

9th International conference on Advanced Nano Materials 3rd International conference on Advanced Graphene Materials 2nd International conference on Advanced Magnetic and Spintronics Materials 1st International conference on Advanced Polymer Materials and Nanocomposites & Special Session Hydrogen Energy and Solar Energy Materials

PROGRAM BOOK

19-21 July 2017, University of Aveiro, Portugal

ANM-11	V.V. Fetisov	Miniature Radioisotope Thermoelectric Power Supply
ANM-12	Dulat Omirbekov	Obtaining of superhydrophobic surface in RF capacitively coupled discharge in AR/CH4 medium
ANM-13	Dulat Omirbekov	The influence of gas temperature on formation and growth of the dust nanoparticles in Ar/CH4 medium
ANM-14	Jung-Hoon Yu	Porous NiO/TiO2 Nanobowl Composite Hybrid Electrochromic Devices with Enhanced Optical Modulation
ANM-15	Jiri Brus	Enhanced ion dynamic and site-specific interactions in MIL53(Al)@[LiCobisdicarbollide] MOF designed for Li-batteries
ANM-16	Jou-Hyeon Ahn	Sulfurized polyacrylonitrile nanofibers for high performance lithium sulfur batteries
ANM-17	Dimitre Z. Dimitrov	Inverted Pyramids Nanostructured Silicon
ANM-18	Hanna Maltanava	Synthesis of ZnO mesoporous powders and their application in dye photodegradation
ANM-19	Hanna Maltanava	Sol-gel template synthesis of mesoporous titania powder with photocatalytic activity under visible light
ANM-20	Renata Jastrzab	Preparation and stabilization of silver nanocolloids reduced by D- glucose used as active antibacterial materials
ANM-21	Renata Jastrzab	Preparation and characterization of long-term stable SERS active materials as potential supports for medical diagnostic
ANM-22	Marcia Escote	Transport properties of NdNiO3 nanowires
ANM-23	Yerassyl Yerlanuly	Obtaining of Carbon Nanomaterials by PECVD Method
ANM-24	Yerassyl Yerlanuly	Influence of dispersion of catalytic carrier for growth mechanism of carbon nanotubes
ANM-25	Lei Wang	Fabrication-resolution enhancement method based on low-energy multiple exposures
ANM-26	D. W. Kang	Nitric Oxide Post-deposition Annealing of Atomic Layer Deposited SiO2 on 4H-SiC
ANM-27	Martina Urbanova	Structure & dynamics of alginate beads crosslinked by different polyvalent ions as seen by Solid-state NMR spect
ANM-28	João Paulo de F. Grilo	Sintering of nano Ce0.9Gd0.1O1.95 powders with alkali carbonates
ANM-29	A.I.B. Rondão	Effect of Nanosized Dispersed Phases on the Behavior of Mg- Partially Stabilized Zirconia
ANM-30	Luca Rimoldi	The role played by the catalyst physicochemical features on guaiacol hydrodeoxygenation
ANM-31	Sedigheh Joughehdous	Synthesis of Bio-Active Glass by Sol-gel Method and Using Spark Plasma Sintering (SPS) for Forming Process
ANM-32	Hae Kyung Jeong	Graphite Oxide, CNT, and Activated Carbon Composites for Energy Storage Device
ANM-33	Heeyeon Kim	CVD synthesis of hybrid nano-catalysts for fuel cell electrode
ANM-34	Mónica Cerquido	DC potentiostatic electrodeposition of gold-mushrooms in micro- holes
ANM-35	Soo Hyun Lee	Synthesis and Characterizations of Eu3+-doped SrMoxW1-xO4 red- emitting phosphors
ANM-36	Gregor Meller	Simulation of Injection Currents into Disordered Molecular Conductors

Influence of dispersion of catalytic carrier for growth mechanism of carbon nanotubes

DidarBatryshev^{1,2}, <u>YerassylYerlanuly^{1,2}</u>, TlekkabulRamazanov³, MaratbekGabdullin², Khabibulla Abdullin²,

¹Al-FarabiKazNU, LEP, Almaty, Kazakhstan ²Al-FarabiKazNU, NNLOT, Almaty, Kazakhstan ³Al-FarabiKazNU, IETP, Almaty, Kazakhstan yerlanuly@physics.kz

INTRODUCTION

Compositesbasedoncarbonnanotube (CNT) haveagoodapplicationinawiderangeofindustries: electronics¹, construction², medicine³, energy⁴, aerospace and automotive industries⁵and etc. Themainproposeofanyindustriesistoincreasethequality and quantity of products. Inthisworkaninfluence of dispersion of catalytic carrier is considered for increasing the quantity of carbon nanotubes at synthesis chemical vapor deposition (CVD) process in fluidized bed reactor.

EXPERIMENTAL

Experimentswerecarriedoutinfluidized bed reactor by CVD method.

Thetwodispersionofcatalyticcarrierwereused – zeolitemicroparticleswithlowerdispersion~ 10-220 µmandhigherdispersion~ 1-5 µm. Zeolite powder with different dispersions were obtained by mechanical and plasma separation processes⁶. Catalytic nanolayer was prepared by wet impregnation method of powder in 0,1M water solution of nitrates of nickel and cobalt⁶. TheCVDsyntheses werecarriedoutat800^oCin atmosphere of hydrogen gas with ethanol vapor.

RESULTS AND DISCUSSION

Obtainedsampleswerestudiedbyscanningelectronmicrosco Raman spectroscopy. and py Itwasfoundthatsamplesofzeolitepowderwithlowerdispersio n almostdon't have a presence of CNTs (Fig. 1), where the samples of zeolite powder with higher dispersion have 2). deposition of **CNTs** (Fig. а RamanspectrumofsamplewithCNT 3) (Fig. correspondstospectrumofmultiwalledCNT.

Fig. 1 Morphology of zeolite micropartlees with lower dispersion after CVD synthesis process

Fig. 2 Morphology of zeolite micropartices with higher dispersion after CVD synthesis process

Fig. 3Raman spectrum of multiwalled CNT grown on zeolite micropartices with higher dispersion

CONCLUSION

Obtained results show that the dispersion of catalytic carrier pla ysimportant role in CVD synthesis of CNT sinfluidized bed reactor.

REFERENCES

- 1. Wichmann M.H.et. al., Nanotech.19, 475503 (2008).
- 2. Raki L. et. al., Materials 3, 918-942 (2010).
- 3. Kateb B. et. al., Immunotherapy of Cancer 651, 307-317 (2010).
- 4. Xu W.C. et. al, Int. Jour. Hyd. Energy 32(13), 2504-2512 (2007).
- 5. He C. et. al, Avd. Mater. 19, 1128-1132 (2007).
- 6. Batryshev D.G.et. al., Jour. of Nano and Elec.Physics 8, 03053 (2016).

ACKNOWLEDGMENTS

This work has been supported by the grant 3214/GF4of the Ministry of Education and Science of the Republic ofKazakhstan.

ANM-24