МИИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН КОМИТЕТ НАУКИ

НАЦИОНАЛЬНЫЙ ЦЕНТР БИОТЕХНОЛОГИИ

международный симпозиум **АСТАНА БИОТЕХ 2018**

МАТЕРИАЛЫ Астана, 12-13 июня 2018 г.

PROCEEDINGS
OF THE INTERNATIONAL SYMPOSIUM
Astana Biotech 2018

УДК 60 (063) ББК 30.16 А 89

Под общей редакцией

Раманкулова Е.М. PhD, профессор, академик КазНАЕН

Редакционная коллегия:

Муканов К.К., д.в.н., профессор; Жумабекова М.Б., к.х.н.; Турсунбекова А.Е., к.б.н.; Мукантаев К.Н., д.б.н.; Какимжанова А.А., д.б.н., Жолдыбаева Е.В., к.б.н., Хасенов Б.Б., к.х.н., Огай В.Б., к.б.н., Календарь Р.Н., к.б.н.; Манабаева Ш.А. к.б.н.; Курманбаев А.А., д.б.н., Тарлыков П.В., PhD; Шустов А.В., к.б.н.; Шевцов А.Б., к.б.н.; Шульгау З.Т., к.м.н.

А 89 АСТАНА БИОТЕХ 2018: Материалы Международного Симпозиума «Астана Биотех 2018» - Астана: НЦБ, 2018 – 194 с.

ISBN 978-601-7343-37-8

Материалы Международного Симпозиума «Астана Биотех 2018», приуроченного к 20-летию г. Астана, освещают достижения ученых и специалистов в области биотехнологии здравоохранения, сельского хозяйства и охраны окружающей среды.

УДК 60 (063) ББК 30.16

ISBN 978-601-7343-37-8

©РГП «Национальный центр биотехнологии» КН МОН РК, 2018

Турганбаева А.К., Какимжанова А.А., Шек Г.О., Жаныбекова Ж.Т. Создание новых сортов	
пшеницы, устойчивых к неблагоприятным условиям среды	146
Туржанова А.С., Хапилина О.Н., Календарь Р.Н. Изучение полиморфизма генов холодоустой-	
чивости многолетних трав	147
Туржанова А.С., Хапилина О.Н., Рукавицина И.В., Календарь Р.Н. Оптимизация метода	
экстракции ДНК из фитопатогенных грибов	148
Турсунов К.А., Булашев А.К., Сураншиев Ж.А., Акибеков О.С., Сыздыкова А.С. Серологичес-	
кая диагностика бруцеллеза на основе рекомбинантных белков	149
СЕКЦИЯ 3. Биотехнологии для охраны окружающей среды, пищевой и	
перерабатывающей промышленности	
Akishev Z., Khassenov B. Kappa-casein assay for the specific testing of milk-clotting proteases	150
Aktayeva S.A., Khassenov B.B. Plant proteases in cheesemaking	151
Ayupova A., Sarsenova A., Nagmetova G., Khasenova E., Kurmanbaev A. Study of oil destructive	
activity of bacterial consortia of two strains - Acinetobacter sp. V1-11 and Rhodococcus erythropolis	
at(n)13	152
Deeni Y. Y. Engineering enzymes and proteins for industrial and environmental biotechnology	153
Iskakova K.M., Anapiyayev B.B., Tuzelbayeva S.S., Ahmetova A.B., Beisenbek Y.B. Culture of	
somatic cells of Sorghum bicolor L	154
Kiribayeva A., Ramankulov Ye., Khassenov B. Methanol-induced expression of nuclease gene NucB	
from Bacillus licheniformis in Pichia pastoris	155
Mukanov B., Akishev Z., Khassenov B. Obtaining of recombinant maltase from Bacillus	1.7.0
licheniformis in Escherichia coli cells	156
process OF Nepeta densiflora microshoots	157
Naumovich N.I., Aleschenkova Z.M. Halotolerant bacteria promoting resistance of Lotus	137
corniculatus to soil salinization	158
Nurtaza A.S., Magzumova G.K., Zhanybekova Zh.T., Yessimseitova A.K., Kakimzhanova A.A.	130
Optimization of micropropagation stages for conservation and reproduction of a rare and	
ornamental Malus niedzwetzkyana	159
Purevjav U., Narantsogt N. Chemical and technological study on extraction of biological active	10)
substances and tea from Great Burnet (Sanguisorba officinalis l) growing in high – altitude regions	
of Mongolia	160
Абугалиева С.И., Туруспеков Е.К. Генетическое разнообразие дикорастущей флоры Казахста-	
на	161
Алексюк П.Г., Алексюк М.С., Аканова К., Анаркулова Э.И., Богоявленский А.П., Березин В.Э.	
Изучение разнообразия вирусов семейства Phycodnaviridae в пресноводной экосистеме Андреева И.С., Сафатов А.С., Пучкова Л.И., Емельянова, Е.К., Г.А. Буряк Анализ спорообра-	162
зующих бактерий атмосферного аэрозоля на наличие липолитических ферментов	163
Аралбаева А.Н., Маматаева А.Т., Мурзахметова М.К., Лесова Ж.Т. Исследование содержа-	
ния биоактивных веществ в водных и водноэтанольных экстрактах Павловнии войлочной	164
<i>Баубекова А.С., Акиндыкова А.</i> Изучение ароматообразующей способности молочнокислых	1
бактерий	165
Велямов М.Т., Курасова Л.А., Велямов Ш.М., Бек Р.Б. Биохимические показатели инулинсо-	166
держащего экстракта из топинамбура и их концентратов	166

УДК 602.3

А.С. Баубекова, А. Акиндыкова

ИЗУЧЕНИЕ АРОМАТООБРАЗУЮЩЕЙ СПОСОБНОСТИ МОЛОЧНОКИСЛЫХ БАКТЕРИЙ

Казахский национальный университет имени аль-Фараби Pecnyблика Казахстан, 050040, г. Алматы, пр. аль-Фараби, 71 e-mail: Baubekova.almagul@gmail.com; ainisa1989@mail.ru

Известно, что на вкус и аромат кисломолочного продукта влияет очень большой спектр как органических, так и неорганических соединений. Одни из них являются неотъемлемой частью нормального аромата кисломолочного продукта, а другие, концентрации которых выше порогового ощущения, придают нежелательный вкус и аромат.

Работы, направленные на изучение образования вкусовых компонентов при применении новых технологических приемов, активно проводят в ведущих зарубежных странах и являются актуальными и важными для дальнейшего развития молочного направления.

Характерные вкус и аромат молочных продуктов определяется накоплением большого количества соединений в процессах брожения молочного сахара. К ним относятся карбонильные соединения — альдегиды (ацетальдегид, пропионовый альдегид и др.) и кетоны (ацетон, ацетоин, диацетил и др.); карбоновые кислоты (молочная, уксусная, пропионовая, лимонная, муравьиная, масляная и др.); спирты и их эфиры (этанол, пропанол и др.); диоксид углерода и ряд других соединений.

В работе были изучены шесть штаммов молочнокислых бактерий, выделенных из кумыса и кобыльего молока. Все культуры были идентифицированы в Международном центре агрономических исследований СІRAD (Франция). Анализ летучих соединений проводился методом газовой хроматографии с масс-спектрометрическим детектированием в сочетании с твердофазной микроэкстракцией. Предварительную обработку данных проводили с использованием программного обеспечения PerkinElmer Turbomass, версия 5.4.2.1617. Файлы необработанных данных ГХ-МС были преобразованы в формат NetCDF c DataBridge (PerkinElmer, Waltham, штат Массачусетс, США) для дальнейшего анализа.

В результате проведенной работы было определено 30 летучих соединений и вторичные метаболиты, образуемые молочнокислыми бактериями. ГХ/МС анализ позволил идентифицировать широкий ряд летучих веществ, таких как эфиры, спирты, органические кислоты, кетоны, разветвлённые альдегиды. Отмечены преимущества штамма Lactobacillus casei К14, который наряду с высокой протеолитической активностью отличился продуцированием широкого ряда летучих веществ по сравнению с другими штаммами, вследствие образования таких продуктов как: 2-метилпропанол, 3-метилбутанол, органические кислоты, такие как уксусная, масляная, капроновая, октановая и др., придающие полученному продукту разнообразие вкусов и запахов, диацетил.

Таким образом, вкус и запах молочных продуктов во многом зависит от степени накопления летучих карбонильных соединений, карбоновых кислот и других ароматических веществ. Роль этих соединений огромна — они определяют не только вкусовые достоинства и качество продуктов, но имеют и большое физиологическое значение, так как способствуют выделению пищеварительных соков и обеспечивают хорошую усвояемость продукта человеком, а также влияют на спрос потребителя.

