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In this paper, we calculate the stopping power and temperature relaxation of dense

plasmas on the basis of the Coulomb logarithm using the effective potentials.

These potentials take into account long-range multi-particle screening effects and

short-range quantum mechanical effects in two-temperature plasmas. Ion energy

losses in the plasma for different values of temperature and plasma density are calcu-

lated. The obtained results are compared with the theoretical works of other authors

and with the results of molecular dynamics simulations.
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1 INTRODUCTION

Investigation of the interaction processes of ion beams with dense plasmas is one of the most important problems in the

physics of inertial confinement fusion (ICF), warm dense matter, and high-power laser physics.[1–3] The dense plasma is formed

in the experiments on heavy ion-driven fusion,[4–6] experiments at the National Ignition Facility,[7] and magnetized Z-pinch

experiments.[8] Currently, a large number of theoretical[9–14] and experimental studies of physical processes that determine the

design of the thermonuclear target are carried out. The study of energy losses of charged particles in the plasma is of great impor-

tance for dense plasma physics, as well as for solution of the problems of inertial fusion.[15,16] The nature and results of these

interactions depend on the type of energy of the charged particle beam as well as on the type, condition, density, composition,

and size of the targets. Therefore, modelling of heavy, highly charged ions for inertial thermonuclear fusion requires both quali-

tative and quantitative description of the interaction of heavy particles with matter in a wide range of densities and temperatures.

It is especially important to determine ion energy losses in dense plasmas, as their experimental study has certain difficulties

related to the determination of free-electron density in the plasma needed for calculation of their stopping power. The stopping

power has been calculated in many theoretical works using various approaches, theories, and computational simulations.[17–20]

It was found that, in general, the stopping power increases in two cases, that is, when the effective charge of the projectile

increases, and when the value of the Coulomb logarithm increases. The traditional formula for the Coulomb logarithm does not

correctly account for collisional processes in systems, because it is obtained by using an unscreened Coulomb potential. In this

work, the Coulomb logarithm is derived on the basis of a strongly screened effective potential, which accounts for short-range

quantum effects and long-range many-particle screening effects.

In this paper, the model previously proposed in Refs [21–24] for the description of dense plasma properties based on effective

interaction potentials[25–27] is used for calculation of the dynamical properties of deuterium–tritium ICF plasmas. The effective

potential is derived using the long-wavelength expansion of the polarization function and quantum potential, taking into account

the finite value of the interaction potential at a close distance.

In Section 2, we present the model for the calculation of the dynamical properties of the dense plasma using effective poten-

tials of the electron–ion interaction. In Section 3, we present and discuss the results of calculation of the stopping power and

temperature relaxation of the ICF plasma. To show the correctness of the model, its results are compared with the data from

molecular dynamics (MD) and particle-in-cell (PIC) simulations. In the last section, the findings are summarized.
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2 PHYSICAL MODEL

The basis of controlled nuclear fusion is to provide a fusion reaction of light nuclei. In the thermonuclear fusion of deuterium and

tritium, D+T → 𝛼 + n, which occurs in ICF experiments, the amount of the initial 𝛼-particle energy, E0 = 3.54 MeV, transferred

to the D and T ions is crucial because a high ion temperature is needed for the fusion reaction parameter ⟨𝜎𝜐⟩T to become

sufficiently large so that a robust and stable fusion burning can be realized. The range of particles is determined as follows:[28]

R = ∫
E0

E

(
𝑑𝐸

𝑑𝑥

)−1

𝑑𝐸, (1)

where dE/dx is the stopping power, E0 is the initial energy of the particle, and Ē is determined from the condition

S(Ē)= dE/dx= 0. If the projectile moves linearly through the plasma until it stops, the energy partition into ions and electrons

is given by[29]

Ei = ∫
Ei

0

dEi = ∫
E0

0

𝑑𝐸
𝑑𝐸 i∕𝑑𝑥
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, (2)
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Ee

0

dEe = ∫
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0

𝑑𝐸
𝑑𝐸e∕𝑑𝑥
𝑑𝐸∕𝑑𝑥

, (3)

where dEi/dx and dEe/dx are the stopping power contributions from ions and electrons, respectively, and dE/dx is the total

stopping power:
𝑑𝐸 i

𝑑𝑥
+ 𝑑𝐸e

𝑑𝑥
= 𝑑𝐸

𝑑𝑥
, (4)

Ei + Ee = E0. (5)

In this paper, the dynamical properties are obtained on the basis of the Coulomb logarithm using the effective potentials

for an ICF plasma. Stopping power is defined as the average energy loss per unit path length of charged particles passing

through the material due to Coulomb interactions with electrons or ions. We calculate the stopping power in the binary collision

approximation,[30,31] as

𝑑𝐸𝛼

𝑑𝑥
= 8𝜋𝑛

(m𝛼𝛽

mi

)
⋅ Ec ⋅ b2

⊥
⋅ Λ𝛼𝛽 , (6)

where 𝛼 and 𝛽 stand for the types of colliding particles, Ec = 1

2
m𝛼𝛽𝜐

2 is the energy of the center of mass of the colliding particles,

m𝛼𝛽 is the reduced mass of ions or electrons, 𝜐 is the relative velocity of the scattered test particle, b⊥ = |Z𝛼 ||Z𝛽 |e2/(m𝛼𝛽𝜐
2),

Ze =−1, Zi = 1, and Λ𝛼𝛽 is the Coulomb logarithm.

The Coulomb logarithm based on the effective interaction potential of particles is determined by the scattering angle of pair

collisions. Introducing the center of mass in the collision process, the Coulomb logarithm is written as[21,30,31]

Λ𝛼𝛽 = 1

b2
⊥
∫

∞

0

sin2

(
𝜃c

2

)
𝑏𝑑𝑏, (7)

where the center-of-mass scattering angle 𝜃c can be obtained from the formula[30]

𝜃c = 𝜋 − 2b∫
∞

r0

𝑑𝑟

r2

(
1 −

Φ𝛼𝛽(r)
Ec

− b2

r2

)−1∕2

. (8)

In Equation 8, Φ𝛼𝛽(r) is the interaction potential, and r0 is the distance of the closest approach for a given impact parameter b:

1 −
Φ𝛼𝛽(r0)

Ec
− b2

r2
0

= 0. (9)

It is known that, in order to correctly describe static and dynamic properties of plasmas, the collective screening effect is to

be taken into account. In this work, the dense plasma, for which quantum effects at short distances must be taken into account,

is considered. Further, the effective interaction potential including both charge screening at large distances and quantum effects

at short distances are used:[25–27]

Φ𝛼𝛽(r) =
e2Z𝛼Z𝛽

r𝜆2
ee𝛾

2
√

1 − (2kD∕𝜆ee𝛾2)2

[(
1 − 𝜆2

eeB2

1 − 𝜆2
𝛼𝛽

B2

)
exp(−𝑟𝐵) −

(
1 − 𝜆2

eeA2

1 − 𝜆2
𝛼𝛽

A2

)
exp(−𝑟𝐴)

]
+

+
𝑍𝑒2 exp(−r∕𝜆𝛼𝛽)

r(1 + C𝛼𝛽)
, (10)
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where A2 = 𝛾2
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of the order 𝜈, and 𝜆𝛼𝛽 = ℏ∕
√

2𝜋m𝛼𝛽kBT𝛼𝛽 is the characteristic thermal de Brogile wavelength. In nonisothermal plasmas,

a characteristic temperature T𝛼𝛽 appears.[32,33] In Ref. [32], it was shown that for a correct description of two-temperature

plasma properties, the temperature may be expressed in the form T𝛼𝛽 =
√

T𝛼T𝛽 . The effective potential 10 can be used for

non-isothermal as well as isothermal plasmas. It is important to note that the effective potential 10 for the case of ion–ion

interaction agrees with that of Ref. [34].

3 RESULTS AND DISCUSSION

In this section, we consider the results of investigation of the dynamic properties of dense plasmas based on the Coulomb

logarithm using the effective potential 10. Stopping processes in a dense plasma are of significant interest in various fields of

science and technology (plasma physics, ICF, physics of warm dense matter, etc.).[35,36] In particular, intensive studies of ICF

require more reliable information about the dynamic characteristics, that is, the stopping power and temperature relaxation. Let

us consider a dense DT plasma particles interacting through the effective potential 10.

The quality of description of the dynamic properties based on the effective potential 10 is checked by the comparison of the

stopping power calculated using the combined model, T-matrix method and the first-order Born approximation with the data

obtained using the effective electron–ion potential 10.

The stopping power obtained using the effective potential 10 and the results of calculations using the combined model, the

first Born approximation, T-matrix model, dynamic random phase approximation (RPA), and PIC simulation are shown in

Figure 1. The effective potential 10 correctly describes the stopping power at v≲ vth, where vth =
√

kBT∕me is the electronic

thermal velocity. The data obtained from the combined model are in agreement with the simulation data at velocities v< 2 vth.

In the cases Z = 5 (Figure 1a) and Z = 10 (Figure 1b), at high velocities the effective potential 10 gives the results closer to the

Born approximation. Moreover, from Figure 1 it can be concluded that the effective potential 10 provides a correct description

of the stopping power at velocities v≤ 1.5vth. In this velocity range, the effect of strong coupling between target and projectile

is particularly important and the stopping power description in this range is particularly difficult. For instance, the T-matrix

approach requires a rigorous solution of the quantum scattering problem and PIC simulation of the stopping power is known

to be a time-consuming process. The effective interaction potential approach correctly describes the stopping power at low

velocities including the region where the stopping power has its maximum, but fails to reproduce the result of the fully dynamical

computation of the stopping power at v> 2vth. On the other hand, such a fully dynamical method based on the direct use of

the dynamical dielectric function from linear response theory essentially fails to provide reliable data on the stopping power

at low projectile velocities, v< 3vth. The region around v≲ vth is important for the correct calculation of the thermalization

(temperature relaxation) time and, therefore, for the determination of the equilibrium plasma temperature in the case when a

generated plasma has initially a non-isothermal state. It is important that the best theoretical result is provided by the combined

scheme, where the T-matrix approach is used for low velocities and the dynamic RPA description is implemented at large

projectile velocities. From the presented comparisons in Figure 1, we conclude that the employed effetive potential approach

can be used for the fast and accurate computation of the stopping power in dense plasmas at low projectile velocities. Further, we

use the effective potential approach for the analysis of the stopping power around its maximum, which is the most challenging

region for theoretical considerations, at different plasma parameters.

In Figure 2a and b, we illustrate the energy dependence of the electron and ion components of the stopping power in a dense

plasma at electron number density ne = 1026 cm−3 for different values of temperature. The plasma temperature is T = 10 divided

by 30 keV, and the electron number density is ne = 1026 cm−3, which is characteristic of plasmas for ICF shortly after ignition.

The energy region lies between zero and 𝛼-particle energy E0 = 3.54 MeV produced in the DT reaction. In this case, most of

the 𝛼-particle energy is transferred to electrons. As shown in Figure 2, for ion projectiles, the energy loss to the electrons in the

plasma dominates over that to the ions when the projectile energy becomes sufficiently large on the temperature scale. On

the basis of the obtained data, the fractions of energy absorbed by an ion Ei and an electron Ee were estimated. The energy

fractions transferred to electrons and ions calculated by the formulas 2 and 3 are Ee = 3.38 MeV and Ei = 0.14 MeV, respectively.

Interestingly, the stopping power values around the maximum remain nearly constant when the temperature doubles from 10 to

20 keV, while the increase of temperature from 40 to 60 keV leads to the significant decrease in the stopping power around its

maximum value.

In Figure 2b shows the stopping power by the present model, BPS (Bogomol’nyi–Prasad–Sommerfield) theory,[29] and the

average atom (AA) model.[37] The results obtained using the effective potential approach of this paper closer to those by Bin[37]
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FIGURE 1 Stopping power obtained on the basis of the effective interaction potential 10 in comparison with the results of different theoretical approaches[19]

for Z = 5 (a) and Z = 10 (b). The stopping power is given in units of 3kBT/rD, where rD is the Debye screening length, and vth =
√

kBT∕me is the thermal velocity

FIGURE 2 Stopping power of the projectile particle traversing a DT plasma as a function of the projectile energy, split into ion and electron contributions

rather than to the data from Ref. [29]. This indicates the importance of the electronic quantum effects, which are taken into

account in Ref. [37]. The difference between our results and the result of Bin[37] is due to an inelastic scattering effect, which

is included in Ref. [37], as the dense plasma of Au was considered. The latter is irrelevant when considering the case of a fully

ionized dense DT plasma.

Figure 3 shows the 𝛼-particle range R𝛼 in micrometers for the initial energy E0 = 3.54 MeV as a function of the electron

temperature Te. The curves for different electron densities are labelled as follows: solid curves ne = 1026 cm−3; dashed curves

ne = 1025 cm−3; dot-dashed curves ne = 1024 cm−3. At the considered densities the 𝛼-particle range almost saturates at T > keV

after a dramatic increase at lower temperatures. It is worth noting that a smaller 𝛼-particle range is better for the efficient energy

transfer from the 𝛼-particle to a plasma, meaning that an 𝛼-particle’s initial energy deposition to a plasma is more effective at

higher plasma densities.

Figure 4 shows the temperature relaxation of a helium ion (Z = 2) in avhydroge plasma with Te =Ti = 100 eV and

ne = 1024 cm−3 for two initial temperatures, that is, 10 and 1000 eV. The results are compared with the classical multi-component

MD simulations[38] using a code based on the works of Hansen and McDonald[43] and Glosli et al.[44]. The obtained results

agree with the results of the MD simulation. From Figure 4, the significant difference from the result obtained using the sim-

pler Yukawa potential is seen. For instance, at the parameters indicated in Figure 4, the equilibrium value of the temperature

calculated using the effective potential 10 is larger by 10 eV than that computed using the Yukawa potential. We note that the

effective potential 10 agrees with the Yukawa potential if the electronic quantum non-locality (diffraction) effects are neglected.

Therefore, an accurate description of the screening effect is highly important for the accurate description of the temperature

equilibration in dense plasmas.
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FIGURE 3 𝛼-Particle range (in micrometers) as a function of the electron temperature

FIGURE 4 Comparison of the values of helium ion relaxation in hydrogen plasma

for two initial energies Ti0 = 10 eV and Te0 = 1000 eV with molecular dynamics (MD)

simulations,[38] Yukawa potential,[39–41] and ion-sphere[42] potential

4 CONCLUSION

The dynamic processes in dense DT plasmas were studied on the basis of the two-temperature effective interaction potentials

taking into account quantum diffraction effects at short distances and screening at large distances. Although the used model is

reliable only at relatively low projectile velocities, the important area around the maximum of the stopping power is adequately

described. Therefore, this allowed us to study the dependence of the stopping power on plasma parameters and examine the sen-

sitivity of the computed relaxation time and the corresponding equilibrium plasma temperature on the quality of the description

of the screening effect in dense plasmas. The main findings are summarized as follows:

1. The stopping power in dense plasmas has non-monotonic dependence on the plasma temperature. At T > 20 keV, the stopping

power at low velocities decreases with increase in the plasma temperature, while at 10 keV< T < 20 keV the stopping power

does not show any significant change due to temperature variation.

2. A theoretically computed temperature equilibration in dense plasmas can be very sensitive to the approximation made in

the description of the screening effect. Particularly, neglecting the electronic quantum non-locality can lead to a significant

underestimation of the equilibrium temperature after thermalization. The reason for this is that the temperature relaxation is

determined by the collisions with low ion velocities (relative to the electron thermal temperature). Therefore, the temperature

equilibration in dense plasmas needs further study, implementing more involved theories for the description of the screening

(e.g., see Ref. [45]).
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