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Abstract. In this paper we consider acoustic equation. The equation
by separation of variables is reduced to a boundary value problem for
the Helmholtz equation. We consider problem for the Helmholtz equa-
tion. We reduce the solution of the operator equation to the problem of
minimizing the functional. And we build numerical algorithm for solv-
ing the inverse problem. At the end of the article is given the numerical
calculations of this problem.
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1 Introduction

For mathematical modelling of physical processes and the phenomena occurring
in nature, it is necessary to face ill-posed problems, including with the Cauchy
problem for the Helmholtz equation. The Helmholtz equation is used in many
physical processes associated with the propagation of waves and has numerous
applications. If the law of oscillations of the physical medium harmonically de-
pends on time, then the wave equation can be transformed to the Helmholtz
equation. In particular, the Cauchy problem for the Helmholtz equation de-
scribes the propagation of electromagnetic or acoustic waves[1]. The aim of the
paper is that an effective numerical solution for investigating inverse elliptic-type
problems by the Landweber method. A significant theoretical and applied con-
tribution to this topic has been accumulated in monographs by A.N. Tikhonova,
M.M. Lavrentyeva, V.K. Ivanova, A.V. Goncharsky. The Cauchy problem for
elliptic equations is of fundamental importance in all inverse problems. An im-
portant application of the Helmholtz equation is the acoustic wave problem,
which is considered in the works of DeLillo, Isakov, Valdivia, Wang (2003)]
L. Marin, L. Elliott, P. J. Heggs, D. B. Ingham, D. Lesnic and H. Wen. The
Landweber method is effective and makes it possible to substantially simplify
the investigation of inverse problems [2], [3].
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2 Formulation of the Problem

Consider the acoustics equation [4] in domain Q = Ω × (0,+∞), where Ω =
(0, 1)× (0, 1):

c−2(x, y)Utt = ∆U −∇ ln(ρ(x, y))∇U (x, y, t) ∈ Q (1)

Suppose that a harmonic oscillation regime was established in Ω:

U(x, y, t) = u(x, y)eiωt, (x, y, t) ∈ Q (2)

Putting (2) into (1) we obtain Helmholtz equation:

− ω2c−2u = ∆u−∇ ln(ρ(x, y))∇u, (x, y) ∈ Ω

We consider the initial-boundary value problem:

− ω2c−2u = ∆u−∇ ln(ρ(x, y))∇u, (x, y) ∈ Ω, (3)

u(0, y) = h1(y), y ∈ [0, 1], (4)

u(x, 0) = h2(x), x ∈ [0, 1], (5)

ux(0, y) = f1(y), y ∈ [0, 1], (6)

uy(x, 0) = f2(x), x ∈ [0, 1]. (7)

Problem (3) — (7) appears ill-posed. For a numerical solution of the problem,
we first reduce it to the inverse problem Aq = f with respect to some direct
(well-posed) problem. Further, we reduce the solution of the operator equation
Aq = f to the problem of minimizing the objective functional J(q) = 〈Aq −
f,Aq − f〉. After calculating the gradient J ′q of the objective functional, we
apply the method of Landweber to minimize it [5], [6].

3 The Conditional Stability Theorem

Let us consider the initial-boundary value problem:

∆u = 0, (x, y) ∈ Ω, (8)

u(0, y) = f1(y), ux(0, y) = h1(y), y ∈ [0, 1], (9)

u(x, 0) = f2(x), uy(x, 0) = h2(x), x ∈ [0, 1], (10)

(11)

Let us divide the problem into two parts:

Problem 1

∆u = 0,

u(0, y) = f1(y),

u(x, 0) = 0,

ux(0, y) = h1(y),

uy(x, 0) = 0.

Problem 2

∆u = 0,

u(0, y) = 0,

u(x, 0) = f2(x),

ux(0, y) = 0,

uy(x, 0) = h2(x).
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Problem 1, we continue the field along the axis x, then at y = 1 we can admit
the boundary at zero. And also, problem 2, we continue the field along the axis y,
then at x = 1 we can admit the boundary at zero. Suppose h2(x) = 0, h1(y) = 0.

Problem 1

∆u = 0, (x, y) ∈ Ω, (12)

u(0, y) = f1(y), y ∈ [0, 1], (13)

u(x, 0) = 0, x ∈ [0, 1], (14)

ux(0, y) = 0, y ∈ [0, 1], (15)

u(x, 1) = 0, x ∈ [0, 1]. (16)

Problem 2

∆u = 0, (x, y) ∈ Ω, (17)

u(0, y) = 0, y ∈ [0, 1], (18)

u(x, 0) = f2(x), x ∈ [0, 1], (19)

u(1, y) = 0, y ∈ [0, 1], (20)

uy(x, 0) = 0, x ∈ [0, 1]. (21)

Theorem 1 (of the conditional stability). Let us suppose that for f1 ∈
L2(0, 1) and there is a solution u ∈ L2(Ω) of the problem (12) — (16). Then
the following estimate of conditional stability is right

1∫
0

u2(x, y)dy ≤

( 1∫
0

f21 (y)dy

)1−x( 1∫
0

u2(1, y)dy

)x

. (22)

Theorem 2 (of the conditional stability). Let us suppose that for f2 ∈
L2(0, 1) and there is a solution u ∈ L2(Ω) of the problem (17) — (21). Then
the following estimate of conditional stability is right

1∫
0

u2(x, y)dx ≤

( 1∫
0

f22 (x)dx

)1−y( 1∫
0

u2(x, 1)dx

)y

. (23)

More details proof such estimates are shown in works [7], [8].

4 Reduction of the Initial Problem to the Inverse
Problem

Let us show that the solution of the problem (3) — (7) is possible to reduce
to the solution of the inverse problem with respect to some direct (well-posed)
problem [9], [10].

As a direct problem, we consider the following one

− ω2c−2u = ∆u−∇ ln(ρ(x, y))∇u, (x, y) ∈ Ω, (24)

u(0, y) = h1(y), y ∈ [0, 1], (25)

u(x, 0) = h2(x), x ∈ [0, 1], (26)

u(1, y) = q1(y), y ∈ [0, 1], (27)

u(x, 1) = q2(x), x ∈ [0, 1]. (28)
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The inverse problem to problem (24) — (28) consist in defining the function
q1(x), q2(y) by the additional information on the solution of direct problem.

ux(0, y) = f1(y), y ∈ [0, 1], (29)

uy(x, 0) = f2(x), x ∈ [0, 1]. (30)

We introduce the operator

A : (q1, q2) 7→ (ux(0, y), uy(x, 0)). (31)

Then the inverse problem can be written in operator form

Aq = f.

We introduce the objective functional

J(q1, q2) =

1∫
0

[
ux(0, y; q1, q2)− f1(y)

]2
dy +

1∫
0

[
uy(x, 0; q1, q2)− f2(x)

]2
dx.

(32)

We shall minimize the quadratic functional(32) by Landweber’s method. Let the
approximation be known qn. The subsequent approximation is determined from:

qn+1 = qn − αJ ′(qn) (33)

here α ∈ (0, ||A||−2) [4], [9],[10].
Algorithm for solving the inverse problem

1. We choose the initial approximation q0 = (q01 , q
0
2);

2. Let us assume that qn is known, then we solve the direct problem numerically

uxx + uyy −
(ρx
ρ
ux +

ρy
ρ
uy

)
+
(ω
c

)2
u = 0, (x, y) ∈ Ω,

u(0, y) = h1(y), u(1, y) = qn1 (y), y ∈ [0, 1],

u(x, 0) = h2(x), u(x, 1) = qn2 (x), x ∈ [0, 1].

3. We calculate the value of the functional

J(qn+1) =
1∫
0

[
ux(0, y; qn+1

1 )− f1(y)
]2
dy +

1∫
0

[
uy(x, 0; qn+1

2 )− f2(x)
]2
dx;

4. If the value of the functional is not sufficiently small, then go to next step;
5. We solve the conjugate problem

ψxx + ψyy +
(ρx
ρ
ψ
)
x

+
(ρy
ρ
ψ
)
y

+
(ω
c

)2
ψ = 0, (x, y) ∈ Ω,

ψ(0, y) = 2
(
ux(0, y; q1)− f1(y)

)
, ψ(1, y) = 0, y ∈ [0, 1],

ψ(x, 0) = 2
(
uy(x, 0; q2)− f2(x)

)
, ψ(x, 1) = 0, x ∈ [0, 1].

6. Calculate the gradient of the functional J ′(qn) =
(
− ψx(1, y),−ψy(x, 1)

)
;

7. Calculate the following approximation qn+1 = qn − αJ ′(qn), then turn to
step 2;;
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5 Numerical Solution of the Inverse Problem

First we consider the initial problem in a discrete statement. We carry out a
numerical study of the stability of the problem in a discrete statement [11].

Discretization of the original problem
The corresponding difference problem for the original problem (3) — (7) has

the following

ui+1,j − 2ui,j + ui−1,j
h2

+
ui,j+1 − 2ui,j + ui,j−1

h2

− ρi+1,j − ρi−1,j
2hρi,j

· ui+1,j − ui−1,j
2h

− ρi,j+1 − ρi,j−1
2hρi,j

· ui,j+1 − ui,j−1
2h

+
(ω
c

)2
ui,j = 0, i, j = 1, N − 1,

u0,j = hj1, j = 0, N,

ui,0 = hi2, i = 0, N,

u1,j = hj1 + h · f j1 , j = 0, N,

ui,1 = hi2 + h · f i2, i = 0, N.

For convenience, we introduce the new denotations ai,j = 1 +
ρi+1,j − ρi−1,j

4ρi,j
,

bi,j = 1 +
ρi,j+1 − ρi,j−1

4ρi,j
, c = −4 +

(ω · h
c

)2
,

di,j = 1− ρi+1,j − ρi−1,j
4ρi,j

, ei,j = 1− ρi,j+1 − ρi,j−1
4ρi,j

.

ai,jui−1,j + bi,jui,j−1 + cui,j + di,jui,j+1 + ei,jui+1,j = 0, i, j = 1, N − 1,
(34)

u0,j = hj1, j = 0, N,
(35)

ui,0 = hi2, i = 0, N,
(36)

u1,j = hj1 + h · f j1 , (37)

ui,1 = hi2 + h · f i2, i = 0, N.
(38)

Let us construct a system of difference equations [12, p.379]

A ·X = B. (39)

Here A — of matrix (N + 1)
2

size , X — unknown vector of the form

X = (u0,0, u0,1, u0,2 . . . u0,N , u1,0, u1,1, u1,2 . . . u1,N , . . . uN,0, uN,1, uN,2, . . . uN,N ) ,

B — data vector (boundary and additional conditions).
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Analysis of the stability of the matrix of the initial problem

Description of the numerical experiment c = 1, ω = 0.5

h1(y) =
1− cos(8πy)

4
, h2(x) =

1− cos(8πx)

4
,

q1(y) =
1− cos(8πy)

4
, q2(x) =

1− cos(8πx)

4
,

ρ(x, y) = e−
(x−0.5)2+(y−0.5)2

2b2 , b = 0.1.

Table 1 presents the results of a singular decomposition of the matrix of the
initial problem A and a direct problem AT for the values N = 50

Matrices σmax(A) σmin(A) µ(A)

AT 743.404 0.015 47056.2

A 743.404 9.07 · 10−19 8.19 · 1020

Table 1. Singular decomposition of matrices with size (N + 1)2

The matrix of the original problem has a poor conditionality [13].
Numerical Results of the Inverse Problem by the Landweber Method
In this section, to solve the two-dimensional direct problem for the Helmholtz

equation, the finite element method is used. Triangulation with the number of
triangles — Nt; vertices — Nv; and the number of points at the border — N .
The problem is solved using the computational package FreeFEM++.
Description of the numerical experiment c = 1, ω = 0.5

h1(y) =
1− cos(8πy)

4
, h2(x) =

1− cos(8πx)

4
,

q1(y) =
1− cos(8πy)

4
, q2(x) =

1− cos(8πx)

4
,

ρ(x, y) = e−
(x−0.5)2+(y−0.5)2

2b2 , b = 0.1.

Number of iterations, n J(q) ‖uT − ũ‖
10 0.8158 0.1491

100 0.6254 0.1013

300 0.3788 0.0553

365 0.3323 0.0538
Table 2. Solution results by the Landweber iteration method without noise
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Fig. 1. a) The value of the functional by iteration, b) Ω area grid with N number of
points on the border

6 Conclusion

The paper is devoted to the investigation of an ill-posed problem by initial-
boundary value problems for the Helmholtz equation, the construction of nu-
merical optimization methods for solving problems, the construction of corre-
sponding algorithms and the computational experiments of this problem.

The numerical results of the solution of the initial-boundary value problem
for the Helmholtz equation, in which, together with the data on the surface, the
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Fig. 2. The figure a) comparison of boundaries u(x, y) at x = 0.25, the figure b)
comparison of boundaries u(x, y) at y = 0.25
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data in depth are used, show that if we want to calculate the squaring problem,
it is better to measure the data larger and deeper and start solving the problem
in a large square . This gives a more stable solution.
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Fig. 3. The figure a) comparison of boundaries u(x, y) at x = 0.5, the figure b) com-
parison of boundaries u(x, y) at y = 0.5
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