. Namely, the models describe the diffraction effects of the classical 

grating theory and surface-to-spatial mode conversion effects: an inhomogeneous 

plane wave or a surface wave of an open guiding structure, whose exponentially 

decaying part sweeps the surface of the grating or an interface of sufficiently 
optically dense medium, creates in this medium or in the radiation zones of a 

periodic structure a wave that can propagate (if there is no attenuation) infinitely 

far [2,6–12]. The differences in the adequacy of the corresponding models are 
mainly due to the fact that the first of them implements the so-called ‘approximation 

of a given current’ or ‘approximation of a given field’ approach when the amplitude 

of an inhomogeneous plane wave, which gives energy to outgoing homogeneous 
plane waves, remains constant along infinite interaction space with periodic 

structure. The model of the system ‘dielectric waveguide – finite grating’ is free 

from this drawback. But it is important, that together they can effectively and 
accurately solve all the theoretical and practical problems related to the study and 

practical application of the Smith-Purcell and Vavilov-Cherenkov effects, and their 

wave analogs. In the theoretical part of this chapter, we consider only those models 
that implement the approximation of a given field. 

For periodic structures made of conventional materials, such effects 

(diffraction radiation effects) have been consistently and thoroughly, theoretically 
and experimentally studied in the last three decades of the 20th century in 

O.Ya. Usikov Institute for Radiophysics and Electronics, Kharkiv, Ukraine (IRE 

NASU) in the department headed by academician Viktor Shestopalov. In numerical 
simulations, the models of the method of analytical regularization [8,13–19] 

implementing the approximation of a given current have been used, and the 

radiation field of an infinite one-dimensionally periodic grating placed in the field 
of an inhomogeneous plane wave was studied. The practical outputs resulted in the 

creation of the diffraction radiation generators – stable, coherent sources of the 

millimeter range electromagnetic waves, operating on the Smith-Purcell effect 

[2,20,21], in the construction of planar and linear diffraction antennas [11,12,22–

28], unique in their characteristics, for radar and radiometric ground, airborne and 

satellite-based complexes of different purpose. The method of exact absorbing 

conditions developed in the last two decades for solving initial-boundary problems 
of computational electrodynamics [11,12,29–38] allowed significant progress in the 

directions indicated above; a computational experiment, carried out for models 
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‘dielectric waveguide – finite grating’, now gives the same reliable results as a full-

scale experiment. But much faster and, that is the most important, at a much lower 
costs. 

The resource, not yet actively involved by neither theoreticians nor applied 

scientists studying and exploiting the effects of diffraction radiation when solving 
actual practical problems, is associated with the use of artificial and smart materials. 

These are materials whose properties could be adjusted and modified under the 

influence of external factors (temperature, light, pressure), and metamaterials 

whose unusual electrodynamic characteristics (band gaps, negative refraction, and 
so on) are due to their structure (most often periodic), but not to the properties of 

individual substances they composed of. The scientists aiming at a significant 

progress in this direction will face many different problems. In this chapter we only 
demonstrate the possibilities of the theoretical approaches we have developed, 

namely the method of analytical regularization and the method of exact absorbing 

conditions, and their ability to effectively solve traditional and new problems 
arising in the study and practical application of diffraction radiation effects. 

We use SI, the International System of Units, for all physical parameters except 

the time t  that is the product of the natural time and the velocity of light in vacuum, 

thus t  is measured in meters. According to SI, all linear geometrical parameters 

( ,a  b  etc.) are given in meters. However, this is obviously not a serious obstacle 

to extend the results to any other geometrically similar structures. As a rule, the 

dimensions in the text are omitted, and the majority of results are presented in the 
form of dimensionless parameters.  

 

 

MODELS OF THE METHOD OF ANALYTICAL 

REGULARIZATION 
 

In free space, the field       , , , ,i i iU g k E g k H g k
  

 of a plane density 

modulated electron beam, whose instantaneous charge density is 

    expz a i k y kt     , corresponds to the H -polarized electromagnetic 

field ( 0x   , 0i i i
x y zE H H   ) and [2,39] 

 

        

           

22

0 0

, 2 exp ; ,

, , , , , .

i
x

i i i i
y z x z y x

H g k i k k z a k y z a z a z a

E g k ik H g k E g k ik H g k

  

 

            

    

(1) 



Radiation of Electromagnetic Waves Induced by Electron Beam… 5

 

Here,  ...  is the Dirac’s  -function;   and k  are the amplitude and frequency 

of the flow modulation, and 0 1   is its relative velocity;  
1 2

0 0 0    is the 

free space impedance, 0  and 0  are vacuum’s permittivity and permeability; 

 ,g y z is a point in space 2R ;  exp ikt  is the time factor of harmonic fields. 

Let  
2

2 exp 1 1 1l ka     
  

. Then the field (1) of the electrons 

moving over the periodic boundary S , separating the conventional medium 

(vacuum) and the dispersive medium (see Figure 1a), generates in the regions 0z   

and z b   H -polarized field       , , , ,s s sU g k E g k H g k
  

 with nonzero 

components [8,17]: 
 

   
   

   

1

,
1

exp ; 0
,

exp ;

n ns
x n

n n n

R k i z z
H g k y

T k i z b z b 






  
 

       
               (2) 

 

and 
 

 
 

   
 

 0 0, , , , , .s s s s
y z x z y xE g k H g k E g k H g k

ik g ik g

 

 
             (3) 

 

Here, l  and b  are the period and height of grating mounts 

    S : , 0g z f y b f y     ; 2k   ,   is the wavelength of 

electromagnetic waves in free space;  g  and  g  (     0Im Img g   ) 

are relative dielectric and magnetic permeability of wave propagation medium 

   ( 1g g    for  z f y  and    g k  ,    g k   for  z f y ); 

   1 2 expn ny l i y   ,  2n n l   , Im 0  , 0.5   and 1 k   ; 

  2 2
n n nk       and Re 0n  , Im 0n  . Signs of the real and 

imaginary parts of the root      , , 2 2
n n nk k k             are set so that all 

partial components          ,
1, : , expT

n x n n nU g k H g k T k i z b y       


 of the 

field  ,sU g k


 in the region z b   representing fields of outgoing plane waves, 
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i.e. homogeneous waves ( ,Im 0n
   ), transferring energy in the direction ,z    

or inhomogeneous waves ( ,Re 0n
   ) exponentially decaying when moving in 

the same direction. 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
Figure 1. Structures with periodic boundary between two media: (a) half-space 

filled with dispersive material; (b) layer of dispersive material on metal substrate; 

(c) layer of dispersive material in free space. 

 

Assuming 1 k   , we identify the own field of the electron flow, whose 

exponentially decaying part sweeps the boundary S , with the field of H -polarized 

inhomogeneous plane wave        1 1 1, : , expi i
xU g k H g k i z y  


, 

2 2 1
1 1 1k ik       , which falls onto this boundary and generates in the 

reflection ( 0z  ) and transition zones ( z b  ) homogenous and inhomogeneous 

plane waves          1, : , expR
n x n n nU g k H g k R k i z y 


 and  ,T
nU g k


. In 

electromagnetic grating theory these waves are called spatial harmonics of periodic 

structure [8,15,17]. The ones whose numbers n  correspond to real propagation 

constants n  and ,
n
   are able to propagate infinitely far from the boundary S . In 

the reflection zone 0z  , they leave boundary at the angles 
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   arcsinn n k kk       that are counted anti-clockwise from the axis z . 

Obviously, for any fixed values k  and   the number of such waves, N , is also 

finite 0, 1, 2,..., 1n N     . 

Complex amplitude coefficients  1nR k  and  1nT k  are intricate functions of 

the frequency k , and geometric and constitutive parameters of wave propagation 

media. We find them by solving numerically in the interval 0 y l   (in the Floquet 

channel) the standard boundary value problem of the electrodynamic theory of 
gratings [8,17] 

 

     

       

 
 

 
   

   

     

2 2 2

1

,
1

, 0; 0

, , exp 2 0, , ; 0

exp ; 0,
,

exp ;0

, and , , , , are continuous when crossing

S

y z x

x y x x y x

i
n nx

x n
n n n

x tg

k g g H g k b z

H H l z k i H H z k b z

R k i z zH g k
H g k y

T k i z b z b

H g k E q k q x y z

 

 








         

      

     
   

          







and virtual boundaries 0 andz z b












   

  (4) 

 

relatively to the  ,xH g k  component of the full field 

 

      
   

 
1 , , ; 0

, , , , .
, ; 0

i s

s

U g k U g k z
U g k E g k H g k

U g k z

  
  



 
  

  

 
This problem allows to determine (in the approximation of a given current) the 

electromagnetic field (the field of diffraction radiation) generated by the density-

modulated electron flow. In numerical solution, we use the method of analytic 
regularization [8,13–15,18,19], which provided most of physical and applied results 

of the electrodynamic theory of gratings associated with resonant and anomalous 

spatial-frequency and spatial-time transformations of electromagnetic fields in 
periodic structures [8–10,15,17,19,40]. 

The approach used here can be described briefly as follows [18,41]. The system 

of orthonormal functions    1 2 expn ny l i y   , 0, 1, 2,...n     is complete in 

the space  2L 0,l  of functions with the integrable on the interval 0 y l   module 

squared. This allows us to write down the conditions (4), which is related to the 
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continuity of the tangential field components  ,U g k


 on the boundary S , in the 

form of an infinite system of linear algebraic equations 

 

 1

; 0, 1, 2,...

; 0, 1, 2,...

mn n mn n m
n n

mn n mn n m
n n

F x F x b m

K x k K x b m

 
    

 

 
     

 


    



     


 

 
                  (5) 

 

Here,  1 expn n nx R i b     and  ,
1 expn n nx T i b      are new unknowns and  

 

 mn m n nF L 
  ,    ,

mn m n nF L   
  ,   

 
2

nn
mn mn

n

m nl
K F


    
  

 
, 

 ,

,2
nn

mn mn

n

m nl
K F

 

 
    
   

 
,    1m mb L   ,   1 1

12
m m

l m
b b


    
  

 
, 

 
   2

0

1
e

nl i q f y b y
l

nL q dy
l

 
      ,    

 
2

0

1
e

nl i qf y y
l

nL q dy
l

 
      . 

 
The conversion to finite-dimensional analogues in (5) leads to ill-conditioned 

systems of equations, so the problem needs regularization. We begin the 

corresponding procedure by introducing a periodic function

    12 .f y f yl b    Assume also that the function  f y  is twice continuously 

differentiable. Suppose that in a finite number of points sy  , 1,2,...,s S   and sy  , 

1, 2,...,s S   in a period 0 2y   , this function satisfies the following 

conditions: 
 

     
     

2

2

0, 0, 0,

1, 0, 0.

s y s y s

s y s y s

f y d f y d f y

f y d f y d f y

  

  

  

  
 

 
Under such assumptions, we can obtain the following asymptotic estimates for the 

matrix elements of the system (5): 
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     

 

2 2

21

exp exp 2
,

2

2
; , .

S s n y s

mn
s

n y s

mn mn

n

i m n y m n b d f y
F

b d f y

i mn
K F n m

l





  





 

         


 






          (6) 

 
From (6), in particular, it follows that (5) is an operator equation of the first kind, 

and this is precisely what makes impossible the application of the truncation method 

to solve it numerically. Using representations (6), we introduce matrix operators 

 

   
1

2

,
1

,

2 1 ,
S

m m
n n y s n n m n

s
m n

J b l d f y M   



 






   
    

   
 ,      (7) 

 

and new unknowns  ny y   such that  n n
x x J y

   


  . Here, m

n  is the 

Kronecker symbol, 0 1  ,  
1

0n i n


  , 1 2n n l    . Now we are able to 

carry out the right-side regularization of the system (5): 
 

 
   1 , ,

; , .mn mnm n m n

F J y F J y b
F F K K

K J y k F K y b

      
    

         

  
 

 
   (8) 

 

Applying the operator M  to the second equation of system (8), we perform the left-
side regularization of the problem. After several simple transformations, we arrive 

at the system of operator equations 

 

   

   

1

1

1
,

1

k k y P y P y a

k k y Q y Q y a

 

 

      

      

       

      

                         (9) 

 

equivalent to (5). Here, 
 

   

 

1 1

1

, ,

, ,

P k F MK J P k F MK J

Q MK F J Q F k MK J

 



         

        

          

         
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 1a k b Mb     , a Mb b    . Estimates (6) allow us to prove the 

compactness of operators P  and Q  in the space 2l  of infinite sequences

 n n
a a




  such that 

2

nn
a   . This means that the original problem (4) is 

reduced to the system of operator equations of the second kind (9) (to a system of 

Fredholm operator equations), which numerical solution can be obtained by the 

truncation method converging in the norm of the space 2l . The regularization of 

problem (4) is completed. Let us now analyze the most general properties of its 

solution  ,U g k


. 

The Pointing’s complex power theorem for field  ,U g k


 in the volume 

     0 1 0 0x y l b z          implies the fundamental relation 

 

   
2 2 1, 1

1 1 1 11Re Re Im 2Imn n n n
n

R T k R 






     
  .             (10) 

 
This relation determines all energy characteristics of the diffraction radiation 

processes considered in the approximation of a given current [8,40]. The value in 

the left of (10) is the total electromagnetic energy W W W    radiated into the 

half-spaces 0z   and z b  . The values  
2 1

1 1 1Re ImR
n n nW R


    and 

  
2 1, 1

1 1 1Re ImT
n n nW T k 

   , composing W   and W  , characterize the 

distribution of energy lost by the flow of electrons in the channels open to radiation, 

i.e. between harmonics of the spatial spectrum  ,R
nU g k


 and  ,T
nU g k


 such that 

Re 0n   and/or  , 1Re 0n k    . The last inequality and relation 

    ,

21
1: Im 0

Re
n

y n nn
P k k T  

 
  , which is the real part of (averaged over the 

period l  of the boundary S ) component  yP k  of the complex Poynting vector 

 P k


 of the field  ,U g k


 in the plane z b  , allow to determine unambiguously 

and completely strictly the direction of phase velocity of the harmonics  ,T
nU g k


 

propagating in the region z b   and the energy transfer direction of this harmonic. 

For the conventional medium, these directions coincide and are set by the vector 
,

n ny z  
 

, , 0n
   . For the bi-negative medium , 0n

   , the phase velocity is 
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oriented along the vector ,
n ny z  
 

, and the energy transfer direction is oriented 

along the vector ,
n ny z   
 

. In a medium with only one negative constitutive 

parameter, the harmonics  ,T
nU g k


 transferring energy in the direction z    are 

not excited. 

When  , 0i
xH g k   and k  is fixed, we obtain from (4) a homogeneous 

(spectral) problem with nontrivial solutions  ,xH g   existing for no more than a 

countable set of eigenvalues   F     and determining the fields of the eigen 

waves       , , , ,U g E g H g   
  

 of the periodic media interface [8,40]. If 

any eigen value   belongs to the axis Re  of the first (physical) sheet of the 

surface F  (this is the Riemann surface onto which the solution of the problem (4) 
is analytically continued from the real values of the spectral parameter  ) and 

 Im 0n   ,    , 1Im 0n k       for all 0, 1, 2,...n    , then we are dealing 

with ordinary (or correct) surface waves propagating near a media boundary 

without attenuation. 

Above we briefly described the main points related to the use of the analytical 
regularization method for analyzing the effects of diffraction radiation in the system 

‘flat, density-modulated electron flow – periodic boundary of a conventional 

medium and a dispersive medium’. Obviously, the method of generalized scattering 
matrices provides an accurate solution to the model boundary value problem (4) 

arising in the case of more complex objects placed in the field of a beam of charged 

particles (see Figures 1b and 1c). 
 

 

INTERFACE ‘VACUUM – PLASMA-LIKE MEDIUM’. 
NUMERICAL RESULTS 

 

Suppose that in the problem (4), the constitutive parameters of the medium 

filling the half-space  z f y  are given by the relations 

 

   2 2 2 21 and 1 .k k k k k k                               (11) 

 

Such a medium can be called plasma-like, and the real numbers k  and k  are its 

characteristic frequencies. Let us also set 2l   for all simulated here periodic 
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boundaries in order to simplify all analytical and numerical results in terms of 

dimensionless parameters that are commonly used in the theory of periodic 

structures. They are coordinates    , 2 ,2Y Z y l z l  , time 2 t l  , and 

frequency 2l kl    . 

The characteristic feature of periodic boundaries discussed in this section is the 

ability to control material parameters of a medium filling the area  z f y  with 

the help of external influences that change the frequencies k  and k . Among 

various unusual properties of such periodic boundaries swept by the field of a 

density-modulated electron flow, we can distinguish resonant regimes appearing in 

generation of plane waves propagating into the half-spaces 0z   and z b  , in 

the case when the flow velocity is close to the phase velocity an eigen surface wave 

of the boundary S .  

For small values k  and b  discussed below, the periodic boundary separating 

usual medium (vacuum) and dispersive medium with parameters (11) is capable of 

supporting forward (or direct) surface waves in the frequency range [42] 

 
2 2

2 12 ;K k k k k k k K k k            .                     (12) 

 

The eigen values direct, , m  corresponding to these waves have form  
 

 
  

 

2 2 2 2

direct, ,

2 2

2
; 0, 1, 2,...

2

m
k k k kk

m m
l k k k

  

 

 
 

      


 

 
In the range 

 
2 22 ;k k k k k k k k                                         (13) 

 

the same boundary can support backward waves, which have oppositely directed 

phase and group velocities. For such waves 

 

 
  

 

2 2 2 2

back, ,

2 2

2
; 0, 1, 2,...

2

m
k k k kk

m m
l k k k

  

 

 
 

      

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The velocity of electrons moving synchronically with surface waves is determined 

by the relations (synchronism conditions) direct, ,2 mkl     or 

back, ,2 mkl    .  

Vavilov-Cherenkov radiation into the lower half-space occupied by a 

dispersive medium (radiation of the harmonic  1 ,TU g k


) is possible if the condition 

 , 1
1Re 0k     holds or, equivalently, the condition    

12 k k  


     holds, 

i.e. only in the case of a bi-negative or bi-positive (conventional environment) 

medium. Hence, for the dispersion law (11) we obtain the following restriction on 

the frequency range in which Vavilov-Cherenkov radiation can be observed:  

 

 
22 2 2 2 2 2

0 2 4k K k k k k k k k k              .                (14) 

 

For all   from the interval 0 1  , the value 2 2
0K k k k k     , 0 0K   for 

0   and 2 2
0K k k k k      when 1  . The parameter intervals (13) and 

(14), which provide the possibility of existence of backward surface waves, 

partially overlap. The frequency band where forward surface waves can exist does 

not overlap the frequency interval (14). 
One more special feature of the periodic boundary of the medium with 

parameters (11) should be discussed before proceeding to the analysis of the results 

of computational experiments. In [41], the existence of a finite accumulation point 
accum 2k k  in the spectrum of an operator of the problem (4) corresponding to 

such a boundary was proved. The set of complex frequencies k k   

corresponding to non-trivial solutions       , , , ,U g k E g k H g k
  

 of the 

homogeneous (  , 0i
xH g k  ) problem (4) is called its spectrum. Functions 

 ,U g k


 are eigen oscillations of the field of the structure, relevant to eigen 

frequencies k ;   is the Riemannian surface, which defines the natural limits of 

the analytic continuation of the problem (4) to the domain of complex parameter 

values k  [8,40]. The existence of a real point of accumulation accumk  is manifested 

in the thickening of resonant peaks in the amplitude-frequency characteristics of the 

structure in the close vicinity of the frequency accumk k . 
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It is extremely important in the study of diffraction radiation to determine 

correctly the limits of parameter variation where the given regime of electron flow 
field transformation into the field of waves outgoing infinitely far from the periodic 

interface between the media is implemented. The regime identifier  ,N N   is 

given by the number of harmonics N   and N  , which propagate without 

attenuation in the reflection and transition zones of the periodic structure, and the 

boundaries of the domains corresponding to this regime in the plane of the variables 

k  and   are given by the curves  G : , 0n n k    and  ,G : , 0n n k     . Here, 

n  are the numbers of harmonics  ,R
nU g k


 and  ,T
nU g k


, included in the numbers 

N   and N  .  

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 

 

 

 
 

 

Figure 2. To the determination of the parameters variations domains where the 

Vavilov-Cherenkov radiation can be observed ( 2l  ): (a) 0.1k  ; (b) 

1.0.k   
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In Figure 2, for the parameter values k  and   from the region situated to the 

left from the curve Gn
 , the wave  ,T

nU g k


 propagates in the structure’s transition 

zone without attenuation. In the reflection zone, the wave  ,R
nU g k


 propagates 

without attenuation for the parameter values k  and   from the domain located 

between the branches of V -shaped curve Gn
 . With this in mind, we can easily 

determine the domains of parameter values variation for which, in the situation 

under consideration, Vavilov-Cherenkov radiation is implemented, and radiation of 

harmonics  ,R
nU g k


 for all n  and of harmonics  ,T
nU g k


 for 1n   (Smith-Purcell 

radiation) is absent. On the fragments of Figures 3, 4, and 5, all the points  ,k   

lying between the curves 1G and 0G  (the curve 0G  is passing to the left of 1G ) 

can be attributed to these domains. 

 

 

 

 

 
 

 

 
 

 

 

Figure 3. Efficiency of the reverse Vavilov-Cherenkov radiation (diffraction 

radiation on harmonic  1 ,TU g k


) into dispersive medium with characteristic 

frequencies 0.1k  , 0.10001k   and sinusoidal boundary 

 0.5 cos 2 1z b y l    , 2l  , 0.4b  . 

 

Figure 3 shows the results of one of the computational experiments related to 

determining the energy characteristics      11 11 11maxT T T

k
W k W k W k  (  11max T

k
W k  

is equal to 2.5288 for 0.95  , 1.9148 for 0.6  , and 0.3876 for 0.2  ) of the 

Vavilov-Cherenkov reverse radiation – the permittivity and permeability of the 

dispersive medium in the frequency range considered 0.01 0.09k   are negative. 

When 1  , the boundary 1G  of the Vavilov-Cherenkov radiation region 
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approaches the straight line accum 0.07k k  , but does not intersect it. On the curve 

located slightly to the left of the straight line accumk k  and intersecting for large 

  the boundary 1G , one of the synchronism conditions is fulfilled. Therefore, for 

0.95  , the characteristic  11
TW k  on the right fragment of Figure 3 changes 

much more dynamically than the similar characteristics for 0.1   and 0.6  . 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 
 

 

 
 

 

Figure 4. Same as in Figure 3, but for dispersive medium with parameters 

0.1,k   1.0k  . 

 
Figure 4 illustrates the implementation of reverse Vavilov-Cherenkov radiation 

for the periodic boundary of the dispersive medium with the parameters 0.1k   

and 1.0k  ,  1.0 0k   ,    k k   in the frequency band 

0.07 0.1k  . As the flow velocity   increases, the frequency band where these 

effects can be observed (the interval between the boundaries 0G  and 1G ) becomes 
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wider and can contain from two to three points  
synchr

,k   which fulfill one of the 

synchronism conditions. As a result, on the curve  11 ,TW k   (  11max T

k
W k  is equal 

to 0.6538 for 0.95  , 2.6676 for 0.6  , and 1.4276 for 0.2  ), we observe 

two (for 0.2  ) or even three (for 0.6   and 0.95  ) resonant peaks. The 

accumulation point accum 0.07k k   is out of the frequency band with pure 

Vavilov-Cherenkov radiation. Therefore, all resonant bursts of characteristics are 

easily predicted using the synchronism conditions and information about the 

approximate values of the eigen values direct, , m , back, , m .  
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Figure 5. Same as in Figure 3, but for dispersive medium with parameters 

0.1,k   0.5k  . 

 

With the values 0.1k   and 0.5k   comprising constitutive parameters of 

the dispersive medium, the range including the frequency intervals where Vavilov-
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Cherenkov radiation can be observed for all 0.14   contains an accumulation 

point and from two to three points  
synchr

,k   providing the fulfilment of one of the 

synchronism conditions (see Figure 5). In this parameter domain, the medium 

located below the periodic boundary is bi-negative. The values of the functions 
determining the radiation efficiency change especially sharply in the near vicinity 

of the point accumk k  where for 0.2   two points  
synchr

,k   fall into this 

vicinity. In the corresponding fragment of Figure 5, the functions  11
TW k  are 

truncated at the level  11 1TW k  . Their maximum values, determined when 

observing the frequency range in increments of 0.00001, are 233.5004 for 0.2   

and 6.426 for 0.95  . 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 

 
 

 

 
 

 

Figure 6. Smith-Purcell radiation into free space over dispersive medium with 

parameters 0.5k  , 0.4k   and sinusoidal boundary  z f y , 2l  , 

0.4.b   
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The last of the results discussed in this section is related to the study of Smith-

Purcell radiation on harmonics propagating in free space (in the zone 0z  ). In 

Figure 6, the boundaries Gn
  in coordinates k ,   and functions  1 ,R

nW k   (also 

truncated at  1 1R
nW k  ) are presented for the case 0.5k  , 0.4k   , 0.12  , 

0, 1, 2n    . Functions  1 ,R
nW k   characterize the conversion efficiency of the 

electron flow field into the radiation field of the harmonic  0 ,RU g k


 

 01(max 1643)R

k
W k  , and then, as k  grows, into the field of the harmonic 

 1 ,RU g k


 (  11max 50.5R

k
W k  ), and further into the field of the harmonic 

 2 ,RU g k


 (  21max 14353R

k
W k  ). Such a sequence appears because the frequency 

intervals, where each of these harmonics propagates without attenuation, do not 

overlap each other when 0.12  . The corresponding points of k ,   plane do not 

fall into the Vavilov-Cherenkov radiation region. All the resonant bursts of 

functions  1
R

nW k  occur in a small vicinity of points  
synchr

,k   (in the viewed part 

of the plane of variables k  and   they are located near the curves nG ), and the 

bursts are especially strong (in the case of  21
RW k ) in the area where one of the 

points  
synchr

,k   is located near the accumulation frequency accum 0.354k k  . 

 

 

MODELS OF THE METHOD OF EXACT ABSORBING 

CONDITIONS 
 

Consider a dielectric layer of finite thickness which is periodic along the y -

axis and homogenous along the x -axis, Figure 7a. The field 

      , , , ,s s sU g k E g k H g k
  

 is generated in the reflection ( 0z  ) and 

transition ( z h  ) zones of this dielectric layer when excited by the homogenous 

( Im 0p  ) or inhomogeneous ( Im 0p  ) plane wave 

       , : , expi i
p x p pU g k H g k i z y  


. In particular, when 1p   and 

1 ,k    it is excited by the field (1) of an electron beam with 
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 
2

2 exp 1 1 1l ka     
  

. According to the method of exact absorbing 

conditions, the amplitude coefficients  npR k  and  npT k  of the  ,sU g k


 field’s 

component 
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  
 

       
              (15) 

 

are determined from solution of the following correctly formulated [35,36] in the 

closure   of the domain   , : 0 , 0g y z y l h z         initial boundary 

value problem: 
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Figure 7. Structures with periodic interfaces: (a) dielectric layer of finite 

thickness,    , ,y z y l z    and    , ,y z y l z   ; (b) 2-D photonic 

crystal of limited thickness on metal substrate. 
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Here,  H ,x g t  is one of the three non-zero components of the total field  

 

      
   
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  

 

generated by the pulse wave       U , E , ,H , :i i i
p g t g t g t

  
 

     : H , ,i
x p pg t v z t y , 0z   (with its spectral components, we associate the 

fields of plane monochromatic waves  ,i
pU g k


), and

       1
0 E , H ,t y z xg g g t g t        ,      1

0 E ,t zg g g t        

 H ,y x g t  . Real-valued piecewise-constant functions 

       : 0, , ,g g y z y l z       and        : 0, , ,g g y z y l z       

set the relative permittivity and conductivity of the layer 0h z    of material; 
,   are the surfaces on which these functions have discontinuities. 

   
L

H , H , 0i
x x

g
D g t g t






     and  

L
H , 0x g

D g t





    are the exact 

absorbing conditions for pulse waves  U ,s g t


 generated by the wave  U ,i
p g t


 

and propagating into the reflection and transition zones of periodic dielectric layer 

across the boundaries L  and L  of the domain   in the planes 0z   and z h 

. The analytical form of these conditions used in this work is determined by the 

relations [29,31,33,35] 
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(17) 
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Here,  0 ...J  is the Bessel cylindrical function, 0 y l  , 0t  , and the asterisk   

stands for the complex conjugation.  

Computational schemes for initial boundary value problems equipped with 

absorbing conditions of this type are stable. They quickly converge and lead to 

reliable and credible physical results in the numerical analysis of anomalous and 
resonant spatial-temporal and spatial-frequency transformations of electromagnetic 

waves [38,43]. The construction of exact absorbing conditions is the most difficult 

stage in the implementation of corresponding method for diverse and complex 
problems of computational electrodynamics. A brief history of this method and 

main analytical and physical results are presented in [12,23,29,31–38]. 

At the boundaries L  and L  of the region  , the function  H ,s
x g t  is 

represented by the following series of complete on the interval 0 y l 

orthonormal system of functions   n n
y




: 

 

           H ,0, , H , , .s s
x np n x np n

n n

y t u t y y h t u t y 
 

 

 

     

 

The amplitude coefficients  npR k  and  npT k , which define all electrodynamic 

characteristics of the layer, are found from the relations [34,35] 

 

           1 10, and 0, .np np np npR k u k v k T k u k v k                    (18) 

 

Here,      
0

exp
T

f k f t ikt dt  , and T  is the upper limit of the observation 

interval 0 t T   in the numerical solution of the initial boundary value problem 

(16). 

The elements  npR k  and  npT k  of the generalized scattering matrices 

  
,np n p

R k



 and   

,np n p
T k




 are related by the energy balance equations 
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and by the reciprocity relations 
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       , ,np p p n nR R                                      (20) 

 

which are the corollaries from the Pointing’s complex power theorem and the 

Lorentz lemma [8,40]. In (19), we have used the following designations: 
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Every harmonic  ,R
nU g k


 or  ,T
nU g k


 of the field  ,sU g k


, for which 

Im 0n   and Re 0n  , is a homogeneous plane wave propagating away from a 

grating at the angle  arcsinn n k     into the reflection zone 0z  , and at the 

angle  arcsinn n k     into the transmission zone z h  . All angles are 

measured anticlockwise from the z -axis in the 0y z -plane, Figure 7a. For 

Re 0p  , the angle  arcsini
p p k    is the angle of incidence of the wave 

 ,i
pU g k


 onto a grating. According to (19), the values 

 

     
2

2 2

abs 1

0

Re Re
, ,R Tn n

np np np np

p p p

k
W k W W k R W k T



 
  

  
     (21) 

 

determine the relative part of energy lost to absorption and directed by a grating 

into the relevant spatial harmonic. 

If a grating is excited by an inhomogeneous plane wave ( Im 0p  ), the near-

field to far-field conversion efficiency (diffraction radiation efficiency) is 

determined by the value of Im ppR  (see (19)), which in this case is non-negative and 

 

  abs2Im .R T
pp np np

n

R W W W                                      (22) 

 

As follows from (20) and the equalities    n n      and 

   n n     , one can study the excitation of a reflecting grating by an 

inhomogeneous plane wave in the context of conventional for the gratings theory 

diffraction problem: a structure is excited by a homogeneous plane wave 
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 , ,i
nU g k 


 and the coefficient  ,p nR    of conversion into damped spatial 

harmonic  , ,R
pU g k 


 is calculated. 

We have described briefly the main points related to the application of the 
method of exact absorbing conditions for solving problems of diffraction of plane 

homogeneous and inhomogeneous waves    , : ,i i
p xU g k H g k 


 

   exp p pi z y    by a periodic dielectric layer of finite thickness. The case of 

inhomogeneous waves ( Im 0p  ) and, in particular, the case with 1p  , 

1Im 0  , ( 1 k   ) allows us to analyze the effects of diffraction radiation in a 

system ‘density-modulated electron flow – periodic dielectric layer’ using this 

method. Modifications that need to be made to allow the analysis of electrodynamic 

characteristics of the same layer on a perfect metal substrate (see Figure 7b) are 

obvious, and we will not dwell on them here. 
 

 

INTERFACE ‘VACUUM – 2-D PHOTONIC CRYSTAL‘. 
NUMERICAL RESULTS 

 

Consider a 2-D photonic crystal made of circular dielectric cylinders ( 8.9  , 

0  ) with directrices parallel to the x -axis, Figure 8a. The axes of the cylinders 

at the intersection with the planes x const  set the nodes of rectangular grid, which 

is infinite in the directions y  and z , its cells’ size is l l . The cylinder ‘s radius is 

0.38r l . The paper [37] is devoted to the determination of electrodynamic 

characteristics of such spatially bounded crystals when placed in a field of E -
polarized waves. Below we discuss several issues related to the excitation of such 

structures (see Figure 7) by the field of a density-modulated electron flow (plane 

inhomogeneous H -polarized wave). First, we present some auxiliary results 
confirming that a layer cut from an ideal (infinite in all directions) photonic crystal 
retains basic properties of that crystal if layer’s thickness is sufficient (but finite). 

Let us cut out (by planes z const ) a grating from a photonic crystal. The 

grating’s thickness h  varies from 3l  to 10l  ( 2l  ). The grating is excited with 

a normally incident ( 0  ) ultra-wideband H -polarized pulse 
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Figure 8. (a) 2-D photonic crystal. (b) Bandgaps (BGs) for the crystal of finite 

thickness: 10h l ; 0  . 

 

Here,  ...  is the Heaviside step function, the parameters k  and k  set the central 

frequency of the pulse  1F t  and its band k k k k k        ( 0.05 0.95k  ), 

T  and T  are delay and duration of the pulse  0U ,i g t


 [32,34]. 

Within the frequency range 0.05 0.95k  , these gratings (we call them the 

gratings of finite thickness) operate in a single mode regime [8,17], namely there 
are only principal spatial harmonics propagating without decay (harmonics with 

0n  ) in the reflection and transition zones. For the case 3h l , the band gaps’ 

contours (BGs are frequency bands where  00 0TW k  ) are only indicated (see, for 

example, Figure 3 in work [37]). But they are finally formed by structures 

containing 10 or more layers of thickness l  each, Figure 8b. Before the left 
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boundary of the first such zone, up to the values of 0.28k  , a photonic crystal of 

thickness 10h l  works as a homogenous dielectric plate, it is completely 

transparent for a normally incident plane wave at values k corresponding to half-

wave resonances along its thickness. 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Figure 9. Drifting of the crystal’s bandgap I  with changing   (changing angle of 

incidence of the primary plane wave 0
i ). 

 

Let’s conduct a computational experiment same as described above, but for the 

pulse  0U ,i g t


 covering the frequency band 0.36 0.52k   and for 0.1  , 
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0.2  , and 0.3  . It appears that with   increasing, the forbidden zone I  is 

drifting towards smaller values of k  with the width preserved, Figure 9. A larger 

value   corresponds to a larger value of the angle  0 arcsin 2i lk   of the wave 

 0 ,iU g k


 arrival onto the grating. Summarizing the information given in Figures 

8a and 9, we can conclude that the crystal with thickness 10l does not transmit H

-polarized waves, which arrive at the angles 00 56.4i    for all 

0.395 0.455k   (the width    upp low upp low2 100%kB k k k k     of this band is 

approximately equal to 14% ). 

Now excite the crystal with thickness 10h l  with the pulse 

 

         1 1 1 1 1U , : H , ; 0, 0, ,

0.5, 0.45, 150, 300.

i i
xg t v z t y v t F t

k k T T

   

    



 
               (24) 

 

The pulse (24) covers the frequency band 0.05 0.95k  , and in this case a 

homogenous plane wave  1 ,iU g k


 corresponds to it: 1 1.0k    . The field of 

this wave is associated with the field of the electron flow. At that, the diffraction 

radiation is represented by harmonics  0 ,RU g k


 and  0 ,TU g k


, which go to infinity 

strictly normally to the periodic structure. 

 
 

 

 
 

 

 
 

 

 
 

Figure 10. Efficiency of diffraction radiation into the reflection and transition 

zones of the crystal with finite thickness: 10h l , 0  . 

 

Up to the left boundary of the first forbidden band, the efficiency of wave 

 1 ,iU g k


 transformation into propagating spatial harmonics of the crystal structure 
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(diffraction radiation efficiency) is practically zero (Figure 10). The diffraction 

radiation in the transmission zone is completely absent in the intervals of k  

variation corresponding to the bandgaps I  and II . The value of  01
RW k  in these 

zones slightly differs from zero. We can confidently say that before the value

0.5k   (and the value 0.5  ), the electron flow passing near the crystal limited 

in thickness generates in its reflection and transmission zones only inhomogeneous 

waves decaying exponentially with increase of the distance from the periodic 
boundaries ‘vacuum – photon crystal’. 

 

 
 

 

 
 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
Figure 11. Efficiency of diffraction radiation into the reflection and transition 

zones of the crystal with thickness 10h l  for 0.1  , 0.2  , and 0.3  . 

 

The above-mentioned remains mostly valid and in cases when the parameter 

  is non-zero (Figure 11). The intervals of the frequency parameter k  variation 

for which  01 0TW k   move with growth of   as well as the bandgaps of the 
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crystal; here the efficiency of diffraction radiation  01
RW k  slightly increases. The 

values 0.36 0.52k   correspond to the electron beam velocities 

0.327 0.473   for 0.1  , 0.3 0.433   for 0.2  , and 0.277 0.4k   

for 0.3  . The curves  01
RW k  and  01

TW k  presented in Figure 11 had been 

calculated for these parameters. For such values of k  and  , the wave  0 ,RU g k


 

exit the crystal in its reflection zone at the angle 016.13 11.09       for 

0.1  , 033.75 22.62       for 0.2  , and 056.44 35.23       for 

0.3  . 

 
 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Figure 12. Relativistic electron flow. Efficiency of diffraction radiation near the 

normal to the flat interface ‘vacuum – crystal’: 10h l . 
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The frequencies 0.93 0.99k   (see Figure 12) correspond to the relativistic 

velocities of electrons: 0.93 0.99   for 0  , 0.929 0.989k   for 

0.001  , and 0.921 0.98   for 0.01  . With these values of k  and  , 

0.62   is the maximum value of the angle 0  between the normal to the periodic 

interface between the media and the direction of the wave  0 ,RU g k


 when it exits 

the crystal into the reflection zone does. With k  growth, the number M  of waves 

propagating in the crystal and connecting its reflection and transmission zones also 

increases. It is known [8,17], that a pair of values  ,N M , where N  is the number 

of spatial harmonics  ,R
nU g k


 and  ,T
nU g k


 propagating in the zones 0z  and 

z h   without attenuation, is one of the most general characteristics of the 

processes of monochromatic waves scattering by periodic structures. The greater 

the difference M N , the greater the number of resonances of various types 

involved in the formation of the grating response to any external excitation. As a 

rule, the energy characteristics  01
RW k  and  01

TW k  rush to their local or global 

extremes when one or another resonance occurs (this is due to the excitation of free 

oscillations of the field responsible for this resonance in the grating). 

Free oscillations of the field       , , , ,m m mU g k E g k H g k
  

 (sometimes 

they are called eigen oscillations) in those periodic structures that are considered in 

this section, for any fixed real value   can exist for no more than a countable set 

of natural complex frequencies k   without finite points of accumulation. Here, 

  is the Riemann surface, to which the solution of the stationary problem, 

corresponding to the initial boundary value problem (16), is analytically continued 

from real values of the frequency parameter k  [8,40]. The Q-factor of the 

oscillation, corresponding to Re Imk k i k  , located in the first (physical) sheet 

of the surface   (here Im 0k   for all k ), is defined as Re 2 ImQ k k .  

The excitation of oscillations with sufficiently high Q (frequency of the 

exciting signal is Rek k ) leads to sharp (resonant) changes in the energy 

characteristics of the periodic structure. The result of these changes in the situation 

presented in Figure 12 are high enough values of  01
RW k  and  01

TW k  

characterizing the efficiency of diffraction radiation. 

Consider the occurrence and development of the resonances, indicated in 

Figure12 by the numbers 1, 2 and 3. The structure under consideration is 

symmetrical with respect to the planes 2y ml , 0, 1, 2,...m     Therefore, when 



Radiation of Electromagnetic Waves Induced by Electron Beam… 31

it is excited by a wave  1 ,iU g k


, in the case of 0  , in the corresponding part of 

space, the wave formations of two symmetry classes occur; but  0 ,RU g k


 and 

 0 ,TU g k


 belong only to one of them. In the wave formations belonging to this 

symmetry class, there are no free oscillations that could cause a resonance rise of 

the values  01
RW k  and  01

TW k  in the frequency interval 0.96 0.973k  ; here 

equality  01 0TW k   holds. When passing to the values 0  , after corresponding 

changes in configuration of their field, the wave formations of two different classes 

of symmetry are combined into one general class of symmetry. In this class, there 

are already free oscillations, contributing to the resonant growth of  01
RW k  and 

 01
TW k  at the frequencies close to the real components Re k  of their eigen 

frequencies k . In the case of resonance 1 (it occurs at the frequency 0.96165k   

for 0.01  ), this is the oscillation under study, when the crystal is excited with 

the pulse 

 

         

     

2
2

1 1 1 1

2

U , : H , ; 0.01, 0, exp 4

cos ,

0.96165, 550, 2500, 5000, 15000.

i i
xg t v z t y v t t T

k t T T t F t

k T T T

 





       
  

     

    


 

 

 

(25) 

 

This pulse covers a very narrow frequency band 0.95756 0.96574k   (the 

bandwidth is 0.85%), which does not include real values of eigen frequencies of 
other free field oscillations. Therefore, after turning off the source (25), the field of 

free oscillation dominates in the total field of the structure (Figure 13a), which 

causes the resonance under study. The behavior of the function    01Reu t t T 

, t T  (see Figure 13b) and the enveloping function  exp ImA k t T    define 

unambiguously the frequencies Re 0.9617k  , Im 0.00105k    and 

Re 2 Im 460Q k k   [34,44–46]. 

Now we shut the access to the crystal’s transition zone with a metal substrate; 

the crystal thickness is 10h l  (see Figure 2b), and it is excited by the pulse  
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         1 1 1 1 1U , : H , ; 0.1, 0, ,

0.6, 0.5, 150, 300,

i i
xg t v z t y v t F t

k k T T

   

    



 
              (26) 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Figure 13. Excitation of the crystal structure by the pulse (25). (a) Pattern of 

 H ,x g t , g , 14000t   corresponding to eigen oscillation. (b) Behavior of 

 01Reu t , 0 15000t  . 

 

covering the band 0.1 1.1k  . In the interval 0.9 1.1k   of this band, the wave 

 1 ,iU g k


, whose field is identified with the field of electrons flying over a periodic 

structure with speed  , generates plane waves  0 ,RU g k


 and  1 ,RU g k


, 

propagating in the direction of increasing z  at the angles  0 k  and  1 k . All 

principal characteristics of diffraction radiation, manifesting in this frequency 

range, are presented in Figure 14. On the frequency 0.9948k   (in Figure 14, the 

resonance 1 corresponds to this frequency),  01 0.07RW k   and  11 5.0RW k  , 

which means that almost all energy generated in the system ‘crystal – electrons 

flow’ is carried away into free space by the wave  1 ,RU g k


 ( 1 64.78    – reverse 

radiation). On the frequency 1.0668k   (in Figure 14, the resonance 2 corresponds 



Radiation of Electromagnetic Waves Induced by Electron Beam… 33

to it),  01 4.12RW k   and  11 7.0RW k  , which means that the generated energy is 

divided approximately in equal parts between the waves  0 ,RU g k


 and  1 ,RU g k


, 

propagating from the periodic interface at the angles 0 5.38     and 

1 57.53 .    On the frequency 1.0728k   (in Figure 14, the resonance 3 

corresponds to it),  01 11.6RW k   and  11 2.1RW k  , which means that the forward 

radiation 0( 5.35    ) is significantly more powerful than the reverse one 

1( 57.03   ). 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

Figure 14. Characteristics of direct and reverse diffraction radiation in the system 

‘electron flow – crystal on metal substrate’: 0.1  . 
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In the part of the frequency band 0.1 0.9k   covered by the pulse (26), the 

wave  1 ,iU g k


 generates only one plane wave  0 ,RU g k


, propagating at the angle 

 0 k  in the direction of growing z . All principal characteristics of the effects of 

diffraction radiation are presented in Figure 15. Up to the first bandgap of the 

crystal, the magnitude  01
RW k  varies within the limits 0.0 0.01 . For frequencies 

k  from the first crystal’s bandgap, the relation  01 0RW k   holds. The frequencies 

of the second bandgap, in contrast, are characterized by sharp bursts of the  01
RW k

magnitude (up to  01 1.5RW k  ) at the left end of the band and at one of its inner 

sections, which are then replaced by intervals with a smooth change of  01
RW k  

within 0.05 0.15  and within a section where  01 0RW k  . The highest value 

 01 6.21RW k   corresponds to the frequency 0.8268k  , the electron flow velocity 

0.752  , and the angle 0 6.95   
 of the  0 ,RU g k


 wave’s departure. 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

Figure 15. Regime of single-mode conversion of the inhomogeneous plane wave 

 1 ,iU g k


 into the homogeneous wave  0 ,RU g k


, propagating without attenuation 

in the reflection zone of the crystal on metal substrate: 0.1  . 
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PHOTONIC-CRYSTAL STRUCTURES FOR ELECTRON-WAVE 

SYSTEMS GENERATING THE SMITH-PURCELL RADIATION 
 

One of the main technological problems arising in the creation of electronic 

devices for terahertz range is associated with the decrease in geometric dimensions 
of electrodynamic systems’ elements and, in particular, with the decrease in periods 

of various retardation structures frequently used in such devices. New opportunities 

can be realized using the results of rapidly developing physics and technology of 
artificial media with unusual properties – photonic crystals. In such crystals, to 

allow interaction with an electron beam, the voids are arranged, and they have 

pronounced waveguide properties in bandgaps of an ideal periodic structure [37]. 

In addition, exploring such local crystals’ defects, it is possible to create open 
resonant structures with rather high quality factors. Thus, a hollow channel in a 

photonic crystal (voids in crystal structure) can be used to transmit a linear electron 

flow. On frequencies outside of forbidden zones of a periodic structure, this flow 
will generate Smith-Purcell or Vavilov-Cherenkov radiation into space surrounding 

the channel. And on frequencies from forbidden zones, the electron flow will 

generate slow and fast waves running through the channel. Since at present there 

are sufficiently developed technologies for producing crystals with a characteristic 

cell size smaller than micron, it seems very promising to use these periodic 

structures in resonant and non-resonant terahertz devices. To do so, it is necessary 
to ensure that slow waves of a certain polarization exist in the waveguide channel 

of a crystal: if their phase velocity coincides with the electron flow speed 

(synchronism mode), the efficiency of diffraction radiation or the excitation 
efficiency of waves traveling along the channel increases manifold. 

Calculations of dispersion diagrams for waves in regular and defected photonic 

crystals were made using the freely distributed MIT Photonic Bands software 
package, which is based on the plane wave method and is widely used for 

electrodynamic modeling of various photonic crystal. The simplest way to form a 

waveguide in an infinite photonic crystal is to create a linear defect, namely changes 
in physical properties of one or more elements in adjacent layers. Figures 16 and 

17 show several versions of hollow waveguides suitable for the implementation of 

diffraction radiation generated by a flat density-modulated electron beam. 
Dispersion curves of guided waves in the forbidden zones (darkening and oblique 

shading) and transparency zones of corresponding regular photonic crystals are also 

presented in Figures 16 and 17. Here, y  is the longitudinal propagation constants 

of H -polarized waves ( 0x y zE H H   ) in a linear crystal with defects’ 
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characteristic size a  ( a  is distance between the axes of hollow circular cylinders 

of radius 0.45r a  in a medium with permittivity 12.0  ). Dashed tilted lines 

are the light lines, they separate domains that correspond to the bulk (fast) and 

surface (slow) wave regimes of photonic crystal waveguide. In the detailed images 
of the structures under consideration all the proportions are preserved. 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
Figure 16. Dispersion characteristics of waveguiding channels in 2-D photonic 

crystal. 

 
Calculations presented in [47–53] showed that the minimum phase velocity of 

slow eigen waves in channels with simple periodic boundaries, made by removing 

a plane-parallel layer of finite thickness from a crystal, is close to the velocity of 
light. To obtain a larger retardation rate for such waves, we changed configuration 

of periodic boundaries in several ways. Two of them are presented in Figures 16 

and 17. In the lower fragment of Figure 16, hollow cylinders bordering the 

waveguide channel have smaller radius ( 0.25a ) compared with elements of the 

regular part of the photonic crystal. As a result, it was possible to reduce the phase 

velocity yk    of the wave presented by the dispersion curve 1 from 0.82   
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(upper fragment) to 0.64   (lower fragment). The points on the plane of the 

variables k  and y  corresponding to this numerical experiment are marked with 

crosses in Figure 16. 

The dispersion characteristics of the channel, which boundaries are lamellar 

gratings, are presented in Figure 17. For H -polarized waves, in the frequency range 
under consideration, the corresponding regular photonic crystal has two forbidden 
bands marked by oblique hatching. Dispersion curves crossing these zones 

correspond to the modes localized in the region of periodicity defect. Phase 

velocities of all slow waves are easily determined from the data given in Figure 17. 
Thus for the cross-marked point on the dispersion curve from the first bandgap of 

a regular crystal, the phase velocity of the corresponding surface wave is 

approximately equal to 0.68. Configuration of the wave field at this point (  ,yE y z  

pattern) is shown in the bottom of Figure 17 on the fragment 2. The fragment 1 

shows configuration of the wave field from the second forbidden zone with 

propagation constant 2 0.44ya   . The corresponding dispersion curve is 

located closer to the low limit of forbidden zone. 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
Figure 17. Same as in Figure 16, but for another geometry of waveguiding 

channel’s periodic boundaries. 
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Symmetric (curve 1) and antisymmetric (curve 2) with respect to the plane 

0 ,x y  bulk (fast) and surface (slow) modes are realized in the frequency region 

3.0 2 4.5ka    in the waveguide which dispersion characteristic are presented 

in the upper fragment of Figure 16. It should be noted that only symmetric modes 

can effectively interact with linear electron beams due to nonzero field intensity on 
the waveguide axis. Figure 18 shows spatial transverse distributions of the electric 

field longitudinal component yE  corresponding to this modes in the points where

2 0.45ya   . Vertical dashed lines indicate the boundaries of waveguide hollow 

channel. Field intensity drastically decreases within two periods of the photonic 

crystal waveguide boundary. Maximum intensity of electric field occurs on the 

boundaries of waveguide channel. Electric field value for the symmetric mode on 
the waveguide channel axis is about two times less than maximum value on the 

boundaries of hollow channel. Therefore, an electron beam occupying one half of 

the channel width can provide sufficient interaction impedance. 

 
 

 

 

 

 

 
 

 

 
 

Figure 18. Longitudinal components of the slow waves’ electric field represented 

by the dispersion curves 1 and 2 on the upper fragment of Figure 16 in the cross 
section of corresponding waveguide channel. 

 

So, 2-D photonic crystals waveguides with different configurations of hollow 
channel periodic boundaries are investigated. Dispersion characteristics of these 

waveguides are calculated. The focus was set on slow wave modes in bandgaps of 

photonic crystals. Beams of charged particles interact with those modes only in 
devices implementing the excitation of slow and fast electromagnetic waves 

traveling through channels. 
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THE FINE STRUCTURE OF SMITH-PURCELL RADIATION 
 

In the final section of this chapter, we present experimental results that reveal 

several not yet mentioned details important for the design of real-world systems 
with Smith-Purcell radiation. That is the question of so-called ‘fine structure of 

diffraction radiation’, which is usually out of consideration when solving many 

applied problems, and this may lead to results that are very far from expected ones. 

This phenomenon appears because an electron flow moving with speed   , which 

is modulated by a high-frequency field and focused by a magnetic field, generates 
not only the wave exciting a periodic structure, but a combination of waves which 

includes space-charge waves (SCWs) and cyclotron waves (CWs). The SCWs and 

CWs phase velocities, scw
m  and cw

m , are determined by the relations 

 

 scw plasma 11 1m   
       and    cw cyclotr 11 1m m   

    .          (27) 

 

Here, m  is the number of a cyclotron wave (with 0m   that is so-called synchronic 

electron wave, SEW), plasma  and cyclotr are the plasma and cyclotron frequencies, 

  is a frequency corresponding to the wavenumber k . plasma  is proportional to 

the square root of the current density divided by  , and cyclotr  is proportional to 

the external magnetic field induction. It is clear that each of these waves generate 

its own radiation field consisting of propagating harmonics  , ,R
nU g k 


  ( n  is such 

that  Re , 0n k   ) when moving with different phase velocities   over a 

reflective, for example, periodic (with period l ) structure. Supposing, same as 

before,  1 2 1l k      , we derive    12 2 1n l n n l        

and formulate the condition guaranteeing that a harmonic with the number n  will 

be propagating:  2 1k k n l    . It is obvious that this can only be a 

harmonic with a non-positive number. The angle  ,n k  , at which this harmonic 

exits the grating, is determined by the relation (see previous sections) 

   , arcsinn nk k         arcsin 1 2 1n kl     . 

Differences in the spatial orientation of harmonics corresponding to different 

waves associated with a density-modulated and focused electron beam allow 
experimental studies of the fine structure of generated field. For millimeter waves, 

it was first recorded and studied in details in 1982–1987 [54–58]. The obtained 
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results significantly changed the concept of both the spatial-angular distribution and 

the polarization characteristics of radiation field. For the first time peculiarities in 
radiation processes associated with the magnitude and direction of magnetic field 

focusing an electron beam have been also investigated. We note that the question 

of the influence of space charge waves on characteristics of Smith-Purcell radiation 
have been raised earlier in [20], but the authors concluded that due to low density 

of electron current in the optical range, the corresponding effects may be neglected.  

Electrons generating cyclotron waves are twisted into a spiral, which moves 

forward with the speed   and rotates in a fixed cross-section with the frequency 

cyclotr  [59]. This affects polarization characteristics of the radiation field 

corresponding to such waves. 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
Figure 19. Electron-vacuum unit of the experimental setup and its schematic 

representation. 

 

An experimental study of an electron beam radiation in the millimeter 
wavelength range have been carried out on a quasi-optical complex described in 

[56] (see also Figure 19). The complex was placed in the gap of a focusing 

electromagnet 70mm  in length. The measurements have been carried out according 

to the following scheme. The tape-shaped electron beam 1 with the cross section 
23.8 0.1mm  and the current density less than 250 A cm  was formed by the 

electron gun 2 with the accelerating voltage 1.0 4.0kV , and after passing near the 

reflective grating 3 (lamellar grating with period 0.4l mm  and length 40mm ) was 

deposited on the collector 4. The beam was focused by magnetic field, which 
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induction could be changed within the interval 0.08 0.5T  in the central part of 

the gap. There was also the possibility of reversing the direction of the magnetic 

induction vector. The electron flow was modulated by the short-focus, compact 

diffraction radiation generator with a spherical mirror 5 (radius of the mirror is 

15mm ) and a segment of the diffraction grating 18mm  in length. The modulator 

was tuned by changing the distance between the grating and the spherical mirror. 

The radiation investigated in the experiment was generated by the diffraction 

of the density-modulated electron beam field by a part of the reflective grating 

22mm  in length, not related to the modulator. Structurally, the modulator, the 

grating, the electron gun and the collector are in vacuum inside the thin-walled 

hemisphere glass cylinder 6, which center is aligned with the grating’s center. The 

measuring unit of the complex enabled the determination of the following principal 

characteristics of the diffraction radiation 7: the angle   between the direction of 

the electron beam velocity vector and the direction of the radiation wave 

propagation in the plane 0y z , the orientation and width of corresponding lobe of 

radiation pattern, the polarization state of the radiated field, and the radiation power. 

The interval of measured values   was limited by the electromagnet coils and was 

50 130  . The error of angular measurements did not exceed 0.5 . The angle of 

rotation of the polarization plane of the radiated field was set with 5  accuracy. 

The velocity   of the electron flow was regulated by the anode voltage of the gun 

and the frequency of modulation k  ( 48 80f GHz  ), via mechanical adjustment 

of the mirror 5 position. The polarization analyzer consisted of the conical horn 8, 

a waveguide junction connected to it with the rotating section 9 loaded onto a 

semiconductor amplitude modulator, and a crystal detector with an indicator. The 

measurement error of the orientation angle of the polarization ellipse was about 1 .  

The maximum intensity in certain lobes of the diagram peaked 21.0 3.0 .mW cm  

To eliminate the reflections of the wave emitted from the device, metal surfaces of 

the installation have been shielded with an absorbing material.  
In the general case, a multilobe structure was observed, due to the excitation of 

electron waves in the electron beam in the measured patterns of diffraction 

radiation. At currents of the order 230 A cm  and the focusing magnetic fields of 

0.25 0.5T , the difference between the angles of radiation excited by fast (minus 

sign) and slow (plus sign) spatial charge waves propagating in the stream was equal 

to 15 25  , and for SCWs and synchronic electron waves was equal to 8 12  . 

Mechanical adjustments of the modulator provided the excitation of radiation by 

one or several electron waves at fixed electron beam velocity  . 
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In one of the experiments with the accelerating voltage 1100V  and the 

frequency 52.6f GHz  in the working range of angles  , the radiation was 

excited by two electron waves, namely fast SCW and SEW. For the voltage 2255V  

and 67.5f GHz , the radiation was excited only by slow SCW. For the voltage 

2545V  and 75.0f GHz , there were three lobes corresponding to the excitation 

of radiation of slow SCW ( 71   ), fast SCW ( 94   ), and SEW ( 83   ) in 

the radiation pattern. The measured radiation angles were somewhat different from 

the theoretical ones, which is obviously caused by the reduction of plasma 

frequency due to finite dimensions of the electron beam, and the measurement error. 

We have studied experimentally the change in intensity of slow SCW radiation 

and the magnitude of the angle   between the major axis of polarization ellipse of 

the radiated field and the electron velocity vector when the accelerating voltage 

changes within the modulator generation zone 2180 2350V . In this experiment, 

the ellipticity coefficient varied within the interval 0.0 0.15  for the entire range 

the accelerating voltage, i.e. the polarization remained almost linear. Significant 

changes of  occurred in the regime of soft generation. The range of   variation 

decreased when the amplitude of the field in the modulator increased. The 

increasing accelerating voltage sets the value of   at its minimum 12 15    . 

With the decrease in the electron current density, the range of  over the generation 

zone of the modulator decreased while maintaining the general form of the 

corresponding dependence. The small deviation in the radiation field polarization 

from H -polarization is apparently due to the contribution of cyclotron (transverse) 
electron waves to this radiation. This assumption is confirmed by experimental 

studies of the influence of focusing magnetic field on the polarization state of 

diffraction radiation. It has been established that with increasing magnetic field H


, the angle   for radiation generated by fast and slow SCWs increases and depends 

on the direction of H


. A characteristic feature of the results obtained is the presence 
of a jump in the orientation of the polarization plane of radiation when the direction 

of the focusing magnetic field is reversed. 

A distinctive feature of synchronic electron waves is the fact that they 

propagate with the phase velocity  , and it is difficult to detect or identify them 

using diffraction radiation patterns. However, a theoretical analysis showed [55] 

that under the influence of a space charge, SEWs can be split into left- and right-
polarized waves with separated values of phase velocities (fast and slow SEWs). 

The implementation of this possibility has been confirmed experimentally. It is 

shown that with well-defined relations between the current density and the 
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magnitude of the focusing magnetic field in the electron stream, one can detect the 

presence of two SEWs differing in the amplitude and polarization structure. The 

orientation   of the polarization ellipses for these signals was almost the same in 

magnitude and opposite in sign. When studying the behavior of   and the ellipticity 

coefficient in parameters region corresponding to the splitting, it was found that the 

high sensitivity of ellipticity coefficient to changes in the beam parameters is a 

feature distinguishing the radiation field generated by SEWs from the field 
generated by spatial charge waves. 

 

 
 

 

 
 

 

 
 

 

 
Figure 20. Normalized power (curve 1), the ellipticity coefficient (curve 2), and 

the rotation angle   of polarization ellipse (curve 3) of the SWEs’ radiation field 

when the accelerating voltage U  is changing. 

 
The statement is confirmed by the results presented in Figure 20. The ellipticity 

coefficient varied from 0.01 to 1.0, and the radiation field polarization changed 

from linear to circular. As the accelerating voltage rises, slow SEW ( 20 40    ) 

was excited first, and then, when going through the dip ( 2520U V ) associated 

with the splitting, fast SEW ( 20 40      ) is excited too. The arrangement of 

polarization planes in main lobes of the diffraction radiation pattern, which is 
symmetric with respect to the motion path of unperturbed electrons, suggests that 

in this experiment we observed the fine structure of diffraction radiation caused by 

the excitation of synchronous electron waves, SEWs. The orientation angle   of 

the polarization ellipse of their radiation field depends on magnitude and direction 

of the focusing magnetic field. 
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CONCLUSION 
 

An electron flow moving near any periodic structure is a common thing in 

many instruments and devices of vacuum electronics and, in general, is already 
rather well-studied [2,20,21,47]. Here, in this chapter, we study peculiar features of 

this problem, which are specified by properties of materials used to construct 

periodic structures interacting with the flow. These are artificial materials that 
exhibit electromagnetic properties which are not observed in natural, traditional 

materials. And the main point of this work is to demonstrate the possibility to 

simulate accurately the interaction of moving charged particle beams with 
structures made of such materials, and the possibility to obtain reliable information 

about features of spatial-temporal and spatial-frequency transformations of 

electromagnetic waves associated with this interaction. A density-modulated 
electron beam moving near a periodic boundary dividing natural and artificial 

media generates Smith-Purcell or Vavilov-Cherenkov radiation. A number of 

physical system where such radiation occurs are detailed in the chapter, including 
plasma-like medium and photonic crystals bordered with vacuum. A significant part 

of the chapter is devoted to the fine structure of Smith-Purcell radiation, it is an 

important, but often overlooked topic. Problems of numerical modeling and 
analysis of Smith-Purcell and Vavilov-Cherenkov radiation are considered in this 

chapter within the framework of the given current approximation. To avoid 

disadvantages of this approximation, the authors have already developed and tested 

methods of frequency and time domains, which are based on the same principles as 
the methods that have been briefly described above. 
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